blob: 01ac6859617274ef2017ddbaf2daa933f291f030 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Qualcomm SCM driver
*
* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2015 Linaro Ltd.
*/
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/cpumask.h>
#include <linux/export.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/qcom_scm.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/clk.h>
#include <linux/reset-controller.h>
#include <linux/debugfs.h>
#include "qcom_scm.h"
void __iomem *restart_reason;
int reason;
static struct dentry *rootdir;
static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
module_param(download_mode, bool, 0);
#define SCM_HAS_CORE_CLK BIT(0)
#define SCM_HAS_IFACE_CLK BIT(1)
#define SCM_HAS_BUS_CLK BIT(2)
struct qcom_scm {
struct device *dev;
struct clk *core_clk;
struct clk *iface_clk;
struct clk *bus_clk;
struct reset_controller_dev reset;
u64 dload_mode_addr;
u32 hvc_log_cmd_id;
u32 smmu_state_cmd_id;
};
struct qcom_scm_current_perm_info {
__le32 vmid;
__le32 perm;
__le64 ctx;
__le32 ctx_size;
__le32 unused;
};
struct qcom_scm_mem_map_info {
__le64 mem_addr;
__le64 mem_size;
};
static struct qcom_scm *__scm;
static int qcom_scm_clk_enable(void)
{
int ret;
ret = clk_prepare_enable(__scm->core_clk);
if (ret)
goto bail;
ret = clk_prepare_enable(__scm->iface_clk);
if (ret)
goto disable_core;
ret = clk_prepare_enable(__scm->bus_clk);
if (ret)
goto disable_iface;
return 0;
disable_iface:
clk_disable_unprepare(__scm->iface_clk);
disable_core:
clk_disable_unprepare(__scm->core_clk);
bail:
return ret;
}
static void qcom_scm_clk_disable(void)
{
clk_disable_unprepare(__scm->core_clk);
clk_disable_unprepare(__scm->iface_clk);
clk_disable_unprepare(__scm->bus_clk);
}
int qti_scm_qseecom_notify(struct qsee_notify_app *req, size_t req_size,
struct qseecom_command_scm_resp *resp,
size_t resp_size)
{
int ret = 0;
ret = __qti_scm_qseecom_notify(__scm->dev, req, req_size,
resp, resp_size);
return ret;
}
EXPORT_SYMBOL(qti_scm_qseecom_notify);
int qti_scm_qseecom_load(uint32_t smc_id, uint32_t cmd_id,
union qseecom_load_ireq *req, size_t req_size,
struct qseecom_command_scm_resp *resp,
size_t resp_size)
{
int ret = 0;
ret = __qti_scm_qseecom_load(__scm->dev, smc_id, cmd_id, req, req_size,
resp, resp_size);
return ret;
}
EXPORT_SYMBOL(qti_scm_qseecom_load);
int qti_scm_qseecom_send_data(union qseecom_client_send_data_ireq *req,
size_t req_size,
struct qseecom_command_scm_resp *resp,
size_t resp_size)
{
int ret = 0;
ret = __qti_scm_qseecom_send_data(__scm->dev, req, req_size,
resp, resp_size);
return ret;
}
EXPORT_SYMBOL(qti_scm_qseecom_send_data);
int qti_scm_qseecom_unload(uint32_t smc_id, uint32_t cmd_id,
struct qseecom_unload_ireq *req,
size_t req_size,
struct qseecom_command_scm_resp *resp,
size_t resp_size)
{
int ret = 0;
ret = __qti_scm_qseecom_unload(__scm->dev, smc_id, cmd_id, req,
req_size, resp, resp_size);
return ret;
}
EXPORT_SYMBOL(qti_scm_qseecom_unload);
int qti_scm_register_log_buf(struct device *dev,
struct qsee_reg_log_buf_req *request,
size_t req_size,
struct qseecom_command_scm_resp *response,
size_t resp_size)
{
int ret = 0;
ret = __qti_scm_register_log_buf(__scm->dev, request, req_size,
response, resp_size);
return ret;
}
EXPORT_SYMBOL(qti_scm_register_log_buf);
int qti_scm_aes(uint32_t req_addr, uint32_t req_size,
uint32_t resp_addr, uint32_t resp_size,
u32 cmd_id)
{
int ret = 0;
ret = __qti_scm_aes(__scm->dev, req_addr, req_size,
resp_addr, resp_size, cmd_id);
return ret;
}
EXPORT_SYMBOL(qti_scm_aes);
int qti_scm_tls_hardening(uint32_t req_addr, uint32_t req_size,
uint32_t resp_addr, uint32_t resp_size, u32 cmd_id)
{
int ret = 0;
ret = __qti_scm_tls_hardening(__scm->dev, req_addr, req_size,
resp_addr, resp_size, cmd_id);
return ret;
}
EXPORT_SYMBOL(qti_scm_tls_hardening);
/**
* qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the cold boot address of the cpus. Any cpu outside the supported
* range would be removed from the cpu present mask.
*/
int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
{
return __qcom_scm_set_cold_boot_addr(entry, cpus);
}
EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
/**
* qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the Linux entry point for the SCM to transfer control to when coming
* out of a power down. CPU power down may be executed on cpuidle or hotplug.
*/
int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
{
return __qcom_scm_set_warm_boot_addr(__scm->dev, entry, cpus);
}
EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
/**
* qcom_scm_cpu_power_down() - Power down the cpu
* @flags - Flags to flush cache
*
* This is an end point to power down cpu. If there was a pending interrupt,
* the control would return from this function, otherwise, the cpu jumps to the
* warm boot entry point set for this cpu upon reset.
*/
void qcom_scm_cpu_power_down(u32 flags)
{
__qcom_scm_cpu_power_down(flags);
}
EXPORT_SYMBOL(qcom_scm_cpu_power_down);
/**
* qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
*
* Return true if HDCP is supported, false if not.
*/
bool qcom_scm_hdcp_available(void)
{
int ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
QCOM_SCM_CMD_HDCP);
qcom_scm_clk_disable();
return ret > 0 ? true : false;
}
EXPORT_SYMBOL(qcom_scm_hdcp_available);
/**
* qcom_scm_hdcp_req() - Send HDCP request.
* @req: HDCP request array
* @req_cnt: HDCP request array count
* @resp: response buffer passed to SCM
*
* Write HDCP register(s) through SCM.
*/
int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
{
int ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_hdcp_req(__scm->dev, req, req_cnt, resp);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_hdcp_req);
/**
* qcom_scm_pas_supported() - Check if the peripheral authentication service is
* available for the given peripherial
* @peripheral: peripheral id
*
* Returns true if PAS is supported for this peripheral, otherwise false.
*/
bool qcom_scm_pas_supported(u32 peripheral)
{
int ret;
ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
QCOM_SCM_PAS_IS_SUPPORTED_CMD);
if (ret <= 0)
return false;
return __qcom_scm_pas_supported(__scm->dev, peripheral);
}
EXPORT_SYMBOL(qcom_scm_pas_supported);
/**
* qcom_scm_pas_init_image() - Initialize peripheral authentication service
* state machine for a given peripheral, using the
* metadata
* @peripheral: peripheral id
* @metadata: pointer to memory containing ELF header, program header table
* and optional blob of data used for authenticating the metadata
* and the rest of the firmware
* @size: size of the metadata
*
* Returns 0 on success.
*/
int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
{
dma_addr_t mdata_phys;
void *mdata_buf;
int ret;
/*
* During the scm call memory protection will be enabled for the meta
* data blob, so make sure it's physically contiguous, 4K aligned and
* non-cachable to avoid XPU violations.
*/
mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
GFP_KERNEL);
if (!mdata_buf) {
dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
return -ENOMEM;
}
memcpy(mdata_buf, metadata, size);
ret = qcom_scm_clk_enable();
if (ret)
goto free_metadata;
ret = __qcom_scm_pas_init_image(__scm->dev, peripheral, mdata_phys);
qcom_scm_clk_disable();
free_metadata:
dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_init_image);
/**
* qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
* for firmware loading
* @peripheral: peripheral id
* @addr: start address of memory area to prepare
* @size: size of the memory area to prepare
*
* Returns 0 on success.
*/
int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_pas_mem_setup(__scm->dev, peripheral, addr, size);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
/**
* qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
* and reset the remote processor
* @peripheral: peripheral id
*
* Return 0 on success.
*/
int qcom_scm_pas_auth_and_reset(u32 peripheral, u32 debug, u32 reset_cmd_id)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_pas_auth_and_reset(__scm->dev, peripheral, debug,
reset_cmd_id);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
/**
* qcom_scm_pas_shutdown() - Shut down the remote processor
* @peripheral: peripheral id
*
* Returns 0 on success.
*/
int qcom_scm_pas_shutdown(u32 peripheral)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_pas_shutdown(__scm->dev, peripheral);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_shutdown);
static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
return __qcom_scm_pas_mss_reset(__scm->dev, 1);
}
static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
return __qcom_scm_pas_mss_reset(__scm->dev, 0);
}
static const struct reset_control_ops qcom_scm_pas_reset_ops = {
.assert = qcom_scm_pas_reset_assert,
.deassert = qcom_scm_pas_reset_deassert,
};
int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
{
return __qcom_scm_restore_sec_cfg(__scm->dev, device_id, spare);
}
EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
{
return __qcom_scm_iommu_secure_ptbl_size(__scm->dev, spare, size);
}
EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
{
return __qcom_scm_iommu_secure_ptbl_init(__scm->dev, addr, size, spare);
}
EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
{
return __qcom_scm_io_readl(__scm->dev, addr, val);
}
EXPORT_SYMBOL(qcom_scm_io_readl);
int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
{
return __qcom_scm_io_writel(__scm->dev, addr, val);
}
EXPORT_SYMBOL(qcom_scm_io_writel);
static void qcom_scm_set_download_mode(bool enable)
{
bool avail;
int ret = 0;
avail = __qcom_scm_is_call_available(__scm->dev,
QCOM_SCM_SVC_BOOT,
QCOM_SCM_SET_DLOAD_MODE);
if (avail) {
ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
} else if (__scm->dload_mode_addr) {
ret = __qti_scm_tcsr_reg_write(__scm->dev,
__scm->dload_mode_addr,
enable ? QCOM_SCM_SET_DLOAD_MODE : 0);
} else {
dev_err(__scm->dev,
"No available mechanism for setting download mode\n");
}
if (ret)
dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
}
static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
{
struct device_node *tcsr;
struct device_node *np = dev->of_node;
struct resource res;
u32 offset;
int ret;
tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
if (!tcsr)
return 0;
ret = of_address_to_resource(tcsr, 0, &res);
of_node_put(tcsr);
if (ret)
return ret;
ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
if (ret < 0)
return ret;
*addr = res.start + offset;
return 0;
}
/**
* qcom_scm_is_available() - Checks if SCM is available
*/
bool qcom_scm_is_available(void)
{
return !!__scm;
}
EXPORT_SYMBOL(qcom_scm_is_available);
int qcom_scm_set_remote_state(u32 state, u32 id)
{
return __qcom_scm_set_remote_state(__scm->dev, state, id);
}
EXPORT_SYMBOL(qcom_scm_set_remote_state);
/**
* qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
* @mem_addr: mem region whose ownership need to be reassigned
* @mem_sz: size of the region.
* @srcvm: vmid for current set of owners, each set bit in
* flag indicate a unique owner
* @newvm: array having new owners and corresponding permission
* flags
* @dest_cnt: number of owners in next set.
*
* Return negative errno on failure or 0 on success with @srcvm updated.
*/
int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
unsigned int *srcvm,
const struct qcom_scm_vmperm *newvm,
unsigned int dest_cnt)
{
struct qcom_scm_current_perm_info *destvm;
struct qcom_scm_mem_map_info *mem_to_map;
phys_addr_t mem_to_map_phys;
phys_addr_t dest_phys;
dma_addr_t ptr_phys;
size_t mem_to_map_sz;
size_t dest_sz;
size_t src_sz;
size_t ptr_sz;
int next_vm;
__le32 *src;
void *ptr;
int ret, i, b;
unsigned long srcvm_bits = *srcvm;
src_sz = hweight_long(srcvm_bits) * sizeof(*src);
mem_to_map_sz = sizeof(*mem_to_map);
dest_sz = dest_cnt * sizeof(*destvm);
ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
ALIGN(dest_sz, SZ_64);
ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
if (!ptr)
return -ENOMEM;
/* Fill source vmid detail */
src = ptr;
i = 0;
for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
src[i++] = cpu_to_le32(b);
/* Fill details of mem buff to map */
mem_to_map = ptr + ALIGN(src_sz, SZ_64);
mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
mem_to_map->mem_addr = cpu_to_le64(mem_addr);
mem_to_map->mem_size = cpu_to_le64(mem_sz);
next_vm = 0;
/* Fill details of next vmid detail */
destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
destvm->vmid = cpu_to_le32(newvm->vmid);
destvm->perm = cpu_to_le32(newvm->perm);
destvm->ctx = 0;
destvm->ctx_size = 0;
next_vm |= BIT(newvm->vmid);
}
ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
ptr_phys, src_sz, dest_phys, dest_sz);
dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
if (ret) {
dev_err(__scm->dev,
"Assign memory protection call failed %d\n", ret);
return -EINVAL;
}
*srcvm = next_vm;
return 0;
}
EXPORT_SYMBOL(qcom_scm_assign_mem);
/**
* qcom_qfprom_show_authenticate() - Check secure boot fuse is enabled
*/
int qti_qfprom_show_authenticate(void)
{
int ret;
char buf;
ret = __qti_qfprom_show_authenticate(__scm->dev, &buf);
if (ret) {
pr_err("%s: Error in QFPROM read : %d\n", __func__, ret);
return -1;
}
return buf == 1 ? 1 : 0;
}
EXPORT_SYMBOL(qti_qfprom_show_authenticate);
int qti_qfprom_write_version(uint32_t sw_type, uint32_t value,
uint32_t qfprom_ret_ptr, uint32_t size)
{
return __qti_qfprom_write_version(__scm->dev, sw_type, value,
qfprom_ret_ptr, size);
}
int qti_qfprom_read_version(uint32_t sw_type,
uint32_t value, uint32_t qfprom_ret_ptr)
{
return __qti_qfprom_read_version(__scm->dev, sw_type, value,
qfprom_ret_ptr);
}
int qti_sec_upgrade_auth(unsigned int scm_cmd_id, unsigned int sw_type,
unsigned int img_size, unsigned int load_addr)
{
return __qti_sec_upgrade_auth(__scm->dev, scm_cmd_id, sw_type,
img_size, load_addr);
}
EXPORT_SYMBOL(qti_sec_upgrade_auth);
/**
* qti_scm_sec_auth_available() - Check if SEC_AUTH is supported.
*
* Return true if SEC_AUTH is supported, false if not.
*/
bool qti_scm_sec_auth_available(unsigned int scm_cmd_id)
{
int ret;
ret = __qcom_scm_is_call_available(__scm->dev, QTI_SCM_SVC_SEC_AUTH,
scm_cmd_id);
return ret > 0 ? true : false;
}
EXPORT_SYMBOL(qti_scm_sec_auth_available);
int qti_fuseipq_scm_call(struct device *dev, u32 svc_id, u32 cmd_id,
void *cmd_buf, size_t size)
{
return __qti_fuseipq_scm_call(dev, svc_id, cmd_id,
cmd_buf, size);
}
EXPORT_SYMBOL(qti_fuseipq_scm_call);
int qti_scm_dload(u32 svc_id, u32 cmd_id, void *cmd_buf)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_dload(__scm->dev, svc_id, cmd_id, cmd_buf);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_dload);
int qti_scm_wcss_boot(u32 svc_id, u32 cmd_id, void *cmd_buf)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_wcss_boot(__scm->dev, svc_id, cmd_id, cmd_buf);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_wcss_boot);
int qti_scm_pdseg_memcpy_v2(u32 peripheral, int phno, dma_addr_t dma,
int seg_cnt)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_pdseg_memcpy_v2(__scm->dev, peripheral, phno, dma,
seg_cnt);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_pdseg_memcpy_v2);
int qti_scm_pdseg_memcpy(u32 peripheral, int phno, dma_addr_t dma,
size_t size)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_pdseg_memcpy(__scm->dev, peripheral, phno, dma, size);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_pdseg_memcpy);
int qti_scm_int_radio_powerup(u32 peripheral)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_int_radio_powerup(__scm->dev, peripheral);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_int_radio_powerup);
int qti_scm_int_radio_powerdown(u32 peripheral)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_int_radio_powerdown(__scm->dev, peripheral);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_int_radio_powerdown);
int qti_scm_sdi(u32 svc_id, u32 cmd_id)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_sdi(__scm->dev, svc_id, cmd_id);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_sdi);
/**
* qti_scm_tz_log() - Get trustzone diag log
* ker_buf: kernel buffer to store the diag log
* buf_len: kernel buffer length
*
* Return negative errno on failure or 0 on success. Diag log will
* be present in the kernel buffer passed.
*/
int qti_scm_tz_log(void *ker_buf, u32 buf_len)
{
return __qti_scm_tz_hvc_log(__scm->dev, QCOM_SCM_SVC_INFO,
QTI_SCM_TZ_DIAG_CMD, ker_buf, buf_len);
}
EXPORT_SYMBOL(qti_scm_tz_log);
/**
* qti_scm_hvc_log() - Get hypervisor diag log
* ker_buf: kernel buffer to store the diag log
* buf_len: kernel buffer length
*
* Return negative errno on failure or 0 on success. Diag log will
* be present in the kernel buffer passed.
*/
int qti_scm_hvc_log(void *ker_buf, u32 buf_len)
{
return __qti_scm_tz_hvc_log(__scm->dev, QCOM_SCM_SVC_INFO,
__scm->hvc_log_cmd_id, ker_buf, buf_len);
}
EXPORT_SYMBOL(qti_scm_hvc_log);
/**
* qti_scm_get_smmustate () - Get SMMU state
*
* Returns 0 - SMMU_DISABLE_NONE
* 1 - SMMU_DISABLE_S2
* 2 - SMMU_DISABLE_ALL on success.
* -1 - Failure
*/
int qti_scm_get_smmustate(void)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_get_smmustate(__scm->dev, QCOM_SCM_SVC_BOOT,
__scm->smmu_state_cmd_id);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_get_smmustate);
/**
* qti_scm_regsave pass a buffer to tz for saving cpu context
* Retruns 0 on success
* Err otherwise
*/
int qti_scm_regsave(u32 svc_id, u32 cmd_id, void *scm_regsave, u32 buf_size)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_regsave(__scm->dev, svc_id, cmd_id,
scm_regsave, buf_size);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_regsave);
/*
* qcom_set_qcekey_sec() - Configure key securely
*/
int qti_set_qcekey_sec(void *buf, int size)
{
return __qti_set_qcekey_sec(__scm->dev, buf, size);
}
EXPORT_SYMBOL(qti_set_qcekey_sec);
/*
* qti_qcekey_release_xpu_prot() - release XPU protection
*/
int qti_qcekey_release_xpu_prot(void)
{
return __qti_qcekey_release_xpu_prot(__scm->dev);
}
EXPORT_SYMBOL(qti_qcekey_release_xpu_prot);
/**
* qti_scm_resettype () - cold or warm reset
* @reset type: 0 for cold 1 for warm
*
* Returns 0 on success.
*/
int qti_scm_set_resettype(u32 reset_type)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_set_resettype(__scm->dev, reset_type);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_set_resettype);
int qti_scm_tcsr_reg_write(u32 reg_addr, u32 value)
{
return __qti_scm_tcsr_reg_write(__scm->dev, reg_addr, value);
}
EXPORT_SYMBOL(qti_scm_tcsr_reg_write);
/*
* qti_config_sec_ice() - Configure ICE block securely
*/
int qti_config_sec_ice(void *buf, int size)
{
return __qti_config_ice_sec(__scm->dev, buf, size);
}
EXPORT_SYMBOL(qti_config_sec_ice);
/*
* qti_scm_pshold() - TZ performs the PSHOLD operation
*/
int qti_scm_pshold(void)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_pshold(__scm->dev);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_pshold);
int qti_scm_extwdt(u32 svc_id, u32 cmd_id, unsigned int regaddr,
unsigned int val)
{
return __qti_scm_extwdt(__scm->dev, svc_id, cmd_id,
regaddr, val);
}
EXPORT_SYMBOL(qti_scm_extwdt);
int qti_scm_is_tz_log_encryption_supported(void)
{
int ret;
ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT,
QCOM_SCM_IS_TZ_LOG_ENCRYPTED);
return (ret == 1) ? 1 : 0;
}
EXPORT_SYMBOL(qti_scm_is_tz_log_encryption_supported);
int qti_scm_is_tz_log_encrypted(void)
{
int ret;
ret = __qti_scm_is_tz_log_encrypted(__scm->dev);
return (ret == 1) ? 1 : 0;
}
EXPORT_SYMBOL(qti_scm_is_tz_log_encrypted);
int qti_scm_get_encrypted_tz_log(void *ker_buf, u32 buf_len, u32 log_id)
{
return __qti_scm_get_encrypted_tz_log(__scm->dev, ker_buf, buf_len, log_id);
}
EXPORT_SYMBOL(qti_scm_get_encrypted_tz_log);
/**
* qti_scm_load_otp () - Load OTP to device memory
* @peripheral: peripheral id
*
* Return 0 on success.
*/
int qti_scm_load_otp(u32 peripheral)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_load_otp(__scm->dev, peripheral);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_load_otp);
bool qti_scm_pil_cfg_available(void)
{
int ret;
ret = __qcom_scm_is_call_available(__scm->dev, QTI_SCM_SVC_XO_TCXO,
QTI_SCM_CMD_XO_TCXO);
return ret > 0 ? true : false;
}
EXPORT_SYMBOL(qti_scm_pil_cfg_available);
int qti_scm_pil_cfg(u32 peripheral, u32 arg)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_pil_cfg(__scm->dev, peripheral, arg);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_pil_cfg);
/**
* qti_scm_toggle_bt_eco () - Toggle ECO bit
* @peripheral: peripheral id
*
* Return 0 on success.
*/
int qti_scm_toggle_bt_eco(u32 peripheral, u32 arg)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qti_scm_toggle_bt_eco(__scm->dev, peripheral, arg);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qti_scm_toggle_bt_eco);
static int qcom_scm_probe(struct platform_device *pdev)
{
struct device_node *np = (&pdev->dev)->of_node;
struct qcom_scm *scm;
unsigned long clks;
int ret;
rootdir = debugfs_create_dir("restart_reason", NULL);
if (!IS_ERR_OR_NULL(rootdir)) {
restart_reason = ioremap(0x8600024, 4);
reason = readl(restart_reason);
debugfs_create_u32("reason", 0444, rootdir, &reason);
iounmap(restart_reason);
}
scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
if (!scm)
return -ENOMEM;
ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
if (ret < 0)
return ret;
ret = of_property_read_u32(np, "hvc-log-cmd-id", &scm->hvc_log_cmd_id);
if (ret)
scm->hvc_log_cmd_id = QTI_SCM_HVC_DIAG_CMD;
ret = of_property_read_u32(pdev->dev.of_node, "smmu-state-cmd-id",
&scm->smmu_state_cmd_id);
if (ret)
scm->smmu_state_cmd_id = QTI_SCM_SMMUSTATE_CMD;
clks = (unsigned long)of_device_get_match_data(&pdev->dev);
scm->core_clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(scm->core_clk)) {
if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
return PTR_ERR(scm->core_clk);
if (clks & SCM_HAS_CORE_CLK) {
dev_err(&pdev->dev, "failed to acquire core clk\n");
return PTR_ERR(scm->core_clk);
}
scm->core_clk = NULL;
}
scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(scm->iface_clk)) {
if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
return PTR_ERR(scm->iface_clk);
if (clks & SCM_HAS_IFACE_CLK) {
dev_err(&pdev->dev, "failed to acquire iface clk\n");
return PTR_ERR(scm->iface_clk);
}
scm->iface_clk = NULL;
}
scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(scm->bus_clk)) {
if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
return PTR_ERR(scm->bus_clk);
if (clks & SCM_HAS_BUS_CLK) {
dev_err(&pdev->dev, "failed to acquire bus clk\n");
return PTR_ERR(scm->bus_clk);
}
scm->bus_clk = NULL;
}
scm->reset.ops = &qcom_scm_pas_reset_ops;
scm->reset.nr_resets = 1;
scm->reset.of_node = pdev->dev.of_node;
ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
if (ret)
return ret;
/* vote for max clk rate for highest performance */
ret = clk_set_rate(scm->core_clk, INT_MAX);
if (ret)
return ret;
__scm = scm;
__scm->dev = &pdev->dev;
__qcom_scm_init();
/*
* If requested enable "download mode", from this point on warmboot
* will cause the the boot stages to enter download mode, unless
* disabled below by a clean shutdown/reboot.
*/
if (download_mode)
qcom_scm_set_download_mode(true);
ret = qti_scm_sdi(QCOM_SCM_SVC_BOOT,
SCM_CMD_TZ_CONFIG_HW_FOR_RAM_DUMP_ID);
if (ret < 0) {
dev_err(&pdev->dev, "reboot scm call failed\n");
return ret;
}
return 0;
}
static void qcom_scm_shutdown(struct platform_device *pdev)
{
/* Clean shutdown, disable download mode to allow normal restart */
if (download_mode)
qcom_scm_set_download_mode(false);
}
static const struct of_device_id qcom_scm_dt_match[] = {
{ .compatible = "qcom,scm-apq8064",
/* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
},
{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-ipq4019" },
{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-msm8996" },
{ .compatible = "qcom,scm" },
{}
};
static struct platform_driver qcom_scm_driver = {
.driver = {
.name = "qcom_scm",
.of_match_table = qcom_scm_dt_match,
},
.probe = qcom_scm_probe,
.shutdown = qcom_scm_shutdown,
};
static int __init qcom_scm_init(void)
{
return platform_driver_register(&qcom_scm_driver);
}
subsys_initcall(qcom_scm_init);