| // SPDX-License-Identifier: (GPL-2.0+ OR MIT) |
| /* |
| *opyright (c) 2019 Amlogic, Inc. All rights reserved. |
| */ |
| #include <linux/dma-mapping.h> |
| #include <linux/dma-direct.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/pfn.h> |
| #include <linux/types.h> |
| #include <linux/highmem.h> |
| #include <linux/gfp.h> |
| #include <asm/dma.h> |
| #include <linux/printk.h> |
| |
| #include <linux/init.h> |
| #include <linux/iommu-helper.h> |
| #include <linux/amlogic/dma_pcie_mapping.h> |
| //#include <linux/dma-noncoherent.h> |
| #include <linux/of.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/genalloc.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/set_memory.h> |
| |
| /* |
| * Enumeration for sync targets |
| */ |
| enum dma_sync_target { |
| SYNC_FOR_CPU = 0, |
| SYNC_FOR_DEVICE = 1, |
| }; |
| |
| #define OFFSET(val, align) ((unsigned long) \ |
| ((val) & ((align) - 1))) |
| |
| /* default to 32MB */ |
| #define AML_IO_TLB_DEFAULT_SIZE (64UL << 20) |
| |
| /* |
| * Maximum allowable number of contiguous slabs to map, |
| * must be a power of 2. What is the appropriate value ? |
| * The complexity of {map,unmap}_single is linearly dependent on this value. |
| */ |
| |
| #ifdef IO_TLB_SEGSIZE |
| #undef IO_TLB_SEGSIZE |
| #endif |
| #define IO_TLB_SEGSIZE 2048 |
| |
| /* |
| * log of the size of each IO TLB slab. The number of slabs is command line |
| * controllable. |
| */ |
| #define IO_TLB_SHIFT 11 |
| |
| /* |
| * We need to save away the original address corresponding to a mapped entry |
| * for the sync operations. |
| */ |
| #define INVALID_PHYS_ADDR (~(phys_addr_t)0) |
| static phys_addr_t *io_tlb_orig_addr; |
| |
| /* |
| * Protect the above data structures in the map and unmap calls |
| */ |
| static DEFINE_SPINLOCK(io_tlb_lock); |
| |
| static bool no_iotlb_memory; |
| |
| /* |
| * Used to do a quick range check in aml_swiotlb_tbl_unmap_single and |
| * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this |
| * API. |
| */ |
| static phys_addr_t io_tlb_start, io_tlb_end; |
| |
| /* |
| * The number of IO TLB blocks (in groups of 64) between io_tlb_start and |
| * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. |
| */ |
| static unsigned long io_tlb_nslabs; |
| |
| /* |
| * The number of used IO TLB block |
| */ |
| static unsigned long io_tlb_used; |
| |
| /* |
| * This is a free list describing the number of free entries available from |
| * each index |
| */ |
| static unsigned int *io_tlb_list; |
| static unsigned int io_tlb_index; |
| |
| static inline bool aml_is_swiotlb_buffer(struct device *dev, phys_addr_t paddr) |
| { |
| return paddr >= io_tlb_start && paddr < io_tlb_end; |
| } |
| |
| /* |
| * Bounce: copy the swiotlb buffer from or back to the original dma location |
| */ |
| static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| unsigned long pfn = PFN_DOWN(orig_addr); |
| unsigned char *vaddr = phys_to_virt(tlb_addr); |
| |
| if (PageHighMem(pfn_to_page(pfn))) { |
| /* The buffer does not have a mapping. Map it in and copy */ |
| unsigned int offset = orig_addr & ~PAGE_MASK; |
| char *buffer; |
| unsigned int sz = 0; |
| unsigned long flags; |
| |
| while (size) { |
| sz = min_t(size_t, PAGE_SIZE - offset, size); |
| |
| local_irq_save(flags); |
| buffer = kmap_atomic(pfn_to_page(pfn)); |
| if (dir == DMA_TO_DEVICE) |
| memcpy(vaddr, buffer + offset, sz); |
| else |
| memcpy(buffer + offset, vaddr, sz); |
| kunmap_atomic(buffer); |
| local_irq_restore(flags); |
| |
| size -= sz; |
| pfn++; |
| vaddr += sz; |
| offset = 0; |
| } |
| } else if (dir == DMA_TO_DEVICE) { |
| memcpy(vaddr, phys_to_virt(orig_addr), size); |
| } else { |
| memcpy(phys_to_virt(orig_addr), vaddr, size); |
| } |
| } |
| |
| static phys_addr_t aml_swiotlb_tbl_map_single(struct device *hwdev, |
| dma_addr_t tbl_dma_addr, |
| phys_addr_t orig_addr, |
| size_t mapping_size, |
| size_t alloc_size, |
| enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| unsigned long flags; |
| phys_addr_t tlb_addr; |
| unsigned int nslots, stride, index, wrap; |
| int i; |
| unsigned long mask; |
| unsigned long offset_slots; |
| unsigned long max_slots; |
| unsigned long tmp_io_tlb_used; |
| |
| if (no_iotlb_memory) |
| panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); |
| |
| if (mapping_size > alloc_size) { |
| dev_warn_once(hwdev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", |
| mapping_size, alloc_size); |
| return (phys_addr_t)DMA_MAPPING_ERROR; |
| } |
| |
| mask = dma_get_seg_boundary(hwdev); |
| |
| tbl_dma_addr &= mask; |
| |
| offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; |
| |
| /* |
| * Carefully handle integer overflow which can occur when mask == ~0UL. |
| */ |
| max_slots = mask + 1 |
| ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT |
| : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); |
| |
| /* |
| * For mappings greater than or equal to a page, we limit the stride |
| * (and hence alignment) to a page size. |
| */ |
| nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; |
| if (alloc_size >= PAGE_SIZE) |
| stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); |
| else |
| stride = 1; |
| |
| WARN_ON(!nslots); |
| |
| /* |
| * Find suitable number of IO TLB entries size that will fit this |
| * request and allocate a buffer from that IO TLB pool. |
| */ |
| spin_lock_irqsave(&io_tlb_lock, flags); |
| |
| if (unlikely(nslots > io_tlb_nslabs - io_tlb_used)) |
| goto not_found; |
| |
| index = ALIGN(io_tlb_index, stride); |
| if (index >= io_tlb_nslabs) |
| index = 0; |
| wrap = index; |
| |
| do { |
| while (iommu_is_span_boundary(index, nslots, offset_slots, |
| max_slots)) { |
| index += stride; |
| if (index >= io_tlb_nslabs) |
| index = 0; |
| if (index == wrap) |
| goto not_found; |
| } |
| |
| /* |
| * If we find a slot that indicates we have 'nslots' number of |
| * contiguous buffers, we allocate the buffers from that slot |
| * and mark the entries as '0' indicating unavailable. |
| */ |
| if (io_tlb_list[index] >= nslots) { |
| int count = 0; |
| |
| for (i = index; i < (int)(index + nslots); i++) |
| io_tlb_list[i] = 0; |
| for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != |
| IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) |
| io_tlb_list[i] = ++count; |
| tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); |
| |
| /* |
| * Update the indices to avoid searching in the next |
| * round. |
| */ |
| io_tlb_index = ((index + nslots) < io_tlb_nslabs |
| ? (index + nslots) : 0); |
| |
| goto found; |
| } |
| index += stride; |
| if (index >= io_tlb_nslabs) |
| index = 0; |
| } while (index != wrap); |
| |
| not_found: |
| tmp_io_tlb_used = io_tlb_used; |
| |
| spin_unlock_irqrestore(&io_tlb_lock, flags); |
| if (!(attrs & DMA_ATTR_NO_WARN) && __printk_ratelimit(__func__)) |
| dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", |
| alloc_size, io_tlb_nslabs, tmp_io_tlb_used); |
| return (phys_addr_t)DMA_MAPPING_ERROR; |
| found: |
| io_tlb_used += nslots; |
| spin_unlock_irqrestore(&io_tlb_lock, flags); |
| |
| /* |
| * Save away the mapping from the original address to the DMA address. |
| * This is needed when we sync the memory. Then we sync the buffer if |
| * needed. |
| */ |
| for (i = 0; i < nslots; i++) |
| io_tlb_orig_addr[index + i] = orig_addr + (i << IO_TLB_SHIFT); |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) |
| swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE); |
| |
| return tlb_addr; |
| } |
| |
| /* |
| * Create a swiotlb mapping for the buffer at @phys, and in case of DMAing |
| * to the device copy the data into it as well. |
| */ |
| static bool aml_swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| /* Oh well, have to allocate and map a bounce buffer. */ |
| *phys = aml_swiotlb_tbl_map_single(dev, phys_to_dma(dev, io_tlb_start), |
| *phys, size, size, dir, attrs); |
| if (*phys == (phys_addr_t)DMA_MAPPING_ERROR) |
| return false; |
| |
| /* Ensure that the address returned is DMA'ble */ |
| *dma_addr = phys_to_dma(dev, *phys); |
| |
| return true; |
| } |
| |
| static void swiotlb_cleanup(void) |
| { |
| io_tlb_end = 0; |
| io_tlb_start = 0; |
| io_tlb_nslabs = 0; |
| } |
| |
| static void aml_swiotlb_print_info(void) |
| { |
| unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
| |
| if (no_iotlb_memory) { |
| pr_warn("No low mem\n"); |
| return; |
| } |
| |
| pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", |
| (unsigned long long)io_tlb_start, |
| (unsigned long long)io_tlb_end, bytes >> 20); |
| } |
| |
| static int aml_swiotlb_init_with_tbl(phys_addr_t tlb, unsigned long nslabs) |
| { |
| unsigned long i, bytes; |
| |
| bytes = nslabs << IO_TLB_SHIFT; |
| |
| io_tlb_nslabs = nslabs; |
| io_tlb_start = tlb; |
| io_tlb_end = io_tlb_start + bytes; |
| |
| /* |
| * Allocate and initialize the free list array. This array is used |
| * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE |
| * between io_tlb_start and io_tlb_end. |
| */ |
| io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, |
| get_order(io_tlb_nslabs * sizeof(int))); |
| if (!io_tlb_list) |
| goto cleanup3; |
| |
| io_tlb_orig_addr = (phys_addr_t *) |
| __get_free_pages(GFP_KERNEL, |
| get_order(io_tlb_nslabs * sizeof(phys_addr_t))); |
| if (!io_tlb_orig_addr) |
| goto cleanup4; |
| |
| for (i = 0; i < io_tlb_nslabs; i++) { |
| io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); |
| io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; |
| } |
| io_tlb_index = 0; |
| no_iotlb_memory = false; |
| |
| aml_swiotlb_print_info(); |
| |
| return 0; |
| |
| cleanup4: |
| free_pages((unsigned long)io_tlb_list, |
| get_order(io_tlb_nslabs * sizeof(int))); |
| io_tlb_list = NULL; |
| cleanup3: |
| swiotlb_cleanup(); |
| return -ENOMEM; |
| } |
| |
| /* |
| * tlb_addr is the physical address of the bounce buffer to unmap. |
| */ |
| static void aml_swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, |
| size_t mapping_size, size_t alloc_size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| unsigned long flags; |
| int i, count, nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; |
| int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; |
| phys_addr_t orig_addr = io_tlb_orig_addr[index]; |
| |
| /* |
| * First, sync the memory before unmapping the entry |
| */ |
| if (orig_addr != INVALID_PHYS_ADDR && |
| !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) |
| swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE); |
| |
| /* |
| * Return the buffer to the free list by setting the corresponding |
| * entries to indicate the number of contiguous entries available. |
| * While returning the entries to the free list, we merge the entries |
| * with slots below and above the pool being returned. |
| */ |
| spin_lock_irqsave(&io_tlb_lock, flags); |
| { |
| count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? |
| io_tlb_list[index + nslots] : 0); |
| /* |
| * Step 1: return the slots to the free list, merging the |
| * slots with superceeding slots |
| */ |
| for (i = index + nslots - 1; i >= index; i--) { |
| io_tlb_list[i] = ++count; |
| io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; |
| } |
| /* |
| * Step 2: merge the returned slots with the preceding slots, |
| * if available (non zero) |
| */ |
| for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != |
| IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) |
| io_tlb_list[i] = ++count; |
| |
| io_tlb_used -= nslots; |
| } |
| spin_unlock_irqrestore(&io_tlb_lock, flags); |
| } |
| |
| static void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, |
| size_t size, enum dma_data_direction dir, |
| enum dma_sync_target target) |
| { |
| int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; |
| phys_addr_t orig_addr = io_tlb_orig_addr[index]; |
| |
| if (orig_addr == INVALID_PHYS_ADDR) |
| return; |
| orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); |
| |
| switch (target) { |
| case SYNC_FOR_CPU: |
| if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) |
| swiotlb_bounce(orig_addr, tlb_addr, |
| size, DMA_FROM_DEVICE); |
| else |
| WARN_ON(dir != DMA_TO_DEVICE); |
| break; |
| case SYNC_FOR_DEVICE: |
| if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) |
| swiotlb_bounce(orig_addr, tlb_addr, |
| size, DMA_TO_DEVICE); |
| else |
| WARN_ON(dir != DMA_FROM_DEVICE); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static struct device *aml_dma_dev; |
| /* |
| * Statically reserve bounce buffer space and initialize bounce buffer data |
| * structures for the software IO TLB used to implement the DMA API. |
| */ |
| void pcie_swiotlb_init(struct device *dma_dev) |
| { |
| size_t default_size = AML_IO_TLB_DEFAULT_SIZE; |
| unsigned char *vstart; |
| unsigned long bytes; |
| dma_addr_t paddr = 0; |
| |
| if (!io_tlb_nslabs) { |
| io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); |
| io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); |
| } |
| |
| bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
| |
| aml_dma_dev = dma_dev; |
| /* Get IO TLB memory from the low pages */ |
| vstart = dma_alloc_coherent(dma_dev, PAGE_ALIGN(bytes), &paddr, GFP_KERNEL); |
| if (vstart && !aml_swiotlb_init_with_tbl(paddr, io_tlb_nslabs)) |
| return; |
| |
| pr_warn("Cannot allocate buffer"); |
| no_iotlb_memory = true; |
| } |
| |
| /* ----------------- atomic pool --------------------- */ |
| |
| static struct gen_pool *aml_atomic_pool __ro_after_init; |
| |
| /* Size can be defined by the coherent_pool command line */ |
| static size_t atomic_pool_size; |
| |
| static int aml_atomic_pool_expand(struct device *dev, struct gen_pool *pool, |
| size_t pool_size, gfp_t gfp) |
| { |
| unsigned int order; |
| struct page *page = NULL; |
| void *addr; |
| int ret = -ENOMEM; |
| |
| /* Cannot allocate larger than MAX_ORDER-1 */ |
| order = min(get_order(pool_size), MAX_ORDER - 1); |
| |
| page = dma_alloc_from_contiguous(dev, 1 << order, |
| order, false); |
| if (!page) |
| goto out; |
| |
| arch_dma_prep_coherent(page, pool_size); |
| |
| #ifdef CONFIG_DMA_DIRECT_REMAP |
| addr = dma_common_contiguous_remap(page, pool_size, |
| pgprot_dmacoherent(PAGE_KERNEL), |
| __builtin_return_address(0)); |
| if (!addr) |
| goto out; |
| #else |
| addr = page_to_virt(page); |
| #endif |
| /* |
| * Memory in the atomic DMA pools must be unencrypted, the pools do not |
| * shrink so no re-encryption occurs in dma_direct_free(). |
| */ |
| ret = set_memory_decrypted((unsigned long)page_to_virt(page), |
| 1 << order); |
| if (ret) |
| goto remove_mapping; |
| ret = gen_pool_add_virt(pool, (unsigned long)addr, page_to_phys(page), |
| pool_size, NUMA_NO_NODE); |
| if (ret) |
| goto encrypt_mapping; |
| |
| return 0; |
| |
| encrypt_mapping: |
| ret = set_memory_encrypted((unsigned long)page_to_virt(page), |
| 1 << order); |
| if (WARN_ON_ONCE(ret)) { |
| /* Decrypt succeeded but encrypt failed, purposely leak */ |
| goto out; |
| } |
| remove_mapping: |
| #ifdef CONFIG_DMA_DIRECT_REMAP |
| dma_common_free_remap(addr, pool_size); |
| #endif |
| out: |
| return ret; |
| } |
| |
| static struct gen_pool *__dma_atomic_pool_init(struct device *dev, |
| size_t pool_size, gfp_t gfp) |
| { |
| struct gen_pool *pool; |
| int ret; |
| |
| pool = gen_pool_create(PAGE_SHIFT, NUMA_NO_NODE); |
| if (!pool) |
| return NULL; |
| |
| gen_pool_set_algo(pool, gen_pool_first_fit_order_align, NULL); |
| |
| ret = aml_atomic_pool_expand(dev, pool, pool_size, gfp); |
| if (ret) { |
| gen_pool_destroy(pool); |
| pr_err("aml DMA: failed to allocate %zu KiB %pGg pool for atomic allocation\n", |
| pool_size >> 10, &gfp); |
| return NULL; |
| } |
| |
| pr_info("aml DMA: preallocated %zu KiB %pGg pool for atomic allocations\n", |
| gen_pool_size(pool) >> 10, &gfp); |
| return pool; |
| } |
| |
| int aml_dma_atomic_pool_init(struct device *dev) |
| { |
| int ret = 0; |
| |
| /* |
| * If coherent_pool was not used on the command line, default the pool |
| * sizes to 128KB per 1GB of memory, min 128KB, max MAX_ORDER-1. |
| */ |
| if (!atomic_pool_size) { |
| unsigned long pages = totalram_pages() / (SZ_1G / SZ_128K); |
| |
| pages = min_t(unsigned long, pages, MAX_ORDER_NR_PAGES); |
| atomic_pool_size = max_t(size_t, pages << PAGE_SHIFT, SZ_128K); |
| } |
| |
| aml_atomic_pool = __dma_atomic_pool_init(dev, atomic_pool_size, |
| GFP_KERNEL); |
| if (!aml_atomic_pool) |
| ret = -ENOMEM; |
| |
| return ret; |
| } |
| |
| static void *aml_dma_alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) |
| { |
| unsigned long val; |
| void *ptr = NULL; |
| |
| if (!aml_atomic_pool) { |
| WARN(1, "coherent pool not initialised!\n"); |
| return NULL; |
| } |
| |
| val = gen_pool_alloc(aml_atomic_pool, size); |
| if (val) { |
| phys_addr_t phys = gen_pool_virt_to_phys(aml_atomic_pool, val); |
| |
| *ret_page = pfn_to_page(__phys_to_pfn(phys)); |
| ptr = (void *)val; |
| memset(ptr, 0, size); |
| } |
| |
| return ptr; |
| } |
| |
| static bool aml_dma_in_atomic_pool(void *start, size_t size) |
| { |
| if (unlikely(!aml_atomic_pool)) |
| return false; |
| |
| return gen_pool_has_addr(aml_atomic_pool, (unsigned long)start, size); |
| } |
| |
| static bool aml_dma_free_from_pool(void *start, size_t size) |
| { |
| if (!aml_dma_in_atomic_pool(start, size)) |
| return false; |
| gen_pool_free(aml_atomic_pool, (unsigned long)start, size); |
| return true; |
| } |
| |
| /* ----------------- atomic pool end --------------------- */ |
| |
| static void *aml_dma_direct_alloc(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| { |
| struct device_node *of_node = dev->of_node; |
| int count; |
| void *ret; |
| struct page *page = NULL; |
| |
| count = of_property_count_elems_of_size(of_node, "memory-region", sizeof(u32)); |
| if (count <= 0 && aml_dma_dev) |
| dev = aml_dma_dev; |
| |
| if (!gfpflags_allow_blocking(gfp)) { |
| size = PAGE_ALIGN(size); |
| ret = aml_dma_alloc_from_pool(size, &page, gfp); |
| if (!ret) |
| return NULL; |
| |
| *dma_handle = phys_to_dma(dev, page_to_phys(page)); |
| return ret; |
| } |
| |
| return dma_direct_alloc(dev, size, dma_handle, gfp, attrs); |
| } |
| |
| static void aml_dma_direct_free(struct device *dev, size_t size, |
| void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) |
| { |
| struct device_node *of_node = dev->of_node; |
| int count; |
| |
| count = of_property_count_elems_of_size(of_node, "memory-region", sizeof(u32)); |
| if (count <= 0 && aml_dma_dev) |
| dev = aml_dma_dev; |
| |
| if (!aml_dma_free_from_pool(cpu_addr, PAGE_ALIGN(size))) |
| return dma_direct_free(dev, size, cpu_addr, dma_addr, attrs); |
| } |
| |
| static dma_addr_t aml_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| phys_addr_t phys = page_to_phys(page) + offset; |
| dma_addr_t dma_addr = phys_to_dma(dev, phys); |
| |
| if (!aml_swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) |
| return DMA_MAPPING_ERROR; |
| |
| if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| arch_sync_dma_for_device(phys, size, dir); |
| return dma_addr; |
| } |
| |
| static void aml_dma_sync_single_for_cpu(struct device *dev, |
| dma_addr_t addr, size_t size, enum dma_data_direction dir) |
| { |
| phys_addr_t paddr = dma_to_phys(dev, addr); |
| |
| if (!dev_is_dma_coherent(dev)) { |
| arch_sync_dma_for_cpu(paddr, size, dir); |
| arch_sync_dma_for_cpu_all(); |
| } |
| |
| if (unlikely(aml_is_swiotlb_buffer(dev, paddr))) |
| swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); |
| |
| if (dir == DMA_FROM_DEVICE) |
| arch_dma_mark_clean(paddr, size); |
| } |
| |
| static void aml_dma_unmap_page(struct device *dev, dma_addr_t addr, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| phys_addr_t phys = dma_to_phys(dev, addr); |
| |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| aml_dma_sync_single_for_cpu(dev, addr, size, dir); |
| |
| if (unlikely(aml_is_swiotlb_buffer(dev, phys))) |
| aml_swiotlb_tbl_unmap_single(dev, phys, size, size, dir, |
| attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| } |
| |
| void aml_dma_sync_single_for_device(struct device *dev, |
| dma_addr_t addr, size_t size, enum dma_data_direction dir) |
| { |
| phys_addr_t paddr = dma_to_phys(dev, addr); |
| |
| if (unlikely(aml_is_swiotlb_buffer(dev, paddr))) |
| swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); |
| |
| if (!dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_device(paddr, size, dir); |
| } |
| |
| void aml_dma_unmap_sg(struct device *dev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sgl, sg, nents, i) |
| aml_dma_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, |
| attrs); |
| } |
| |
| int aml_dma_map_sg(struct device *dev, struct scatterlist *sgl, int nents, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| sg->dma_address = aml_dma_map_page(dev, sg_page(sg), |
| sg->offset, sg->length, dir, attrs); |
| if (sg->dma_address == DMA_MAPPING_ERROR) |
| goto out_unmap; |
| sg_dma_len(sg) = sg->length; |
| } |
| |
| return nents; |
| |
| out_unmap: |
| aml_dma_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| return 0; |
| } |
| |
| void aml_dma_sync_sg_for_cpu(struct device *dev, |
| struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
| |
| if (!dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_cpu(paddr, sg->length, dir); |
| |
| if (unlikely(aml_is_swiotlb_buffer(dev, paddr))) |
| swiotlb_tbl_sync_single(dev, paddr, sg->length, |
| dir, SYNC_FOR_CPU); |
| |
| if (dir == DMA_FROM_DEVICE) |
| arch_dma_mark_clean(paddr, sg->length); |
| } |
| |
| if (!dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_cpu_all(); |
| } |
| |
| void aml_dma_sync_sg_for_device(struct device *dev, |
| struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
| |
| if (unlikely(aml_is_swiotlb_buffer(dev, paddr))) |
| swiotlb_tbl_sync_single(dev, paddr, sg->length, |
| dir, SYNC_FOR_DEVICE); |
| |
| if (!dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_device(paddr, sg->length, |
| dir); |
| } |
| } |
| |
| const struct dma_map_ops aml_pcie_dma_ops = { |
| .alloc = aml_dma_direct_alloc, |
| .free = aml_dma_direct_free, |
| .mmap = dma_common_mmap, |
| .get_sgtable = dma_common_get_sgtable, |
| .map_page = aml_dma_map_page, |
| .unmap_page = aml_dma_unmap_page, |
| .map_sg = aml_dma_map_sg, |
| .unmap_sg = aml_dma_unmap_sg, |
| .map_resource = dma_direct_map_resource, |
| .sync_single_for_cpu = aml_dma_sync_single_for_cpu, |
| .sync_single_for_device = aml_dma_sync_single_for_device, |
| .sync_sg_for_cpu = aml_dma_sync_sg_for_cpu, |
| .sync_sg_for_device = aml_dma_sync_sg_for_device, |
| .dma_supported = dma_direct_supported, |
| .get_required_mask = dma_direct_get_required_mask, |
| }; |
| |