Googler | 9398cc3 | 2022-12-02 17:21:52 +0800 | [diff] [blame^] | 1 | /* Copyright 2008 - 2016 Freescale Semiconductor Inc. |
| 2 | * |
| 3 | * Redistribution and use in source and binary forms, with or without |
| 4 | * modification, are permitted provided that the following conditions are met: |
| 5 | * * Redistributions of source code must retain the above copyright |
| 6 | * notice, this list of conditions and the following disclaimer. |
| 7 | * * Redistributions in binary form must reproduce the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer in the |
| 9 | * documentation and/or other materials provided with the distribution. |
| 10 | * * Neither the name of Freescale Semiconductor nor the |
| 11 | * names of its contributors may be used to endorse or promote products |
| 12 | * derived from this software without specific prior written permission. |
| 13 | * |
| 14 | * ALTERNATIVELY, this software may be distributed under the terms of the |
| 15 | * GNU General Public License ("GPL") as published by the Free Software |
| 16 | * Foundation, either version 2 of that License or (at your option) any |
| 17 | * later version. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY |
| 20 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 21 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 22 | * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY |
| 23 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 24 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 25 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 26 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 28 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | */ |
| 30 | |
| 31 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 32 | |
| 33 | #include <linux/init.h> |
| 34 | #include <linux/module.h> |
| 35 | #include <linux/of_platform.h> |
| 36 | #include <linux/of_mdio.h> |
| 37 | #include <linux/of_net.h> |
| 38 | #include <linux/io.h> |
| 39 | #include <linux/if_arp.h> |
| 40 | #include <linux/if_vlan.h> |
| 41 | #include <linux/icmp.h> |
| 42 | #include <linux/ip.h> |
| 43 | #include <linux/ipv6.h> |
| 44 | #include <linux/udp.h> |
| 45 | #include <linux/tcp.h> |
| 46 | #include <linux/net.h> |
| 47 | #include <linux/skbuff.h> |
| 48 | #include <linux/etherdevice.h> |
| 49 | #include <linux/if_ether.h> |
| 50 | #include <linux/highmem.h> |
| 51 | #include <linux/percpu.h> |
| 52 | #include <linux/dma-mapping.h> |
| 53 | #include <linux/sort.h> |
| 54 | #include <linux/phy_fixed.h> |
| 55 | #include <soc/fsl/bman.h> |
| 56 | #include <soc/fsl/qman.h> |
| 57 | #include "fman.h" |
| 58 | #include "fman_port.h" |
| 59 | #include "mac.h" |
| 60 | #include "dpaa_eth.h" |
| 61 | |
| 62 | /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files |
| 63 | * using trace events only need to #include <trace/events/sched.h> |
| 64 | */ |
| 65 | #define CREATE_TRACE_POINTS |
| 66 | #include "dpaa_eth_trace.h" |
| 67 | |
| 68 | static int debug = -1; |
| 69 | module_param(debug, int, 0444); |
| 70 | MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); |
| 71 | |
| 72 | static u16 tx_timeout = 1000; |
| 73 | module_param(tx_timeout, ushort, 0444); |
| 74 | MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); |
| 75 | |
| 76 | #define FM_FD_STAT_RX_ERRORS \ |
| 77 | (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ |
| 78 | FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ |
| 79 | FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ |
| 80 | FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ |
| 81 | FM_FD_ERR_PRS_HDR_ERR) |
| 82 | |
| 83 | #define FM_FD_STAT_TX_ERRORS \ |
| 84 | (FM_FD_ERR_UNSUPPORTED_FORMAT | \ |
| 85 | FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) |
| 86 | |
| 87 | #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ |
| 88 | NETIF_MSG_LINK | NETIF_MSG_IFUP | \ |
| 89 | NETIF_MSG_IFDOWN) |
| 90 | |
| 91 | #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 |
| 92 | /* Ingress congestion threshold on FMan ports |
| 93 | * The size in bytes of the ingress tail-drop threshold on FMan ports. |
| 94 | * Traffic piling up above this value will be rejected by QMan and discarded |
| 95 | * by FMan. |
| 96 | */ |
| 97 | |
| 98 | /* Size in bytes of the FQ taildrop threshold */ |
| 99 | #define DPAA_FQ_TD 0x200000 |
| 100 | |
| 101 | #define DPAA_CS_THRESHOLD_1G 0x06000000 |
| 102 | /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 |
| 103 | * The size in bytes of the egress Congestion State notification threshold on |
| 104 | * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a |
| 105 | * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), |
| 106 | * and the larger the frame size, the more acute the problem. |
| 107 | * So we have to find a balance between these factors: |
| 108 | * - avoiding the device staying congested for a prolonged time (risking |
| 109 | * the netdev watchdog to fire - see also the tx_timeout module param); |
| 110 | * - affecting performance of protocols such as TCP, which otherwise |
| 111 | * behave well under the congestion notification mechanism; |
| 112 | * - preventing the Tx cores from tightly-looping (as if the congestion |
| 113 | * threshold was too low to be effective); |
| 114 | * - running out of memory if the CS threshold is set too high. |
| 115 | */ |
| 116 | |
| 117 | #define DPAA_CS_THRESHOLD_10G 0x10000000 |
| 118 | /* The size in bytes of the egress Congestion State notification threshold on |
| 119 | * 10G ports, range 0x1000 .. 0x10000000 |
| 120 | */ |
| 121 | |
| 122 | /* Largest value that the FQD's OAL field can hold */ |
| 123 | #define FSL_QMAN_MAX_OAL 127 |
| 124 | |
| 125 | /* Default alignment for start of data in an Rx FD */ |
| 126 | #define DPAA_FD_DATA_ALIGNMENT 16 |
| 127 | |
| 128 | /* The DPAA requires 256 bytes reserved and mapped for the SGT */ |
| 129 | #define DPAA_SGT_SIZE 256 |
| 130 | |
| 131 | /* Values for the L3R field of the FM Parse Results |
| 132 | */ |
| 133 | /* L3 Type field: First IP Present IPv4 */ |
| 134 | #define FM_L3_PARSE_RESULT_IPV4 0x8000 |
| 135 | /* L3 Type field: First IP Present IPv6 */ |
| 136 | #define FM_L3_PARSE_RESULT_IPV6 0x4000 |
| 137 | /* Values for the L4R field of the FM Parse Results */ |
| 138 | /* L4 Type field: UDP */ |
| 139 | #define FM_L4_PARSE_RESULT_UDP 0x40 |
| 140 | /* L4 Type field: TCP */ |
| 141 | #define FM_L4_PARSE_RESULT_TCP 0x20 |
| 142 | |
| 143 | /* FD status field indicating whether the FM Parser has attempted to validate |
| 144 | * the L4 csum of the frame. |
| 145 | * Note that having this bit set doesn't necessarily imply that the checksum |
| 146 | * is valid. One would have to check the parse results to find that out. |
| 147 | */ |
| 148 | #define FM_FD_STAT_L4CV 0x00000004 |
| 149 | |
| 150 | #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ |
| 151 | #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ |
| 152 | |
| 153 | #define FSL_DPAA_BPID_INV 0xff |
| 154 | #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 |
| 155 | #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 |
| 156 | |
| 157 | #define DPAA_TX_PRIV_DATA_SIZE 16 |
| 158 | #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) |
| 159 | #define DPAA_TIME_STAMP_SIZE 8 |
| 160 | #define DPAA_HASH_RESULTS_SIZE 8 |
| 161 | #define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \ |
| 162 | dpaa_rx_extra_headroom) |
| 163 | |
| 164 | #define DPAA_ETH_PCD_RXQ_NUM 128 |
| 165 | |
| 166 | #define DPAA_ENQUEUE_RETRIES 100000 |
| 167 | |
| 168 | enum port_type {RX, TX}; |
| 169 | |
| 170 | struct fm_port_fqs { |
| 171 | struct dpaa_fq *tx_defq; |
| 172 | struct dpaa_fq *tx_errq; |
| 173 | struct dpaa_fq *rx_defq; |
| 174 | struct dpaa_fq *rx_errq; |
| 175 | struct dpaa_fq *rx_pcdq; |
| 176 | }; |
| 177 | |
| 178 | /* All the dpa bps in use at any moment */ |
| 179 | static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; |
| 180 | |
| 181 | /* The raw buffer size must be cacheline aligned */ |
| 182 | #define DPAA_BP_RAW_SIZE 4096 |
| 183 | /* When using more than one buffer pool, the raw sizes are as follows: |
| 184 | * 1 bp: 4KB |
| 185 | * 2 bp: 2KB, 4KB |
| 186 | * 3 bp: 1KB, 2KB, 4KB |
| 187 | * 4 bp: 1KB, 2KB, 4KB, 8KB |
| 188 | */ |
| 189 | static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt) |
| 190 | { |
| 191 | size_t res = DPAA_BP_RAW_SIZE / 4; |
| 192 | u8 i; |
| 193 | |
| 194 | for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++) |
| 195 | res *= 2; |
| 196 | return res; |
| 197 | } |
| 198 | |
| 199 | /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is |
| 200 | * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that, |
| 201 | * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us |
| 202 | * half-page-aligned buffers, so we reserve some more space for start-of-buffer |
| 203 | * alignment. |
| 204 | */ |
| 205 | #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES) |
| 206 | |
| 207 | static int dpaa_max_frm; |
| 208 | |
| 209 | static int dpaa_rx_extra_headroom; |
| 210 | |
| 211 | #define dpaa_get_max_mtu() \ |
| 212 | (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) |
| 213 | |
| 214 | static int dpaa_netdev_init(struct net_device *net_dev, |
| 215 | const struct net_device_ops *dpaa_ops, |
| 216 | u16 tx_timeout) |
| 217 | { |
| 218 | struct dpaa_priv *priv = netdev_priv(net_dev); |
| 219 | struct device *dev = net_dev->dev.parent; |
| 220 | struct dpaa_percpu_priv *percpu_priv; |
| 221 | const u8 *mac_addr; |
| 222 | int i, err; |
| 223 | |
| 224 | /* Although we access another CPU's private data here |
| 225 | * we do it at initialization so it is safe |
| 226 | */ |
| 227 | for_each_possible_cpu(i) { |
| 228 | percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
| 229 | percpu_priv->net_dev = net_dev; |
| 230 | } |
| 231 | |
| 232 | net_dev->netdev_ops = dpaa_ops; |
| 233 | mac_addr = priv->mac_dev->addr; |
| 234 | |
| 235 | net_dev->mem_start = priv->mac_dev->res->start; |
| 236 | net_dev->mem_end = priv->mac_dev->res->end; |
| 237 | |
| 238 | net_dev->min_mtu = ETH_MIN_MTU; |
| 239 | net_dev->max_mtu = dpaa_get_max_mtu(); |
| 240 | |
| 241 | net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| 242 | NETIF_F_LLTX | NETIF_F_RXHASH); |
| 243 | |
| 244 | net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; |
| 245 | /* The kernels enables GSO automatically, if we declare NETIF_F_SG. |
| 246 | * For conformity, we'll still declare GSO explicitly. |
| 247 | */ |
| 248 | net_dev->features |= NETIF_F_GSO; |
| 249 | net_dev->features |= NETIF_F_RXCSUM; |
| 250 | |
| 251 | net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; |
| 252 | /* we do not want shared skbs on TX */ |
| 253 | net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; |
| 254 | |
| 255 | net_dev->features |= net_dev->hw_features; |
| 256 | net_dev->vlan_features = net_dev->features; |
| 257 | |
| 258 | memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); |
| 259 | memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); |
| 260 | |
| 261 | net_dev->ethtool_ops = &dpaa_ethtool_ops; |
| 262 | |
| 263 | net_dev->needed_headroom = priv->tx_headroom; |
| 264 | net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); |
| 265 | |
| 266 | /* start without the RUNNING flag, phylib controls it later */ |
| 267 | netif_carrier_off(net_dev); |
| 268 | |
| 269 | err = register_netdev(net_dev); |
| 270 | if (err < 0) { |
| 271 | dev_err(dev, "register_netdev() = %d\n", err); |
| 272 | return err; |
| 273 | } |
| 274 | |
| 275 | return 0; |
| 276 | } |
| 277 | |
| 278 | static int dpaa_stop(struct net_device *net_dev) |
| 279 | { |
| 280 | struct mac_device *mac_dev; |
| 281 | struct dpaa_priv *priv; |
| 282 | int i, err, error; |
| 283 | |
| 284 | priv = netdev_priv(net_dev); |
| 285 | mac_dev = priv->mac_dev; |
| 286 | |
| 287 | netif_tx_stop_all_queues(net_dev); |
| 288 | /* Allow the Fman (Tx) port to process in-flight frames before we |
| 289 | * try switching it off. |
| 290 | */ |
| 291 | usleep_range(5000, 10000); |
| 292 | |
| 293 | err = mac_dev->stop(mac_dev); |
| 294 | if (err < 0) |
| 295 | netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n", |
| 296 | err); |
| 297 | |
| 298 | for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { |
| 299 | error = fman_port_disable(mac_dev->port[i]); |
| 300 | if (error) |
| 301 | err = error; |
| 302 | } |
| 303 | |
| 304 | if (net_dev->phydev) |
| 305 | phy_disconnect(net_dev->phydev); |
| 306 | net_dev->phydev = NULL; |
| 307 | |
| 308 | return err; |
| 309 | } |
| 310 | |
| 311 | static void dpaa_tx_timeout(struct net_device *net_dev) |
| 312 | { |
| 313 | struct dpaa_percpu_priv *percpu_priv; |
| 314 | const struct dpaa_priv *priv; |
| 315 | |
| 316 | priv = netdev_priv(net_dev); |
| 317 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| 318 | |
| 319 | netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", |
| 320 | jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); |
| 321 | |
| 322 | percpu_priv->stats.tx_errors++; |
| 323 | } |
| 324 | |
| 325 | /* Calculates the statistics for the given device by adding the statistics |
| 326 | * collected by each CPU. |
| 327 | */ |
| 328 | static void dpaa_get_stats64(struct net_device *net_dev, |
| 329 | struct rtnl_link_stats64 *s) |
| 330 | { |
| 331 | int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); |
| 332 | struct dpaa_priv *priv = netdev_priv(net_dev); |
| 333 | struct dpaa_percpu_priv *percpu_priv; |
| 334 | u64 *netstats = (u64 *)s; |
| 335 | u64 *cpustats; |
| 336 | int i, j; |
| 337 | |
| 338 | for_each_possible_cpu(i) { |
| 339 | percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
| 340 | |
| 341 | cpustats = (u64 *)&percpu_priv->stats; |
| 342 | |
| 343 | /* add stats from all CPUs */ |
| 344 | for (j = 0; j < numstats; j++) |
| 345 | netstats[j] += cpustats[j]; |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, |
| 350 | void *type_data) |
| 351 | { |
| 352 | struct dpaa_priv *priv = netdev_priv(net_dev); |
| 353 | struct tc_mqprio_qopt *mqprio = type_data; |
| 354 | u8 num_tc; |
| 355 | int i; |
| 356 | |
| 357 | if (type != TC_SETUP_QDISC_MQPRIO) |
| 358 | return -EOPNOTSUPP; |
| 359 | |
| 360 | mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; |
| 361 | num_tc = mqprio->num_tc; |
| 362 | |
| 363 | if (num_tc == priv->num_tc) |
| 364 | return 0; |
| 365 | |
| 366 | if (!num_tc) { |
| 367 | netdev_reset_tc(net_dev); |
| 368 | goto out; |
| 369 | } |
| 370 | |
| 371 | if (num_tc > DPAA_TC_NUM) { |
| 372 | netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", |
| 373 | DPAA_TC_NUM); |
| 374 | return -EINVAL; |
| 375 | } |
| 376 | |
| 377 | netdev_set_num_tc(net_dev, num_tc); |
| 378 | |
| 379 | for (i = 0; i < num_tc; i++) |
| 380 | netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM, |
| 381 | i * DPAA_TC_TXQ_NUM); |
| 382 | |
| 383 | out: |
| 384 | priv->num_tc = num_tc ? : 1; |
| 385 | netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); |
| 386 | return 0; |
| 387 | } |
| 388 | |
| 389 | static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) |
| 390 | { |
| 391 | struct dpaa_eth_data *eth_data; |
| 392 | struct device *dpaa_dev; |
| 393 | struct mac_device *mac_dev; |
| 394 | |
| 395 | dpaa_dev = &pdev->dev; |
| 396 | eth_data = dpaa_dev->platform_data; |
| 397 | if (!eth_data) { |
| 398 | dev_err(dpaa_dev, "eth_data missing\n"); |
| 399 | return ERR_PTR(-ENODEV); |
| 400 | } |
| 401 | mac_dev = eth_data->mac_dev; |
| 402 | if (!mac_dev) { |
| 403 | dev_err(dpaa_dev, "mac_dev missing\n"); |
| 404 | return ERR_PTR(-EINVAL); |
| 405 | } |
| 406 | |
| 407 | return mac_dev; |
| 408 | } |
| 409 | |
| 410 | static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) |
| 411 | { |
| 412 | const struct dpaa_priv *priv; |
| 413 | struct mac_device *mac_dev; |
| 414 | struct sockaddr old_addr; |
| 415 | int err; |
| 416 | |
| 417 | priv = netdev_priv(net_dev); |
| 418 | |
| 419 | memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); |
| 420 | |
| 421 | err = eth_mac_addr(net_dev, addr); |
| 422 | if (err < 0) { |
| 423 | netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); |
| 424 | return err; |
| 425 | } |
| 426 | |
| 427 | mac_dev = priv->mac_dev; |
| 428 | |
| 429 | err = mac_dev->change_addr(mac_dev->fman_mac, |
| 430 | (enet_addr_t *)net_dev->dev_addr); |
| 431 | if (err < 0) { |
| 432 | netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", |
| 433 | err); |
| 434 | /* reverting to previous address */ |
| 435 | eth_mac_addr(net_dev, &old_addr); |
| 436 | |
| 437 | return err; |
| 438 | } |
| 439 | |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | static void dpaa_set_rx_mode(struct net_device *net_dev) |
| 444 | { |
| 445 | const struct dpaa_priv *priv; |
| 446 | int err; |
| 447 | |
| 448 | priv = netdev_priv(net_dev); |
| 449 | |
| 450 | if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { |
| 451 | priv->mac_dev->promisc = !priv->mac_dev->promisc; |
| 452 | err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, |
| 453 | priv->mac_dev->promisc); |
| 454 | if (err < 0) |
| 455 | netif_err(priv, drv, net_dev, |
| 456 | "mac_dev->set_promisc() = %d\n", |
| 457 | err); |
| 458 | } |
| 459 | |
| 460 | if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { |
| 461 | priv->mac_dev->allmulti = !priv->mac_dev->allmulti; |
| 462 | err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, |
| 463 | priv->mac_dev->allmulti); |
| 464 | if (err < 0) |
| 465 | netif_err(priv, drv, net_dev, |
| 466 | "mac_dev->set_allmulti() = %d\n", |
| 467 | err); |
| 468 | } |
| 469 | |
| 470 | err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); |
| 471 | if (err < 0) |
| 472 | netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", |
| 473 | err); |
| 474 | } |
| 475 | |
| 476 | static struct dpaa_bp *dpaa_bpid2pool(int bpid) |
| 477 | { |
| 478 | if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) |
| 479 | return NULL; |
| 480 | |
| 481 | return dpaa_bp_array[bpid]; |
| 482 | } |
| 483 | |
| 484 | /* checks if this bpool is already allocated */ |
| 485 | static bool dpaa_bpid2pool_use(int bpid) |
| 486 | { |
| 487 | if (dpaa_bpid2pool(bpid)) { |
| 488 | refcount_inc(&dpaa_bp_array[bpid]->refs); |
| 489 | return true; |
| 490 | } |
| 491 | |
| 492 | return false; |
| 493 | } |
| 494 | |
| 495 | /* called only once per bpid by dpaa_bp_alloc_pool() */ |
| 496 | static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) |
| 497 | { |
| 498 | dpaa_bp_array[bpid] = dpaa_bp; |
| 499 | refcount_set(&dpaa_bp->refs, 1); |
| 500 | } |
| 501 | |
| 502 | static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) |
| 503 | { |
| 504 | int err; |
| 505 | |
| 506 | if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { |
| 507 | pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", |
| 508 | __func__); |
| 509 | return -EINVAL; |
| 510 | } |
| 511 | |
| 512 | /* If the pool is already specified, we only create one per bpid */ |
| 513 | if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && |
| 514 | dpaa_bpid2pool_use(dpaa_bp->bpid)) |
| 515 | return 0; |
| 516 | |
| 517 | if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { |
| 518 | dpaa_bp->pool = bman_new_pool(); |
| 519 | if (!dpaa_bp->pool) { |
| 520 | pr_err("%s: bman_new_pool() failed\n", |
| 521 | __func__); |
| 522 | return -ENODEV; |
| 523 | } |
| 524 | |
| 525 | dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); |
| 526 | } |
| 527 | |
| 528 | if (dpaa_bp->seed_cb) { |
| 529 | err = dpaa_bp->seed_cb(dpaa_bp); |
| 530 | if (err) |
| 531 | goto pool_seed_failed; |
| 532 | } |
| 533 | |
| 534 | dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); |
| 535 | |
| 536 | return 0; |
| 537 | |
| 538 | pool_seed_failed: |
| 539 | pr_err("%s: pool seeding failed\n", __func__); |
| 540 | bman_free_pool(dpaa_bp->pool); |
| 541 | |
| 542 | return err; |
| 543 | } |
| 544 | |
| 545 | /* remove and free all the buffers from the given buffer pool */ |
| 546 | static void dpaa_bp_drain(struct dpaa_bp *bp) |
| 547 | { |
| 548 | u8 num = 8; |
| 549 | int ret; |
| 550 | |
| 551 | do { |
| 552 | struct bm_buffer bmb[8]; |
| 553 | int i; |
| 554 | |
| 555 | ret = bman_acquire(bp->pool, bmb, num); |
| 556 | if (ret < 0) { |
| 557 | if (num == 8) { |
| 558 | /* we have less than 8 buffers left; |
| 559 | * drain them one by one |
| 560 | */ |
| 561 | num = 1; |
| 562 | ret = 1; |
| 563 | continue; |
| 564 | } else { |
| 565 | /* Pool is fully drained */ |
| 566 | break; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | if (bp->free_buf_cb) |
| 571 | for (i = 0; i < num; i++) |
| 572 | bp->free_buf_cb(bp, &bmb[i]); |
| 573 | } while (ret > 0); |
| 574 | } |
| 575 | |
| 576 | static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) |
| 577 | { |
| 578 | struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); |
| 579 | |
| 580 | /* the mapping between bpid and dpaa_bp is done very late in the |
| 581 | * allocation procedure; if something failed before the mapping, the bp |
| 582 | * was not configured, therefore we don't need the below instructions |
| 583 | */ |
| 584 | if (!bp) |
| 585 | return; |
| 586 | |
| 587 | if (!refcount_dec_and_test(&bp->refs)) |
| 588 | return; |
| 589 | |
| 590 | if (bp->free_buf_cb) |
| 591 | dpaa_bp_drain(bp); |
| 592 | |
| 593 | dpaa_bp_array[bp->bpid] = NULL; |
| 594 | bman_free_pool(bp->pool); |
| 595 | } |
| 596 | |
| 597 | static void dpaa_bps_free(struct dpaa_priv *priv) |
| 598 | { |
| 599 | int i; |
| 600 | |
| 601 | for (i = 0; i < DPAA_BPS_NUM; i++) |
| 602 | dpaa_bp_free(priv->dpaa_bps[i]); |
| 603 | } |
| 604 | |
| 605 | /* Use multiple WQs for FQ assignment: |
| 606 | * - Tx Confirmation queues go to WQ1. |
| 607 | * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance |
| 608 | * to be scheduled, in case there are many more FQs in WQ6). |
| 609 | * - Rx Default goes to WQ6. |
| 610 | * - Tx queues go to different WQs depending on their priority. Equal |
| 611 | * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and |
| 612 | * WQ0 (highest priority). |
| 613 | * This ensures that Tx-confirmed buffers are timely released. In particular, |
| 614 | * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they |
| 615 | * are greatly outnumbered by other FQs in the system, while |
| 616 | * dequeue scheduling is round-robin. |
| 617 | */ |
| 618 | static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) |
| 619 | { |
| 620 | switch (fq->fq_type) { |
| 621 | case FQ_TYPE_TX_CONFIRM: |
| 622 | case FQ_TYPE_TX_CONF_MQ: |
| 623 | fq->wq = 1; |
| 624 | break; |
| 625 | case FQ_TYPE_RX_ERROR: |
| 626 | case FQ_TYPE_TX_ERROR: |
| 627 | fq->wq = 5; |
| 628 | break; |
| 629 | case FQ_TYPE_RX_DEFAULT: |
| 630 | case FQ_TYPE_RX_PCD: |
| 631 | fq->wq = 6; |
| 632 | break; |
| 633 | case FQ_TYPE_TX: |
| 634 | switch (idx / DPAA_TC_TXQ_NUM) { |
| 635 | case 0: |
| 636 | /* Low priority (best effort) */ |
| 637 | fq->wq = 6; |
| 638 | break; |
| 639 | case 1: |
| 640 | /* Medium priority */ |
| 641 | fq->wq = 2; |
| 642 | break; |
| 643 | case 2: |
| 644 | /* High priority */ |
| 645 | fq->wq = 1; |
| 646 | break; |
| 647 | case 3: |
| 648 | /* Very high priority */ |
| 649 | fq->wq = 0; |
| 650 | break; |
| 651 | default: |
| 652 | WARN(1, "Too many TX FQs: more than %d!\n", |
| 653 | DPAA_ETH_TXQ_NUM); |
| 654 | } |
| 655 | break; |
| 656 | default: |
| 657 | WARN(1, "Invalid FQ type %d for FQID %d!\n", |
| 658 | fq->fq_type, fq->fqid); |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, |
| 663 | u32 start, u32 count, |
| 664 | struct list_head *list, |
| 665 | enum dpaa_fq_type fq_type) |
| 666 | { |
| 667 | struct dpaa_fq *dpaa_fq; |
| 668 | int i; |
| 669 | |
| 670 | dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), |
| 671 | GFP_KERNEL); |
| 672 | if (!dpaa_fq) |
| 673 | return NULL; |
| 674 | |
| 675 | for (i = 0; i < count; i++) { |
| 676 | dpaa_fq[i].fq_type = fq_type; |
| 677 | dpaa_fq[i].fqid = start ? start + i : 0; |
| 678 | list_add_tail(&dpaa_fq[i].list, list); |
| 679 | } |
| 680 | |
| 681 | for (i = 0; i < count; i++) |
| 682 | dpaa_assign_wq(dpaa_fq + i, i); |
| 683 | |
| 684 | return dpaa_fq; |
| 685 | } |
| 686 | |
| 687 | static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, |
| 688 | struct fm_port_fqs *port_fqs) |
| 689 | { |
| 690 | struct dpaa_fq *dpaa_fq; |
| 691 | u32 fq_base, fq_base_aligned, i; |
| 692 | |
| 693 | dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); |
| 694 | if (!dpaa_fq) |
| 695 | goto fq_alloc_failed; |
| 696 | |
| 697 | port_fqs->rx_errq = &dpaa_fq[0]; |
| 698 | |
| 699 | dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); |
| 700 | if (!dpaa_fq) |
| 701 | goto fq_alloc_failed; |
| 702 | |
| 703 | port_fqs->rx_defq = &dpaa_fq[0]; |
| 704 | |
| 705 | /* the PCD FQIDs range needs to be aligned for correct operation */ |
| 706 | if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) |
| 707 | goto fq_alloc_failed; |
| 708 | |
| 709 | fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); |
| 710 | |
| 711 | for (i = fq_base; i < fq_base_aligned; i++) |
| 712 | qman_release_fqid(i); |
| 713 | |
| 714 | for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; |
| 715 | i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) |
| 716 | qman_release_fqid(i); |
| 717 | |
| 718 | dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, |
| 719 | list, FQ_TYPE_RX_PCD); |
| 720 | if (!dpaa_fq) |
| 721 | goto fq_alloc_failed; |
| 722 | |
| 723 | port_fqs->rx_pcdq = &dpaa_fq[0]; |
| 724 | |
| 725 | if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ)) |
| 726 | goto fq_alloc_failed; |
| 727 | |
| 728 | dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); |
| 729 | if (!dpaa_fq) |
| 730 | goto fq_alloc_failed; |
| 731 | |
| 732 | port_fqs->tx_errq = &dpaa_fq[0]; |
| 733 | |
| 734 | dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); |
| 735 | if (!dpaa_fq) |
| 736 | goto fq_alloc_failed; |
| 737 | |
| 738 | port_fqs->tx_defq = &dpaa_fq[0]; |
| 739 | |
| 740 | if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX)) |
| 741 | goto fq_alloc_failed; |
| 742 | |
| 743 | return 0; |
| 744 | |
| 745 | fq_alloc_failed: |
| 746 | dev_err(dev, "dpaa_fq_alloc() failed\n"); |
| 747 | return -ENOMEM; |
| 748 | } |
| 749 | |
| 750 | static u32 rx_pool_channel; |
| 751 | static DEFINE_SPINLOCK(rx_pool_channel_init); |
| 752 | |
| 753 | static int dpaa_get_channel(void) |
| 754 | { |
| 755 | spin_lock(&rx_pool_channel_init); |
| 756 | if (!rx_pool_channel) { |
| 757 | u32 pool; |
| 758 | int ret; |
| 759 | |
| 760 | ret = qman_alloc_pool(&pool); |
| 761 | |
| 762 | if (!ret) |
| 763 | rx_pool_channel = pool; |
| 764 | } |
| 765 | spin_unlock(&rx_pool_channel_init); |
| 766 | if (!rx_pool_channel) |
| 767 | return -ENOMEM; |
| 768 | return rx_pool_channel; |
| 769 | } |
| 770 | |
| 771 | static void dpaa_release_channel(void) |
| 772 | { |
| 773 | qman_release_pool(rx_pool_channel); |
| 774 | } |
| 775 | |
| 776 | static void dpaa_eth_add_channel(u16 channel) |
| 777 | { |
| 778 | u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); |
| 779 | const cpumask_t *cpus = qman_affine_cpus(); |
| 780 | struct qman_portal *portal; |
| 781 | int cpu; |
| 782 | |
| 783 | for_each_cpu_and(cpu, cpus, cpu_online_mask) { |
| 784 | portal = qman_get_affine_portal(cpu); |
| 785 | qman_p_static_dequeue_add(portal, pool); |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | /* Congestion group state change notification callback. |
| 790 | * Stops the device's egress queues while they are congested and |
| 791 | * wakes them upon exiting congested state. |
| 792 | * Also updates some CGR-related stats. |
| 793 | */ |
| 794 | static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, |
| 795 | int congested) |
| 796 | { |
| 797 | struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, |
| 798 | struct dpaa_priv, cgr_data.cgr); |
| 799 | |
| 800 | if (congested) { |
| 801 | priv->cgr_data.congestion_start_jiffies = jiffies; |
| 802 | netif_tx_stop_all_queues(priv->net_dev); |
| 803 | priv->cgr_data.cgr_congested_count++; |
| 804 | } else { |
| 805 | priv->cgr_data.congested_jiffies += |
| 806 | (jiffies - priv->cgr_data.congestion_start_jiffies); |
| 807 | netif_tx_wake_all_queues(priv->net_dev); |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | static int dpaa_eth_cgr_init(struct dpaa_priv *priv) |
| 812 | { |
| 813 | struct qm_mcc_initcgr initcgr; |
| 814 | u32 cs_th; |
| 815 | int err; |
| 816 | |
| 817 | err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); |
| 818 | if (err < 0) { |
| 819 | if (netif_msg_drv(priv)) |
| 820 | pr_err("%s: Error %d allocating CGR ID\n", |
| 821 | __func__, err); |
| 822 | goto out_error; |
| 823 | } |
| 824 | priv->cgr_data.cgr.cb = dpaa_eth_cgscn; |
| 825 | |
| 826 | /* Enable Congestion State Change Notifications and CS taildrop */ |
| 827 | memset(&initcgr, 0, sizeof(initcgr)); |
| 828 | initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); |
| 829 | initcgr.cgr.cscn_en = QM_CGR_EN; |
| 830 | |
| 831 | /* Set different thresholds based on the MAC speed. |
| 832 | * This may turn suboptimal if the MAC is reconfigured at a speed |
| 833 | * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link. |
| 834 | * In such cases, we ought to reconfigure the threshold, too. |
| 835 | */ |
| 836 | if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full) |
| 837 | cs_th = DPAA_CS_THRESHOLD_10G; |
| 838 | else |
| 839 | cs_th = DPAA_CS_THRESHOLD_1G; |
| 840 | qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); |
| 841 | |
| 842 | initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); |
| 843 | initcgr.cgr.cstd_en = QM_CGR_EN; |
| 844 | |
| 845 | err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, |
| 846 | &initcgr); |
| 847 | if (err < 0) { |
| 848 | if (netif_msg_drv(priv)) |
| 849 | pr_err("%s: Error %d creating CGR with ID %d\n", |
| 850 | __func__, err, priv->cgr_data.cgr.cgrid); |
| 851 | qman_release_cgrid(priv->cgr_data.cgr.cgrid); |
| 852 | goto out_error; |
| 853 | } |
| 854 | if (netif_msg_drv(priv)) |
| 855 | pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", |
| 856 | priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, |
| 857 | priv->cgr_data.cgr.chan); |
| 858 | |
| 859 | out_error: |
| 860 | return err; |
| 861 | } |
| 862 | |
| 863 | static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, |
| 864 | struct dpaa_fq *fq, |
| 865 | const struct qman_fq *template) |
| 866 | { |
| 867 | fq->fq_base = *template; |
| 868 | fq->net_dev = priv->net_dev; |
| 869 | |
| 870 | fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; |
| 871 | fq->channel = priv->channel; |
| 872 | } |
| 873 | |
| 874 | static inline void dpaa_setup_egress(const struct dpaa_priv *priv, |
| 875 | struct dpaa_fq *fq, |
| 876 | struct fman_port *port, |
| 877 | const struct qman_fq *template) |
| 878 | { |
| 879 | fq->fq_base = *template; |
| 880 | fq->net_dev = priv->net_dev; |
| 881 | |
| 882 | if (port) { |
| 883 | fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; |
| 884 | fq->channel = (u16)fman_port_get_qman_channel_id(port); |
| 885 | } else { |
| 886 | fq->flags = QMAN_FQ_FLAG_NO_MODIFY; |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | static void dpaa_fq_setup(struct dpaa_priv *priv, |
| 891 | const struct dpaa_fq_cbs *fq_cbs, |
| 892 | struct fman_port *tx_port) |
| 893 | { |
| 894 | int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; |
| 895 | const cpumask_t *affine_cpus = qman_affine_cpus(); |
| 896 | u16 channels[NR_CPUS]; |
| 897 | struct dpaa_fq *fq; |
| 898 | |
| 899 | for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) |
| 900 | channels[num_portals++] = qman_affine_channel(cpu); |
| 901 | |
| 902 | if (num_portals == 0) |
| 903 | dev_err(priv->net_dev->dev.parent, |
| 904 | "No Qman software (affine) channels found"); |
| 905 | |
| 906 | /* Initialize each FQ in the list */ |
| 907 | list_for_each_entry(fq, &priv->dpaa_fq_list, list) { |
| 908 | switch (fq->fq_type) { |
| 909 | case FQ_TYPE_RX_DEFAULT: |
| 910 | dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); |
| 911 | break; |
| 912 | case FQ_TYPE_RX_ERROR: |
| 913 | dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); |
| 914 | break; |
| 915 | case FQ_TYPE_RX_PCD: |
| 916 | if (!num_portals) |
| 917 | continue; |
| 918 | dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); |
| 919 | fq->channel = channels[portal_cnt++ % num_portals]; |
| 920 | break; |
| 921 | case FQ_TYPE_TX: |
| 922 | dpaa_setup_egress(priv, fq, tx_port, |
| 923 | &fq_cbs->egress_ern); |
| 924 | /* If we have more Tx queues than the number of cores, |
| 925 | * just ignore the extra ones. |
| 926 | */ |
| 927 | if (egress_cnt < DPAA_ETH_TXQ_NUM) |
| 928 | priv->egress_fqs[egress_cnt++] = &fq->fq_base; |
| 929 | break; |
| 930 | case FQ_TYPE_TX_CONF_MQ: |
| 931 | priv->conf_fqs[conf_cnt++] = &fq->fq_base; |
| 932 | /* fall through */ |
| 933 | case FQ_TYPE_TX_CONFIRM: |
| 934 | dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); |
| 935 | break; |
| 936 | case FQ_TYPE_TX_ERROR: |
| 937 | dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); |
| 938 | break; |
| 939 | default: |
| 940 | dev_warn(priv->net_dev->dev.parent, |
| 941 | "Unknown FQ type detected!\n"); |
| 942 | break; |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | /* Make sure all CPUs receive a corresponding Tx queue. */ |
| 947 | while (egress_cnt < DPAA_ETH_TXQ_NUM) { |
| 948 | list_for_each_entry(fq, &priv->dpaa_fq_list, list) { |
| 949 | if (fq->fq_type != FQ_TYPE_TX) |
| 950 | continue; |
| 951 | priv->egress_fqs[egress_cnt++] = &fq->fq_base; |
| 952 | if (egress_cnt == DPAA_ETH_TXQ_NUM) |
| 953 | break; |
| 954 | } |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, |
| 959 | struct qman_fq *tx_fq) |
| 960 | { |
| 961 | int i; |
| 962 | |
| 963 | for (i = 0; i < DPAA_ETH_TXQ_NUM; i++) |
| 964 | if (priv->egress_fqs[i] == tx_fq) |
| 965 | return i; |
| 966 | |
| 967 | return -EINVAL; |
| 968 | } |
| 969 | |
| 970 | static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) |
| 971 | { |
| 972 | const struct dpaa_priv *priv; |
| 973 | struct qman_fq *confq = NULL; |
| 974 | struct qm_mcc_initfq initfq; |
| 975 | struct device *dev; |
| 976 | struct qman_fq *fq; |
| 977 | int queue_id; |
| 978 | int err; |
| 979 | |
| 980 | priv = netdev_priv(dpaa_fq->net_dev); |
| 981 | dev = dpaa_fq->net_dev->dev.parent; |
| 982 | |
| 983 | if (dpaa_fq->fqid == 0) |
| 984 | dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; |
| 985 | |
| 986 | dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); |
| 987 | |
| 988 | err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); |
| 989 | if (err) { |
| 990 | dev_err(dev, "qman_create_fq() failed\n"); |
| 991 | return err; |
| 992 | } |
| 993 | fq = &dpaa_fq->fq_base; |
| 994 | |
| 995 | if (dpaa_fq->init) { |
| 996 | memset(&initfq, 0, sizeof(initfq)); |
| 997 | |
| 998 | initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); |
| 999 | /* Note: we may get to keep an empty FQ in cache */ |
| 1000 | initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); |
| 1001 | |
| 1002 | /* Try to reduce the number of portal interrupts for |
| 1003 | * Tx Confirmation FQs. |
| 1004 | */ |
| 1005 | if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) |
| 1006 | initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); |
| 1007 | |
| 1008 | /* FQ placement */ |
| 1009 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); |
| 1010 | |
| 1011 | qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); |
| 1012 | |
| 1013 | /* Put all egress queues in a congestion group of their own. |
| 1014 | * Sensu stricto, the Tx confirmation queues are Rx FQs, |
| 1015 | * rather than Tx - but they nonetheless account for the |
| 1016 | * memory footprint on behalf of egress traffic. We therefore |
| 1017 | * place them in the netdev's CGR, along with the Tx FQs. |
| 1018 | */ |
| 1019 | if (dpaa_fq->fq_type == FQ_TYPE_TX || |
| 1020 | dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || |
| 1021 | dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { |
| 1022 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); |
| 1023 | initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); |
| 1024 | initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; |
| 1025 | /* Set a fixed overhead accounting, in an attempt to |
| 1026 | * reduce the impact of fixed-size skb shells and the |
| 1027 | * driver's needed headroom on system memory. This is |
| 1028 | * especially the case when the egress traffic is |
| 1029 | * composed of small datagrams. |
| 1030 | * Unfortunately, QMan's OAL value is capped to an |
| 1031 | * insufficient value, but even that is better than |
| 1032 | * no overhead accounting at all. |
| 1033 | */ |
| 1034 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); |
| 1035 | qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); |
| 1036 | qm_fqd_set_oal(&initfq.fqd, |
| 1037 | min(sizeof(struct sk_buff) + |
| 1038 | priv->tx_headroom, |
| 1039 | (size_t)FSL_QMAN_MAX_OAL)); |
| 1040 | } |
| 1041 | |
| 1042 | if (td_enable) { |
| 1043 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); |
| 1044 | qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); |
| 1045 | initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); |
| 1046 | } |
| 1047 | |
| 1048 | if (dpaa_fq->fq_type == FQ_TYPE_TX) { |
| 1049 | queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); |
| 1050 | if (queue_id >= 0) |
| 1051 | confq = priv->conf_fqs[queue_id]; |
| 1052 | if (confq) { |
| 1053 | initfq.we_mask |= |
| 1054 | cpu_to_be16(QM_INITFQ_WE_CONTEXTA); |
| 1055 | /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) |
| 1056 | * A2V=1 (contextA A2 field is valid) |
| 1057 | * A0V=1 (contextA A0 field is valid) |
| 1058 | * B0V=1 (contextB field is valid) |
| 1059 | * ContextA A2: EBD=1 (deallocate buffers inside FMan) |
| 1060 | * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) |
| 1061 | */ |
| 1062 | qm_fqd_context_a_set64(&initfq.fqd, |
| 1063 | 0x1e00000080000000ULL); |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | /* Put all the ingress queues in our "ingress CGR". */ |
| 1068 | if (priv->use_ingress_cgr && |
| 1069 | (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || |
| 1070 | dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || |
| 1071 | dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { |
| 1072 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); |
| 1073 | initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); |
| 1074 | initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; |
| 1075 | /* Set a fixed overhead accounting, just like for the |
| 1076 | * egress CGR. |
| 1077 | */ |
| 1078 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); |
| 1079 | qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); |
| 1080 | qm_fqd_set_oal(&initfq.fqd, |
| 1081 | min(sizeof(struct sk_buff) + |
| 1082 | priv->tx_headroom, |
| 1083 | (size_t)FSL_QMAN_MAX_OAL)); |
| 1084 | } |
| 1085 | |
| 1086 | /* Initialization common to all ingress queues */ |
| 1087 | if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { |
| 1088 | initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); |
| 1089 | initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | |
| 1090 | QM_FQCTRL_CTXASTASHING); |
| 1091 | initfq.fqd.context_a.stashing.exclusive = |
| 1092 | QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | |
| 1093 | QM_STASHING_EXCL_ANNOTATION; |
| 1094 | qm_fqd_set_stashing(&initfq.fqd, 1, 2, |
| 1095 | DIV_ROUND_UP(sizeof(struct qman_fq), |
| 1096 | 64)); |
| 1097 | } |
| 1098 | |
| 1099 | err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); |
| 1100 | if (err < 0) { |
| 1101 | dev_err(dev, "qman_init_fq(%u) = %d\n", |
| 1102 | qman_fq_fqid(fq), err); |
| 1103 | qman_destroy_fq(fq); |
| 1104 | return err; |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | dpaa_fq->fqid = qman_fq_fqid(fq); |
| 1109 | |
| 1110 | return 0; |
| 1111 | } |
| 1112 | |
| 1113 | static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) |
| 1114 | { |
| 1115 | const struct dpaa_priv *priv; |
| 1116 | struct dpaa_fq *dpaa_fq; |
| 1117 | int err, error; |
| 1118 | |
| 1119 | err = 0; |
| 1120 | |
| 1121 | dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); |
| 1122 | priv = netdev_priv(dpaa_fq->net_dev); |
| 1123 | |
| 1124 | if (dpaa_fq->init) { |
| 1125 | err = qman_retire_fq(fq, NULL); |
| 1126 | if (err < 0 && netif_msg_drv(priv)) |
| 1127 | dev_err(dev, "qman_retire_fq(%u) = %d\n", |
| 1128 | qman_fq_fqid(fq), err); |
| 1129 | |
| 1130 | error = qman_oos_fq(fq); |
| 1131 | if (error < 0 && netif_msg_drv(priv)) { |
| 1132 | dev_err(dev, "qman_oos_fq(%u) = %d\n", |
| 1133 | qman_fq_fqid(fq), error); |
| 1134 | if (err >= 0) |
| 1135 | err = error; |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | qman_destroy_fq(fq); |
| 1140 | list_del(&dpaa_fq->list); |
| 1141 | |
| 1142 | return err; |
| 1143 | } |
| 1144 | |
| 1145 | static int dpaa_fq_free(struct device *dev, struct list_head *list) |
| 1146 | { |
| 1147 | struct dpaa_fq *dpaa_fq, *tmp; |
| 1148 | int err, error; |
| 1149 | |
| 1150 | err = 0; |
| 1151 | list_for_each_entry_safe(dpaa_fq, tmp, list, list) { |
| 1152 | error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); |
| 1153 | if (error < 0 && err >= 0) |
| 1154 | err = error; |
| 1155 | } |
| 1156 | |
| 1157 | return err; |
| 1158 | } |
| 1159 | |
| 1160 | static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, |
| 1161 | struct dpaa_fq *defq, |
| 1162 | struct dpaa_buffer_layout *buf_layout) |
| 1163 | { |
| 1164 | struct fman_buffer_prefix_content buf_prefix_content; |
| 1165 | struct fman_port_params params; |
| 1166 | int err; |
| 1167 | |
| 1168 | memset(¶ms, 0, sizeof(params)); |
| 1169 | memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); |
| 1170 | |
| 1171 | buf_prefix_content.priv_data_size = buf_layout->priv_data_size; |
| 1172 | buf_prefix_content.pass_prs_result = true; |
| 1173 | buf_prefix_content.pass_hash_result = true; |
| 1174 | buf_prefix_content.pass_time_stamp = true; |
| 1175 | buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; |
| 1176 | |
| 1177 | params.specific_params.non_rx_params.err_fqid = errq->fqid; |
| 1178 | params.specific_params.non_rx_params.dflt_fqid = defq->fqid; |
| 1179 | |
| 1180 | err = fman_port_config(port, ¶ms); |
| 1181 | if (err) { |
| 1182 | pr_err("%s: fman_port_config failed\n", __func__); |
| 1183 | return err; |
| 1184 | } |
| 1185 | |
| 1186 | err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); |
| 1187 | if (err) { |
| 1188 | pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", |
| 1189 | __func__); |
| 1190 | return err; |
| 1191 | } |
| 1192 | |
| 1193 | err = fman_port_init(port); |
| 1194 | if (err) |
| 1195 | pr_err("%s: fm_port_init failed\n", __func__); |
| 1196 | |
| 1197 | return err; |
| 1198 | } |
| 1199 | |
| 1200 | static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps, |
| 1201 | size_t count, struct dpaa_fq *errq, |
| 1202 | struct dpaa_fq *defq, struct dpaa_fq *pcdq, |
| 1203 | struct dpaa_buffer_layout *buf_layout) |
| 1204 | { |
| 1205 | struct fman_buffer_prefix_content buf_prefix_content; |
| 1206 | struct fman_port_rx_params *rx_p; |
| 1207 | struct fman_port_params params; |
| 1208 | int i, err; |
| 1209 | |
| 1210 | memset(¶ms, 0, sizeof(params)); |
| 1211 | memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); |
| 1212 | |
| 1213 | buf_prefix_content.priv_data_size = buf_layout->priv_data_size; |
| 1214 | buf_prefix_content.pass_prs_result = true; |
| 1215 | buf_prefix_content.pass_hash_result = true; |
| 1216 | buf_prefix_content.pass_time_stamp = true; |
| 1217 | buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; |
| 1218 | |
| 1219 | rx_p = ¶ms.specific_params.rx_params; |
| 1220 | rx_p->err_fqid = errq->fqid; |
| 1221 | rx_p->dflt_fqid = defq->fqid; |
| 1222 | if (pcdq) { |
| 1223 | rx_p->pcd_base_fqid = pcdq->fqid; |
| 1224 | rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; |
| 1225 | } |
| 1226 | |
| 1227 | count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count); |
| 1228 | rx_p->ext_buf_pools.num_of_pools_used = (u8)count; |
| 1229 | for (i = 0; i < count; i++) { |
| 1230 | rx_p->ext_buf_pools.ext_buf_pool[i].id = bps[i]->bpid; |
| 1231 | rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size; |
| 1232 | } |
| 1233 | |
| 1234 | err = fman_port_config(port, ¶ms); |
| 1235 | if (err) { |
| 1236 | pr_err("%s: fman_port_config failed\n", __func__); |
| 1237 | return err; |
| 1238 | } |
| 1239 | |
| 1240 | err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); |
| 1241 | if (err) { |
| 1242 | pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", |
| 1243 | __func__); |
| 1244 | return err; |
| 1245 | } |
| 1246 | |
| 1247 | err = fman_port_init(port); |
| 1248 | if (err) |
| 1249 | pr_err("%s: fm_port_init failed\n", __func__); |
| 1250 | |
| 1251 | return err; |
| 1252 | } |
| 1253 | |
| 1254 | static int dpaa_eth_init_ports(struct mac_device *mac_dev, |
| 1255 | struct dpaa_bp **bps, size_t count, |
| 1256 | struct fm_port_fqs *port_fqs, |
| 1257 | struct dpaa_buffer_layout *buf_layout, |
| 1258 | struct device *dev) |
| 1259 | { |
| 1260 | struct fman_port *rxport = mac_dev->port[RX]; |
| 1261 | struct fman_port *txport = mac_dev->port[TX]; |
| 1262 | int err; |
| 1263 | |
| 1264 | err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, |
| 1265 | port_fqs->tx_defq, &buf_layout[TX]); |
| 1266 | if (err) |
| 1267 | return err; |
| 1268 | |
| 1269 | err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq, |
| 1270 | port_fqs->rx_defq, port_fqs->rx_pcdq, |
| 1271 | &buf_layout[RX]); |
| 1272 | |
| 1273 | return err; |
| 1274 | } |
| 1275 | |
| 1276 | static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, |
| 1277 | struct bm_buffer *bmb, int cnt) |
| 1278 | { |
| 1279 | int err; |
| 1280 | |
| 1281 | err = bman_release(dpaa_bp->pool, bmb, cnt); |
| 1282 | /* Should never occur, address anyway to avoid leaking the buffers */ |
| 1283 | if (WARN_ON(err) && dpaa_bp->free_buf_cb) |
| 1284 | while (cnt-- > 0) |
| 1285 | dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); |
| 1286 | |
| 1287 | return cnt; |
| 1288 | } |
| 1289 | |
| 1290 | static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) |
| 1291 | { |
| 1292 | struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; |
| 1293 | struct dpaa_bp *dpaa_bp; |
| 1294 | int i = 0, j; |
| 1295 | |
| 1296 | memset(bmb, 0, sizeof(bmb)); |
| 1297 | |
| 1298 | do { |
| 1299 | dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); |
| 1300 | if (!dpaa_bp) |
| 1301 | return; |
| 1302 | |
| 1303 | j = 0; |
| 1304 | do { |
| 1305 | WARN_ON(qm_sg_entry_is_ext(&sgt[i])); |
| 1306 | |
| 1307 | bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); |
| 1308 | |
| 1309 | j++; i++; |
| 1310 | } while (j < ARRAY_SIZE(bmb) && |
| 1311 | !qm_sg_entry_is_final(&sgt[i - 1]) && |
| 1312 | sgt[i - 1].bpid == sgt[i].bpid); |
| 1313 | |
| 1314 | dpaa_bman_release(dpaa_bp, bmb, j); |
| 1315 | } while (!qm_sg_entry_is_final(&sgt[i - 1])); |
| 1316 | } |
| 1317 | |
| 1318 | static void dpaa_fd_release(const struct net_device *net_dev, |
| 1319 | const struct qm_fd *fd) |
| 1320 | { |
| 1321 | struct qm_sg_entry *sgt; |
| 1322 | struct dpaa_bp *dpaa_bp; |
| 1323 | struct bm_buffer bmb; |
| 1324 | dma_addr_t addr; |
| 1325 | void *vaddr; |
| 1326 | |
| 1327 | bmb.data = 0; |
| 1328 | bm_buffer_set64(&bmb, qm_fd_addr(fd)); |
| 1329 | |
| 1330 | dpaa_bp = dpaa_bpid2pool(fd->bpid); |
| 1331 | if (!dpaa_bp) |
| 1332 | return; |
| 1333 | |
| 1334 | if (qm_fd_get_format(fd) == qm_fd_sg) { |
| 1335 | vaddr = phys_to_virt(qm_fd_addr(fd)); |
| 1336 | sgt = vaddr + qm_fd_get_offset(fd); |
| 1337 | |
| 1338 | dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size, |
| 1339 | DMA_FROM_DEVICE); |
| 1340 | |
| 1341 | dpaa_release_sgt_members(sgt); |
| 1342 | |
| 1343 | addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size, |
| 1344 | DMA_FROM_DEVICE); |
| 1345 | if (dma_mapping_error(dpaa_bp->dev, addr)) { |
| 1346 | dev_err(dpaa_bp->dev, "DMA mapping failed"); |
| 1347 | return; |
| 1348 | } |
| 1349 | bm_buffer_set64(&bmb, addr); |
| 1350 | } |
| 1351 | |
| 1352 | dpaa_bman_release(dpaa_bp, &bmb, 1); |
| 1353 | } |
| 1354 | |
| 1355 | static void count_ern(struct dpaa_percpu_priv *percpu_priv, |
| 1356 | const union qm_mr_entry *msg) |
| 1357 | { |
| 1358 | switch (msg->ern.rc & QM_MR_RC_MASK) { |
| 1359 | case QM_MR_RC_CGR_TAILDROP: |
| 1360 | percpu_priv->ern_cnt.cg_tdrop++; |
| 1361 | break; |
| 1362 | case QM_MR_RC_WRED: |
| 1363 | percpu_priv->ern_cnt.wred++; |
| 1364 | break; |
| 1365 | case QM_MR_RC_ERROR: |
| 1366 | percpu_priv->ern_cnt.err_cond++; |
| 1367 | break; |
| 1368 | case QM_MR_RC_ORPWINDOW_EARLY: |
| 1369 | percpu_priv->ern_cnt.early_window++; |
| 1370 | break; |
| 1371 | case QM_MR_RC_ORPWINDOW_LATE: |
| 1372 | percpu_priv->ern_cnt.late_window++; |
| 1373 | break; |
| 1374 | case QM_MR_RC_FQ_TAILDROP: |
| 1375 | percpu_priv->ern_cnt.fq_tdrop++; |
| 1376 | break; |
| 1377 | case QM_MR_RC_ORPWINDOW_RETIRED: |
| 1378 | percpu_priv->ern_cnt.fq_retired++; |
| 1379 | break; |
| 1380 | case QM_MR_RC_ORP_ZERO: |
| 1381 | percpu_priv->ern_cnt.orp_zero++; |
| 1382 | break; |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | /* Turn on HW checksum computation for this outgoing frame. |
| 1387 | * If the current protocol is not something we support in this regard |
| 1388 | * (or if the stack has already computed the SW checksum), we do nothing. |
| 1389 | * |
| 1390 | * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value |
| 1391 | * otherwise. |
| 1392 | * |
| 1393 | * Note that this function may modify the fd->cmd field and the skb data buffer |
| 1394 | * (the Parse Results area). |
| 1395 | */ |
| 1396 | static int dpaa_enable_tx_csum(struct dpaa_priv *priv, |
| 1397 | struct sk_buff *skb, |
| 1398 | struct qm_fd *fd, |
| 1399 | char *parse_results) |
| 1400 | { |
| 1401 | struct fman_prs_result *parse_result; |
| 1402 | u16 ethertype = ntohs(skb->protocol); |
| 1403 | struct ipv6hdr *ipv6h = NULL; |
| 1404 | struct iphdr *iph; |
| 1405 | int retval = 0; |
| 1406 | u8 l4_proto; |
| 1407 | |
| 1408 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 1409 | return 0; |
| 1410 | |
| 1411 | /* Note: L3 csum seems to be already computed in sw, but we can't choose |
| 1412 | * L4 alone from the FM configuration anyway. |
| 1413 | */ |
| 1414 | |
| 1415 | /* Fill in some fields of the Parse Results array, so the FMan |
| 1416 | * can find them as if they came from the FMan Parser. |
| 1417 | */ |
| 1418 | parse_result = (struct fman_prs_result *)parse_results; |
| 1419 | |
| 1420 | /* If we're dealing with VLAN, get the real Ethernet type */ |
| 1421 | if (ethertype == ETH_P_8021Q) { |
| 1422 | /* We can't always assume the MAC header is set correctly |
| 1423 | * by the stack, so reset to beginning of skb->data |
| 1424 | */ |
| 1425 | skb_reset_mac_header(skb); |
| 1426 | ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); |
| 1427 | } |
| 1428 | |
| 1429 | /* Fill in the relevant L3 parse result fields |
| 1430 | * and read the L4 protocol type |
| 1431 | */ |
| 1432 | switch (ethertype) { |
| 1433 | case ETH_P_IP: |
| 1434 | parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); |
| 1435 | iph = ip_hdr(skb); |
| 1436 | WARN_ON(!iph); |
| 1437 | l4_proto = iph->protocol; |
| 1438 | break; |
| 1439 | case ETH_P_IPV6: |
| 1440 | parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); |
| 1441 | ipv6h = ipv6_hdr(skb); |
| 1442 | WARN_ON(!ipv6h); |
| 1443 | l4_proto = ipv6h->nexthdr; |
| 1444 | break; |
| 1445 | default: |
| 1446 | /* We shouldn't even be here */ |
| 1447 | if (net_ratelimit()) |
| 1448 | netif_alert(priv, tx_err, priv->net_dev, |
| 1449 | "Can't compute HW csum for L3 proto 0x%x\n", |
| 1450 | ntohs(skb->protocol)); |
| 1451 | retval = -EIO; |
| 1452 | goto return_error; |
| 1453 | } |
| 1454 | |
| 1455 | /* Fill in the relevant L4 parse result fields */ |
| 1456 | switch (l4_proto) { |
| 1457 | case IPPROTO_UDP: |
| 1458 | parse_result->l4r = FM_L4_PARSE_RESULT_UDP; |
| 1459 | break; |
| 1460 | case IPPROTO_TCP: |
| 1461 | parse_result->l4r = FM_L4_PARSE_RESULT_TCP; |
| 1462 | break; |
| 1463 | default: |
| 1464 | if (net_ratelimit()) |
| 1465 | netif_alert(priv, tx_err, priv->net_dev, |
| 1466 | "Can't compute HW csum for L4 proto 0x%x\n", |
| 1467 | l4_proto); |
| 1468 | retval = -EIO; |
| 1469 | goto return_error; |
| 1470 | } |
| 1471 | |
| 1472 | /* At index 0 is IPOffset_1 as defined in the Parse Results */ |
| 1473 | parse_result->ip_off[0] = (u8)skb_network_offset(skb); |
| 1474 | parse_result->l4_off = (u8)skb_transport_offset(skb); |
| 1475 | |
| 1476 | /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ |
| 1477 | fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); |
| 1478 | |
| 1479 | /* On P1023 and similar platforms fd->cmd interpretation could |
| 1480 | * be disabled by setting CONTEXT_A bit ICMD; currently this bit |
| 1481 | * is not set so we do not need to check; in the future, if/when |
| 1482 | * using context_a we need to check this bit |
| 1483 | */ |
| 1484 | |
| 1485 | return_error: |
| 1486 | return retval; |
| 1487 | } |
| 1488 | |
| 1489 | static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) |
| 1490 | { |
| 1491 | struct device *dev = dpaa_bp->dev; |
| 1492 | struct bm_buffer bmb[8]; |
| 1493 | dma_addr_t addr; |
| 1494 | void *new_buf; |
| 1495 | u8 i; |
| 1496 | |
| 1497 | for (i = 0; i < 8; i++) { |
| 1498 | new_buf = netdev_alloc_frag(dpaa_bp->raw_size); |
| 1499 | if (unlikely(!new_buf)) { |
| 1500 | dev_err(dev, "netdev_alloc_frag() failed, size %zu\n", |
| 1501 | dpaa_bp->raw_size); |
| 1502 | goto release_previous_buffs; |
| 1503 | } |
| 1504 | new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES); |
| 1505 | |
| 1506 | addr = dma_map_single(dev, new_buf, |
| 1507 | dpaa_bp->size, DMA_FROM_DEVICE); |
| 1508 | if (unlikely(dma_mapping_error(dev, addr))) { |
| 1509 | dev_err(dpaa_bp->dev, "DMA map failed"); |
| 1510 | goto release_previous_buffs; |
| 1511 | } |
| 1512 | |
| 1513 | bmb[i].data = 0; |
| 1514 | bm_buffer_set64(&bmb[i], addr); |
| 1515 | } |
| 1516 | |
| 1517 | release_bufs: |
| 1518 | return dpaa_bman_release(dpaa_bp, bmb, i); |
| 1519 | |
| 1520 | release_previous_buffs: |
| 1521 | WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); |
| 1522 | |
| 1523 | bm_buffer_set64(&bmb[i], 0); |
| 1524 | /* Avoid releasing a completely null buffer; bman_release() requires |
| 1525 | * at least one buffer. |
| 1526 | */ |
| 1527 | if (likely(i)) |
| 1528 | goto release_bufs; |
| 1529 | |
| 1530 | return 0; |
| 1531 | } |
| 1532 | |
| 1533 | static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) |
| 1534 | { |
| 1535 | int i; |
| 1536 | |
| 1537 | /* Give each CPU an allotment of "config_count" buffers */ |
| 1538 | for_each_possible_cpu(i) { |
| 1539 | int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); |
| 1540 | int j; |
| 1541 | |
| 1542 | /* Although we access another CPU's counters here |
| 1543 | * we do it at boot time so it is safe |
| 1544 | */ |
| 1545 | for (j = 0; j < dpaa_bp->config_count; j += 8) |
| 1546 | *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); |
| 1547 | } |
| 1548 | return 0; |
| 1549 | } |
| 1550 | |
| 1551 | /* Add buffers/(pages) for Rx processing whenever bpool count falls below |
| 1552 | * REFILL_THRESHOLD. |
| 1553 | */ |
| 1554 | static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) |
| 1555 | { |
| 1556 | int count = *countptr; |
| 1557 | int new_bufs; |
| 1558 | |
| 1559 | if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { |
| 1560 | do { |
| 1561 | new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); |
| 1562 | if (unlikely(!new_bufs)) { |
| 1563 | /* Avoid looping forever if we've temporarily |
| 1564 | * run out of memory. We'll try again at the |
| 1565 | * next NAPI cycle. |
| 1566 | */ |
| 1567 | break; |
| 1568 | } |
| 1569 | count += new_bufs; |
| 1570 | } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); |
| 1571 | |
| 1572 | *countptr = count; |
| 1573 | if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) |
| 1574 | return -ENOMEM; |
| 1575 | } |
| 1576 | |
| 1577 | return 0; |
| 1578 | } |
| 1579 | |
| 1580 | static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) |
| 1581 | { |
| 1582 | struct dpaa_bp *dpaa_bp; |
| 1583 | int *countptr; |
| 1584 | int res, i; |
| 1585 | |
| 1586 | for (i = 0; i < DPAA_BPS_NUM; i++) { |
| 1587 | dpaa_bp = priv->dpaa_bps[i]; |
| 1588 | if (!dpaa_bp) |
| 1589 | return -EINVAL; |
| 1590 | countptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| 1591 | res = dpaa_eth_refill_bpool(dpaa_bp, countptr); |
| 1592 | if (res) |
| 1593 | return res; |
| 1594 | } |
| 1595 | return 0; |
| 1596 | } |
| 1597 | |
| 1598 | /* Cleanup function for outgoing frame descriptors that were built on Tx path, |
| 1599 | * either contiguous frames or scatter/gather ones. |
| 1600 | * Skb freeing is not handled here. |
| 1601 | * |
| 1602 | * This function may be called on error paths in the Tx function, so guard |
| 1603 | * against cases when not all fd relevant fields were filled in. To avoid |
| 1604 | * reading the invalid transmission timestamp for the error paths set ts to |
| 1605 | * false. |
| 1606 | * |
| 1607 | * Return the skb backpointer, since for S/G frames the buffer containing it |
| 1608 | * gets freed here. |
| 1609 | */ |
| 1610 | static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, |
| 1611 | const struct qm_fd *fd, bool ts) |
| 1612 | { |
| 1613 | const enum dma_data_direction dma_dir = DMA_TO_DEVICE; |
| 1614 | struct device *dev = priv->net_dev->dev.parent; |
| 1615 | struct skb_shared_hwtstamps shhwtstamps; |
| 1616 | dma_addr_t addr = qm_fd_addr(fd); |
| 1617 | const struct qm_sg_entry *sgt; |
| 1618 | struct sk_buff **skbh, *skb; |
| 1619 | int nr_frags, i; |
| 1620 | u64 ns; |
| 1621 | |
| 1622 | skbh = (struct sk_buff **)phys_to_virt(addr); |
| 1623 | skb = *skbh; |
| 1624 | |
| 1625 | if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { |
| 1626 | nr_frags = skb_shinfo(skb)->nr_frags; |
| 1627 | dma_unmap_single(dev, addr, |
| 1628 | qm_fd_get_offset(fd) + DPAA_SGT_SIZE, |
| 1629 | dma_dir); |
| 1630 | |
| 1631 | /* The sgt buffer has been allocated with netdev_alloc_frag(), |
| 1632 | * it's from lowmem. |
| 1633 | */ |
| 1634 | sgt = phys_to_virt(addr + qm_fd_get_offset(fd)); |
| 1635 | |
| 1636 | /* sgt[0] is from lowmem, was dma_map_single()-ed */ |
| 1637 | dma_unmap_single(dev, qm_sg_addr(&sgt[0]), |
| 1638 | qm_sg_entry_get_len(&sgt[0]), dma_dir); |
| 1639 | |
| 1640 | /* remaining pages were mapped with skb_frag_dma_map() */ |
| 1641 | for (i = 1; i <= nr_frags; i++) { |
| 1642 | WARN_ON(qm_sg_entry_is_ext(&sgt[i])); |
| 1643 | |
| 1644 | dma_unmap_page(dev, qm_sg_addr(&sgt[i]), |
| 1645 | qm_sg_entry_get_len(&sgt[i]), dma_dir); |
| 1646 | } |
| 1647 | } else { |
| 1648 | dma_unmap_single(dev, addr, |
| 1649 | skb_tail_pointer(skb) - (u8 *)skbh, dma_dir); |
| 1650 | } |
| 1651 | |
| 1652 | /* DMA unmapping is required before accessing the HW provided info */ |
| 1653 | if (ts && priv->tx_tstamp && |
| 1654 | skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { |
| 1655 | memset(&shhwtstamps, 0, sizeof(shhwtstamps)); |
| 1656 | |
| 1657 | if (!fman_port_get_tstamp(priv->mac_dev->port[TX], (void *)skbh, |
| 1658 | &ns)) { |
| 1659 | shhwtstamps.hwtstamp = ns_to_ktime(ns); |
| 1660 | skb_tstamp_tx(skb, &shhwtstamps); |
| 1661 | } else { |
| 1662 | dev_warn(dev, "fman_port_get_tstamp failed!\n"); |
| 1663 | } |
| 1664 | } |
| 1665 | |
| 1666 | if (qm_fd_get_format(fd) == qm_fd_sg) |
| 1667 | /* Free the page frag that we allocated on Tx */ |
| 1668 | skb_free_frag(phys_to_virt(addr)); |
| 1669 | |
| 1670 | return skb; |
| 1671 | } |
| 1672 | |
| 1673 | static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) |
| 1674 | { |
| 1675 | /* The parser has run and performed L4 checksum validation. |
| 1676 | * We know there were no parser errors (and implicitly no |
| 1677 | * L4 csum error), otherwise we wouldn't be here. |
| 1678 | */ |
| 1679 | if ((priv->net_dev->features & NETIF_F_RXCSUM) && |
| 1680 | (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) |
| 1681 | return CHECKSUM_UNNECESSARY; |
| 1682 | |
| 1683 | /* We're here because either the parser didn't run or the L4 checksum |
| 1684 | * was not verified. This may include the case of a UDP frame with |
| 1685 | * checksum zero or an L4 proto other than TCP/UDP |
| 1686 | */ |
| 1687 | return CHECKSUM_NONE; |
| 1688 | } |
| 1689 | |
| 1690 | /* Build a linear skb around the received buffer. |
| 1691 | * We are guaranteed there is enough room at the end of the data buffer to |
| 1692 | * accommodate the shared info area of the skb. |
| 1693 | */ |
| 1694 | static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, |
| 1695 | const struct qm_fd *fd) |
| 1696 | { |
| 1697 | ssize_t fd_off = qm_fd_get_offset(fd); |
| 1698 | dma_addr_t addr = qm_fd_addr(fd); |
| 1699 | struct dpaa_bp *dpaa_bp; |
| 1700 | struct sk_buff *skb; |
| 1701 | void *vaddr; |
| 1702 | |
| 1703 | vaddr = phys_to_virt(addr); |
| 1704 | WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); |
| 1705 | |
| 1706 | dpaa_bp = dpaa_bpid2pool(fd->bpid); |
| 1707 | if (!dpaa_bp) |
| 1708 | goto free_buffer; |
| 1709 | |
| 1710 | skb = build_skb(vaddr, dpaa_bp->size + |
| 1711 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); |
| 1712 | if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) |
| 1713 | goto free_buffer; |
| 1714 | WARN_ON(fd_off != priv->rx_headroom); |
| 1715 | skb_reserve(skb, fd_off); |
| 1716 | skb_put(skb, qm_fd_get_length(fd)); |
| 1717 | |
| 1718 | skb->ip_summed = rx_csum_offload(priv, fd); |
| 1719 | |
| 1720 | return skb; |
| 1721 | |
| 1722 | free_buffer: |
| 1723 | skb_free_frag(vaddr); |
| 1724 | return NULL; |
| 1725 | } |
| 1726 | |
| 1727 | /* Build an skb with the data of the first S/G entry in the linear portion and |
| 1728 | * the rest of the frame as skb fragments. |
| 1729 | * |
| 1730 | * The page fragment holding the S/G Table is recycled here. |
| 1731 | */ |
| 1732 | static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, |
| 1733 | const struct qm_fd *fd) |
| 1734 | { |
| 1735 | ssize_t fd_off = qm_fd_get_offset(fd); |
| 1736 | dma_addr_t addr = qm_fd_addr(fd); |
| 1737 | const struct qm_sg_entry *sgt; |
| 1738 | struct page *page, *head_page; |
| 1739 | struct dpaa_bp *dpaa_bp; |
| 1740 | void *vaddr, *sg_vaddr; |
| 1741 | int frag_off, frag_len; |
| 1742 | struct sk_buff *skb; |
| 1743 | dma_addr_t sg_addr; |
| 1744 | int page_offset; |
| 1745 | unsigned int sz; |
| 1746 | int *count_ptr; |
| 1747 | int i; |
| 1748 | |
| 1749 | vaddr = phys_to_virt(addr); |
| 1750 | WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); |
| 1751 | |
| 1752 | /* Iterate through the SGT entries and add data buffers to the skb */ |
| 1753 | sgt = vaddr + fd_off; |
| 1754 | skb = NULL; |
| 1755 | for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { |
| 1756 | /* Extension bit is not supported */ |
| 1757 | WARN_ON(qm_sg_entry_is_ext(&sgt[i])); |
| 1758 | |
| 1759 | sg_addr = qm_sg_addr(&sgt[i]); |
| 1760 | sg_vaddr = phys_to_virt(sg_addr); |
| 1761 | WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr, |
| 1762 | SMP_CACHE_BYTES)); |
| 1763 | |
| 1764 | /* We may use multiple Rx pools */ |
| 1765 | dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); |
| 1766 | if (!dpaa_bp) |
| 1767 | goto free_buffers; |
| 1768 | |
| 1769 | count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| 1770 | dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size, |
| 1771 | DMA_FROM_DEVICE); |
| 1772 | if (!skb) { |
| 1773 | sz = dpaa_bp->size + |
| 1774 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| 1775 | skb = build_skb(sg_vaddr, sz); |
| 1776 | if (WARN_ON(!skb)) |
| 1777 | goto free_buffers; |
| 1778 | |
| 1779 | skb->ip_summed = rx_csum_offload(priv, fd); |
| 1780 | |
| 1781 | /* Make sure forwarded skbs will have enough space |
| 1782 | * on Tx, if extra headers are added. |
| 1783 | */ |
| 1784 | WARN_ON(fd_off != priv->rx_headroom); |
| 1785 | skb_reserve(skb, fd_off); |
| 1786 | skb_put(skb, qm_sg_entry_get_len(&sgt[i])); |
| 1787 | } else { |
| 1788 | /* Not the first S/G entry; all data from buffer will |
| 1789 | * be added in an skb fragment; fragment index is offset |
| 1790 | * by one since first S/G entry was incorporated in the |
| 1791 | * linear part of the skb. |
| 1792 | * |
| 1793 | * Caution: 'page' may be a tail page. |
| 1794 | */ |
| 1795 | page = virt_to_page(sg_vaddr); |
| 1796 | head_page = virt_to_head_page(sg_vaddr); |
| 1797 | |
| 1798 | /* Compute offset in (possibly tail) page */ |
| 1799 | page_offset = ((unsigned long)sg_vaddr & |
| 1800 | (PAGE_SIZE - 1)) + |
| 1801 | (page_address(page) - page_address(head_page)); |
| 1802 | /* page_offset only refers to the beginning of sgt[i]; |
| 1803 | * but the buffer itself may have an internal offset. |
| 1804 | */ |
| 1805 | frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; |
| 1806 | frag_len = qm_sg_entry_get_len(&sgt[i]); |
| 1807 | /* skb_add_rx_frag() does no checking on the page; if |
| 1808 | * we pass it a tail page, we'll end up with |
| 1809 | * bad page accounting and eventually with segafults. |
| 1810 | */ |
| 1811 | skb_add_rx_frag(skb, i - 1, head_page, frag_off, |
| 1812 | frag_len, dpaa_bp->size); |
| 1813 | } |
| 1814 | /* Update the pool count for the current {cpu x bpool} */ |
| 1815 | (*count_ptr)--; |
| 1816 | |
| 1817 | if (qm_sg_entry_is_final(&sgt[i])) |
| 1818 | break; |
| 1819 | } |
| 1820 | WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); |
| 1821 | |
| 1822 | /* free the SG table buffer */ |
| 1823 | skb_free_frag(vaddr); |
| 1824 | |
| 1825 | return skb; |
| 1826 | |
| 1827 | free_buffers: |
| 1828 | /* compensate sw bpool counter changes */ |
| 1829 | for (i--; i >= 0; i--) { |
| 1830 | dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); |
| 1831 | if (dpaa_bp) { |
| 1832 | count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| 1833 | (*count_ptr)++; |
| 1834 | } |
| 1835 | } |
| 1836 | /* free all the SG entries */ |
| 1837 | for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) { |
| 1838 | sg_addr = qm_sg_addr(&sgt[i]); |
| 1839 | sg_vaddr = phys_to_virt(sg_addr); |
| 1840 | skb_free_frag(sg_vaddr); |
| 1841 | dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); |
| 1842 | if (dpaa_bp) { |
| 1843 | count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| 1844 | (*count_ptr)--; |
| 1845 | } |
| 1846 | |
| 1847 | if (qm_sg_entry_is_final(&sgt[i])) |
| 1848 | break; |
| 1849 | } |
| 1850 | /* free the SGT fragment */ |
| 1851 | skb_free_frag(vaddr); |
| 1852 | |
| 1853 | return NULL; |
| 1854 | } |
| 1855 | |
| 1856 | static int skb_to_contig_fd(struct dpaa_priv *priv, |
| 1857 | struct sk_buff *skb, struct qm_fd *fd, |
| 1858 | int *offset) |
| 1859 | { |
| 1860 | struct net_device *net_dev = priv->net_dev; |
| 1861 | struct device *dev = net_dev->dev.parent; |
| 1862 | enum dma_data_direction dma_dir; |
| 1863 | unsigned char *buffer_start; |
| 1864 | struct sk_buff **skbh; |
| 1865 | dma_addr_t addr; |
| 1866 | int err; |
| 1867 | |
| 1868 | /* We are guaranteed to have at least tx_headroom bytes |
| 1869 | * available, so just use that for offset. |
| 1870 | */ |
| 1871 | fd->bpid = FSL_DPAA_BPID_INV; |
| 1872 | buffer_start = skb->data - priv->tx_headroom; |
| 1873 | dma_dir = DMA_TO_DEVICE; |
| 1874 | |
| 1875 | skbh = (struct sk_buff **)buffer_start; |
| 1876 | *skbh = skb; |
| 1877 | |
| 1878 | /* Enable L3/L4 hardware checksum computation. |
| 1879 | * |
| 1880 | * We must do this before dma_map_single(DMA_TO_DEVICE), because we may |
| 1881 | * need to write into the skb. |
| 1882 | */ |
| 1883 | err = dpaa_enable_tx_csum(priv, skb, fd, |
| 1884 | ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE); |
| 1885 | if (unlikely(err < 0)) { |
| 1886 | if (net_ratelimit()) |
| 1887 | netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", |
| 1888 | err); |
| 1889 | return err; |
| 1890 | } |
| 1891 | |
| 1892 | /* Fill in the rest of the FD fields */ |
| 1893 | qm_fd_set_contig(fd, priv->tx_headroom, skb->len); |
| 1894 | fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); |
| 1895 | |
| 1896 | /* Map the entire buffer size that may be seen by FMan, but no more */ |
| 1897 | addr = dma_map_single(dev, skbh, |
| 1898 | skb_tail_pointer(skb) - buffer_start, dma_dir); |
| 1899 | if (unlikely(dma_mapping_error(dev, addr))) { |
| 1900 | if (net_ratelimit()) |
| 1901 | netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); |
| 1902 | return -EINVAL; |
| 1903 | } |
| 1904 | qm_fd_addr_set64(fd, addr); |
| 1905 | |
| 1906 | return 0; |
| 1907 | } |
| 1908 | |
| 1909 | static int skb_to_sg_fd(struct dpaa_priv *priv, |
| 1910 | struct sk_buff *skb, struct qm_fd *fd) |
| 1911 | { |
| 1912 | const enum dma_data_direction dma_dir = DMA_TO_DEVICE; |
| 1913 | const int nr_frags = skb_shinfo(skb)->nr_frags; |
| 1914 | struct net_device *net_dev = priv->net_dev; |
| 1915 | struct device *dev = net_dev->dev.parent; |
| 1916 | struct qm_sg_entry *sgt; |
| 1917 | struct sk_buff **skbh; |
| 1918 | int i, j, err, sz; |
| 1919 | void *buffer_start; |
| 1920 | skb_frag_t *frag; |
| 1921 | dma_addr_t addr; |
| 1922 | size_t frag_len; |
| 1923 | void *sgt_buf; |
| 1924 | |
| 1925 | /* get a page frag to store the SGTable */ |
| 1926 | sz = SKB_DATA_ALIGN(priv->tx_headroom + DPAA_SGT_SIZE); |
| 1927 | sgt_buf = netdev_alloc_frag(sz); |
| 1928 | if (unlikely(!sgt_buf)) { |
| 1929 | netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n", |
| 1930 | sz); |
| 1931 | return -ENOMEM; |
| 1932 | } |
| 1933 | |
| 1934 | /* Enable L3/L4 hardware checksum computation. |
| 1935 | * |
| 1936 | * We must do this before dma_map_single(DMA_TO_DEVICE), because we may |
| 1937 | * need to write into the skb. |
| 1938 | */ |
| 1939 | err = dpaa_enable_tx_csum(priv, skb, fd, |
| 1940 | sgt_buf + DPAA_TX_PRIV_DATA_SIZE); |
| 1941 | if (unlikely(err < 0)) { |
| 1942 | if (net_ratelimit()) |
| 1943 | netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", |
| 1944 | err); |
| 1945 | goto csum_failed; |
| 1946 | } |
| 1947 | |
| 1948 | /* SGT[0] is used by the linear part */ |
| 1949 | sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom); |
| 1950 | frag_len = skb_headlen(skb); |
| 1951 | qm_sg_entry_set_len(&sgt[0], frag_len); |
| 1952 | sgt[0].bpid = FSL_DPAA_BPID_INV; |
| 1953 | sgt[0].offset = 0; |
| 1954 | addr = dma_map_single(dev, skb->data, |
| 1955 | skb_headlen(skb), dma_dir); |
| 1956 | if (unlikely(dma_mapping_error(dev, addr))) { |
| 1957 | dev_err(dev, "DMA mapping failed"); |
| 1958 | err = -EINVAL; |
| 1959 | goto sg0_map_failed; |
| 1960 | } |
| 1961 | qm_sg_entry_set64(&sgt[0], addr); |
| 1962 | |
| 1963 | /* populate the rest of SGT entries */ |
| 1964 | for (i = 0; i < nr_frags; i++) { |
| 1965 | frag = &skb_shinfo(skb)->frags[i]; |
| 1966 | frag_len = skb_frag_size(frag); |
| 1967 | WARN_ON(!skb_frag_page(frag)); |
| 1968 | addr = skb_frag_dma_map(dev, frag, 0, |
| 1969 | frag_len, dma_dir); |
| 1970 | if (unlikely(dma_mapping_error(dev, addr))) { |
| 1971 | dev_err(dev, "DMA mapping failed"); |
| 1972 | err = -EINVAL; |
| 1973 | goto sg_map_failed; |
| 1974 | } |
| 1975 | |
| 1976 | qm_sg_entry_set_len(&sgt[i + 1], frag_len); |
| 1977 | sgt[i + 1].bpid = FSL_DPAA_BPID_INV; |
| 1978 | sgt[i + 1].offset = 0; |
| 1979 | |
| 1980 | /* keep the offset in the address */ |
| 1981 | qm_sg_entry_set64(&sgt[i + 1], addr); |
| 1982 | } |
| 1983 | |
| 1984 | /* Set the final bit in the last used entry of the SGT */ |
| 1985 | qm_sg_entry_set_f(&sgt[nr_frags], frag_len); |
| 1986 | |
| 1987 | qm_fd_set_sg(fd, priv->tx_headroom, skb->len); |
| 1988 | |
| 1989 | /* DMA map the SGT page */ |
| 1990 | buffer_start = (void *)sgt - priv->tx_headroom; |
| 1991 | skbh = (struct sk_buff **)buffer_start; |
| 1992 | *skbh = skb; |
| 1993 | |
| 1994 | addr = dma_map_single(dev, buffer_start, |
| 1995 | priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); |
| 1996 | if (unlikely(dma_mapping_error(dev, addr))) { |
| 1997 | dev_err(dev, "DMA mapping failed"); |
| 1998 | err = -EINVAL; |
| 1999 | goto sgt_map_failed; |
| 2000 | } |
| 2001 | |
| 2002 | fd->bpid = FSL_DPAA_BPID_INV; |
| 2003 | fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); |
| 2004 | qm_fd_addr_set64(fd, addr); |
| 2005 | |
| 2006 | return 0; |
| 2007 | |
| 2008 | sgt_map_failed: |
| 2009 | sg_map_failed: |
| 2010 | for (j = 0; j < i; j++) |
| 2011 | dma_unmap_page(dev, qm_sg_addr(&sgt[j]), |
| 2012 | qm_sg_entry_get_len(&sgt[j]), dma_dir); |
| 2013 | sg0_map_failed: |
| 2014 | csum_failed: |
| 2015 | skb_free_frag(sgt_buf); |
| 2016 | |
| 2017 | return err; |
| 2018 | } |
| 2019 | |
| 2020 | static inline int dpaa_xmit(struct dpaa_priv *priv, |
| 2021 | struct rtnl_link_stats64 *percpu_stats, |
| 2022 | int queue, |
| 2023 | struct qm_fd *fd) |
| 2024 | { |
| 2025 | struct qman_fq *egress_fq; |
| 2026 | int err, i; |
| 2027 | |
| 2028 | egress_fq = priv->egress_fqs[queue]; |
| 2029 | if (fd->bpid == FSL_DPAA_BPID_INV) |
| 2030 | fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); |
| 2031 | |
| 2032 | /* Trace this Tx fd */ |
| 2033 | trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); |
| 2034 | |
| 2035 | for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { |
| 2036 | err = qman_enqueue(egress_fq, fd); |
| 2037 | if (err != -EBUSY) |
| 2038 | break; |
| 2039 | } |
| 2040 | |
| 2041 | if (unlikely(err < 0)) { |
| 2042 | percpu_stats->tx_fifo_errors++; |
| 2043 | return err; |
| 2044 | } |
| 2045 | |
| 2046 | percpu_stats->tx_packets++; |
| 2047 | percpu_stats->tx_bytes += qm_fd_get_length(fd); |
| 2048 | |
| 2049 | return 0; |
| 2050 | } |
| 2051 | |
| 2052 | static netdev_tx_t |
| 2053 | dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) |
| 2054 | { |
| 2055 | const int queue_mapping = skb_get_queue_mapping(skb); |
| 2056 | bool nonlinear = skb_is_nonlinear(skb); |
| 2057 | struct rtnl_link_stats64 *percpu_stats; |
| 2058 | struct dpaa_percpu_priv *percpu_priv; |
| 2059 | struct netdev_queue *txq; |
| 2060 | struct dpaa_priv *priv; |
| 2061 | struct qm_fd fd; |
| 2062 | int offset = 0; |
| 2063 | int err = 0; |
| 2064 | |
| 2065 | priv = netdev_priv(net_dev); |
| 2066 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| 2067 | percpu_stats = &percpu_priv->stats; |
| 2068 | |
| 2069 | qm_fd_clear_fd(&fd); |
| 2070 | |
| 2071 | if (!nonlinear) { |
| 2072 | /* We're going to store the skb backpointer at the beginning |
| 2073 | * of the data buffer, so we need a privately owned skb |
| 2074 | * |
| 2075 | * We've made sure skb is not shared in dev->priv_flags, |
| 2076 | * we need to verify the skb head is not cloned |
| 2077 | */ |
| 2078 | if (skb_cow_head(skb, priv->tx_headroom)) |
| 2079 | goto enomem; |
| 2080 | |
| 2081 | WARN_ON(skb_is_nonlinear(skb)); |
| 2082 | } |
| 2083 | |
| 2084 | /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; |
| 2085 | * make sure we don't feed FMan with more fragments than it supports. |
| 2086 | */ |
| 2087 | if (unlikely(nonlinear && |
| 2088 | (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { |
| 2089 | /* If the egress skb contains more fragments than we support |
| 2090 | * we have no choice but to linearize it ourselves. |
| 2091 | */ |
| 2092 | if (__skb_linearize(skb)) |
| 2093 | goto enomem; |
| 2094 | |
| 2095 | nonlinear = skb_is_nonlinear(skb); |
| 2096 | } |
| 2097 | |
| 2098 | if (nonlinear) { |
| 2099 | /* Just create a S/G fd based on the skb */ |
| 2100 | err = skb_to_sg_fd(priv, skb, &fd); |
| 2101 | percpu_priv->tx_frag_skbuffs++; |
| 2102 | } else { |
| 2103 | /* Create a contig FD from this skb */ |
| 2104 | err = skb_to_contig_fd(priv, skb, &fd, &offset); |
| 2105 | } |
| 2106 | if (unlikely(err < 0)) |
| 2107 | goto skb_to_fd_failed; |
| 2108 | |
| 2109 | txq = netdev_get_tx_queue(net_dev, queue_mapping); |
| 2110 | |
| 2111 | /* LLTX requires to do our own update of trans_start */ |
| 2112 | txq->trans_start = jiffies; |
| 2113 | |
| 2114 | if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { |
| 2115 | fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); |
| 2116 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| 2117 | } |
| 2118 | |
| 2119 | if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) |
| 2120 | return NETDEV_TX_OK; |
| 2121 | |
| 2122 | dpaa_cleanup_tx_fd(priv, &fd, false); |
| 2123 | skb_to_fd_failed: |
| 2124 | enomem: |
| 2125 | percpu_stats->tx_errors++; |
| 2126 | dev_kfree_skb(skb); |
| 2127 | return NETDEV_TX_OK; |
| 2128 | } |
| 2129 | |
| 2130 | static void dpaa_rx_error(struct net_device *net_dev, |
| 2131 | const struct dpaa_priv *priv, |
| 2132 | struct dpaa_percpu_priv *percpu_priv, |
| 2133 | const struct qm_fd *fd, |
| 2134 | u32 fqid) |
| 2135 | { |
| 2136 | if (net_ratelimit()) |
| 2137 | netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", |
| 2138 | be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); |
| 2139 | |
| 2140 | percpu_priv->stats.rx_errors++; |
| 2141 | |
| 2142 | if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) |
| 2143 | percpu_priv->rx_errors.dme++; |
| 2144 | if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) |
| 2145 | percpu_priv->rx_errors.fpe++; |
| 2146 | if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) |
| 2147 | percpu_priv->rx_errors.fse++; |
| 2148 | if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) |
| 2149 | percpu_priv->rx_errors.phe++; |
| 2150 | |
| 2151 | dpaa_fd_release(net_dev, fd); |
| 2152 | } |
| 2153 | |
| 2154 | static void dpaa_tx_error(struct net_device *net_dev, |
| 2155 | const struct dpaa_priv *priv, |
| 2156 | struct dpaa_percpu_priv *percpu_priv, |
| 2157 | const struct qm_fd *fd, |
| 2158 | u32 fqid) |
| 2159 | { |
| 2160 | struct sk_buff *skb; |
| 2161 | |
| 2162 | if (net_ratelimit()) |
| 2163 | netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", |
| 2164 | be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); |
| 2165 | |
| 2166 | percpu_priv->stats.tx_errors++; |
| 2167 | |
| 2168 | skb = dpaa_cleanup_tx_fd(priv, fd, false); |
| 2169 | dev_kfree_skb(skb); |
| 2170 | } |
| 2171 | |
| 2172 | static int dpaa_eth_poll(struct napi_struct *napi, int budget) |
| 2173 | { |
| 2174 | struct dpaa_napi_portal *np = |
| 2175 | container_of(napi, struct dpaa_napi_portal, napi); |
| 2176 | |
| 2177 | int cleaned = qman_p_poll_dqrr(np->p, budget); |
| 2178 | |
| 2179 | if (cleaned < budget) { |
| 2180 | napi_complete_done(napi, cleaned); |
| 2181 | qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); |
| 2182 | } else if (np->down) { |
| 2183 | qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); |
| 2184 | } |
| 2185 | |
| 2186 | return cleaned; |
| 2187 | } |
| 2188 | |
| 2189 | static void dpaa_tx_conf(struct net_device *net_dev, |
| 2190 | const struct dpaa_priv *priv, |
| 2191 | struct dpaa_percpu_priv *percpu_priv, |
| 2192 | const struct qm_fd *fd, |
| 2193 | u32 fqid) |
| 2194 | { |
| 2195 | struct sk_buff *skb; |
| 2196 | |
| 2197 | if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { |
| 2198 | if (net_ratelimit()) |
| 2199 | netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", |
| 2200 | be32_to_cpu(fd->status) & |
| 2201 | FM_FD_STAT_TX_ERRORS); |
| 2202 | |
| 2203 | percpu_priv->stats.tx_errors++; |
| 2204 | } |
| 2205 | |
| 2206 | percpu_priv->tx_confirm++; |
| 2207 | |
| 2208 | skb = dpaa_cleanup_tx_fd(priv, fd, true); |
| 2209 | |
| 2210 | consume_skb(skb); |
| 2211 | } |
| 2212 | |
| 2213 | static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, |
| 2214 | struct qman_portal *portal) |
| 2215 | { |
| 2216 | if (unlikely(in_irq() || !in_serving_softirq())) { |
| 2217 | /* Disable QMan IRQ and invoke NAPI */ |
| 2218 | qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); |
| 2219 | |
| 2220 | percpu_priv->np.p = portal; |
| 2221 | napi_schedule(&percpu_priv->np.napi); |
| 2222 | percpu_priv->in_interrupt++; |
| 2223 | return 1; |
| 2224 | } |
| 2225 | return 0; |
| 2226 | } |
| 2227 | |
| 2228 | static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, |
| 2229 | struct qman_fq *fq, |
| 2230 | const struct qm_dqrr_entry *dq) |
| 2231 | { |
| 2232 | struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); |
| 2233 | struct dpaa_percpu_priv *percpu_priv; |
| 2234 | struct net_device *net_dev; |
| 2235 | struct dpaa_bp *dpaa_bp; |
| 2236 | struct dpaa_priv *priv; |
| 2237 | |
| 2238 | net_dev = dpaa_fq->net_dev; |
| 2239 | priv = netdev_priv(net_dev); |
| 2240 | dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); |
| 2241 | if (!dpaa_bp) |
| 2242 | return qman_cb_dqrr_consume; |
| 2243 | |
| 2244 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| 2245 | |
| 2246 | if (dpaa_eth_napi_schedule(percpu_priv, portal)) |
| 2247 | return qman_cb_dqrr_stop; |
| 2248 | |
| 2249 | dpaa_eth_refill_bpools(priv); |
| 2250 | dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); |
| 2251 | |
| 2252 | return qman_cb_dqrr_consume; |
| 2253 | } |
| 2254 | |
| 2255 | static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, |
| 2256 | struct qman_fq *fq, |
| 2257 | const struct qm_dqrr_entry *dq) |
| 2258 | { |
| 2259 | struct skb_shared_hwtstamps *shhwtstamps; |
| 2260 | struct rtnl_link_stats64 *percpu_stats; |
| 2261 | struct dpaa_percpu_priv *percpu_priv; |
| 2262 | const struct qm_fd *fd = &dq->fd; |
| 2263 | dma_addr_t addr = qm_fd_addr(fd); |
| 2264 | enum qm_fd_format fd_format; |
| 2265 | struct net_device *net_dev; |
| 2266 | u32 fd_status, hash_offset; |
| 2267 | struct dpaa_bp *dpaa_bp; |
| 2268 | struct dpaa_priv *priv; |
| 2269 | unsigned int skb_len; |
| 2270 | struct sk_buff *skb; |
| 2271 | int *count_ptr; |
| 2272 | void *vaddr; |
| 2273 | u64 ns; |
| 2274 | |
| 2275 | fd_status = be32_to_cpu(fd->status); |
| 2276 | fd_format = qm_fd_get_format(fd); |
| 2277 | net_dev = ((struct dpaa_fq *)fq)->net_dev; |
| 2278 | priv = netdev_priv(net_dev); |
| 2279 | dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); |
| 2280 | if (!dpaa_bp) |
| 2281 | return qman_cb_dqrr_consume; |
| 2282 | |
| 2283 | /* Trace the Rx fd */ |
| 2284 | trace_dpaa_rx_fd(net_dev, fq, &dq->fd); |
| 2285 | |
| 2286 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| 2287 | percpu_stats = &percpu_priv->stats; |
| 2288 | |
| 2289 | if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal))) |
| 2290 | return qman_cb_dqrr_stop; |
| 2291 | |
| 2292 | /* Make sure we didn't run out of buffers */ |
| 2293 | if (unlikely(dpaa_eth_refill_bpools(priv))) { |
| 2294 | /* Unable to refill the buffer pool due to insufficient |
| 2295 | * system memory. Just release the frame back into the pool, |
| 2296 | * otherwise we'll soon end up with an empty buffer pool. |
| 2297 | */ |
| 2298 | dpaa_fd_release(net_dev, &dq->fd); |
| 2299 | return qman_cb_dqrr_consume; |
| 2300 | } |
| 2301 | |
| 2302 | if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { |
| 2303 | if (net_ratelimit()) |
| 2304 | netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", |
| 2305 | fd_status & FM_FD_STAT_RX_ERRORS); |
| 2306 | |
| 2307 | percpu_stats->rx_errors++; |
| 2308 | dpaa_fd_release(net_dev, fd); |
| 2309 | return qman_cb_dqrr_consume; |
| 2310 | } |
| 2311 | |
| 2312 | dpaa_bp = dpaa_bpid2pool(fd->bpid); |
| 2313 | if (!dpaa_bp) |
| 2314 | return qman_cb_dqrr_consume; |
| 2315 | |
| 2316 | dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE); |
| 2317 | |
| 2318 | /* prefetch the first 64 bytes of the frame or the SGT start */ |
| 2319 | vaddr = phys_to_virt(addr); |
| 2320 | prefetch(vaddr + qm_fd_get_offset(fd)); |
| 2321 | |
| 2322 | /* The only FD types that we may receive are contig and S/G */ |
| 2323 | WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); |
| 2324 | |
| 2325 | /* Account for either the contig buffer or the SGT buffer (depending on |
| 2326 | * which case we were in) having been removed from the pool. |
| 2327 | */ |
| 2328 | count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| 2329 | (*count_ptr)--; |
| 2330 | |
| 2331 | if (likely(fd_format == qm_fd_contig)) |
| 2332 | skb = contig_fd_to_skb(priv, fd); |
| 2333 | else |
| 2334 | skb = sg_fd_to_skb(priv, fd); |
| 2335 | if (!skb) |
| 2336 | return qman_cb_dqrr_consume; |
| 2337 | |
| 2338 | if (priv->rx_tstamp) { |
| 2339 | shhwtstamps = skb_hwtstamps(skb); |
| 2340 | memset(shhwtstamps, 0, sizeof(*shhwtstamps)); |
| 2341 | |
| 2342 | if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) |
| 2343 | shhwtstamps->hwtstamp = ns_to_ktime(ns); |
| 2344 | else |
| 2345 | dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n"); |
| 2346 | } |
| 2347 | |
| 2348 | skb->protocol = eth_type_trans(skb, net_dev); |
| 2349 | |
| 2350 | if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && |
| 2351 | !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], |
| 2352 | &hash_offset)) { |
| 2353 | enum pkt_hash_types type; |
| 2354 | |
| 2355 | /* if L4 exists, it was used in the hash generation */ |
| 2356 | type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? |
| 2357 | PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; |
| 2358 | skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)), |
| 2359 | type); |
| 2360 | } |
| 2361 | |
| 2362 | skb_len = skb->len; |
| 2363 | |
| 2364 | if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { |
| 2365 | percpu_stats->rx_dropped++; |
| 2366 | return qman_cb_dqrr_consume; |
| 2367 | } |
| 2368 | |
| 2369 | percpu_stats->rx_packets++; |
| 2370 | percpu_stats->rx_bytes += skb_len; |
| 2371 | |
| 2372 | return qman_cb_dqrr_consume; |
| 2373 | } |
| 2374 | |
| 2375 | static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, |
| 2376 | struct qman_fq *fq, |
| 2377 | const struct qm_dqrr_entry *dq) |
| 2378 | { |
| 2379 | struct dpaa_percpu_priv *percpu_priv; |
| 2380 | struct net_device *net_dev; |
| 2381 | struct dpaa_priv *priv; |
| 2382 | |
| 2383 | net_dev = ((struct dpaa_fq *)fq)->net_dev; |
| 2384 | priv = netdev_priv(net_dev); |
| 2385 | |
| 2386 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| 2387 | |
| 2388 | if (dpaa_eth_napi_schedule(percpu_priv, portal)) |
| 2389 | return qman_cb_dqrr_stop; |
| 2390 | |
| 2391 | dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); |
| 2392 | |
| 2393 | return qman_cb_dqrr_consume; |
| 2394 | } |
| 2395 | |
| 2396 | static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, |
| 2397 | struct qman_fq *fq, |
| 2398 | const struct qm_dqrr_entry *dq) |
| 2399 | { |
| 2400 | struct dpaa_percpu_priv *percpu_priv; |
| 2401 | struct net_device *net_dev; |
| 2402 | struct dpaa_priv *priv; |
| 2403 | |
| 2404 | net_dev = ((struct dpaa_fq *)fq)->net_dev; |
| 2405 | priv = netdev_priv(net_dev); |
| 2406 | |
| 2407 | /* Trace the fd */ |
| 2408 | trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); |
| 2409 | |
| 2410 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| 2411 | |
| 2412 | if (dpaa_eth_napi_schedule(percpu_priv, portal)) |
| 2413 | return qman_cb_dqrr_stop; |
| 2414 | |
| 2415 | dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); |
| 2416 | |
| 2417 | return qman_cb_dqrr_consume; |
| 2418 | } |
| 2419 | |
| 2420 | static void egress_ern(struct qman_portal *portal, |
| 2421 | struct qman_fq *fq, |
| 2422 | const union qm_mr_entry *msg) |
| 2423 | { |
| 2424 | const struct qm_fd *fd = &msg->ern.fd; |
| 2425 | struct dpaa_percpu_priv *percpu_priv; |
| 2426 | const struct dpaa_priv *priv; |
| 2427 | struct net_device *net_dev; |
| 2428 | struct sk_buff *skb; |
| 2429 | |
| 2430 | net_dev = ((struct dpaa_fq *)fq)->net_dev; |
| 2431 | priv = netdev_priv(net_dev); |
| 2432 | percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| 2433 | |
| 2434 | percpu_priv->stats.tx_dropped++; |
| 2435 | percpu_priv->stats.tx_fifo_errors++; |
| 2436 | count_ern(percpu_priv, msg); |
| 2437 | |
| 2438 | skb = dpaa_cleanup_tx_fd(priv, fd, false); |
| 2439 | dev_kfree_skb_any(skb); |
| 2440 | } |
| 2441 | |
| 2442 | static const struct dpaa_fq_cbs dpaa_fq_cbs = { |
| 2443 | .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, |
| 2444 | .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, |
| 2445 | .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, |
| 2446 | .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, |
| 2447 | .egress_ern = { .cb = { .ern = egress_ern } } |
| 2448 | }; |
| 2449 | |
| 2450 | static void dpaa_eth_napi_enable(struct dpaa_priv *priv) |
| 2451 | { |
| 2452 | struct dpaa_percpu_priv *percpu_priv; |
| 2453 | int i; |
| 2454 | |
| 2455 | for_each_online_cpu(i) { |
| 2456 | percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
| 2457 | |
| 2458 | percpu_priv->np.down = 0; |
| 2459 | napi_enable(&percpu_priv->np.napi); |
| 2460 | } |
| 2461 | } |
| 2462 | |
| 2463 | static void dpaa_eth_napi_disable(struct dpaa_priv *priv) |
| 2464 | { |
| 2465 | struct dpaa_percpu_priv *percpu_priv; |
| 2466 | int i; |
| 2467 | |
| 2468 | for_each_online_cpu(i) { |
| 2469 | percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
| 2470 | |
| 2471 | percpu_priv->np.down = 1; |
| 2472 | napi_disable(&percpu_priv->np.napi); |
| 2473 | } |
| 2474 | } |
| 2475 | |
| 2476 | static void dpaa_adjust_link(struct net_device *net_dev) |
| 2477 | { |
| 2478 | struct mac_device *mac_dev; |
| 2479 | struct dpaa_priv *priv; |
| 2480 | |
| 2481 | priv = netdev_priv(net_dev); |
| 2482 | mac_dev = priv->mac_dev; |
| 2483 | mac_dev->adjust_link(mac_dev); |
| 2484 | } |
| 2485 | |
| 2486 | /* The Aquantia PHYs are capable of performing rate adaptation */ |
| 2487 | #define PHY_VEND_AQUANTIA 0x03a1b400 |
| 2488 | |
| 2489 | static int dpaa_phy_init(struct net_device *net_dev) |
| 2490 | { |
| 2491 | __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; |
| 2492 | struct mac_device *mac_dev; |
| 2493 | struct phy_device *phy_dev; |
| 2494 | struct dpaa_priv *priv; |
| 2495 | |
| 2496 | priv = netdev_priv(net_dev); |
| 2497 | mac_dev = priv->mac_dev; |
| 2498 | |
| 2499 | phy_dev = of_phy_connect(net_dev, mac_dev->phy_node, |
| 2500 | &dpaa_adjust_link, 0, |
| 2501 | mac_dev->phy_if); |
| 2502 | if (!phy_dev) { |
| 2503 | netif_err(priv, ifup, net_dev, "init_phy() failed\n"); |
| 2504 | return -ENODEV; |
| 2505 | } |
| 2506 | |
| 2507 | /* Unless the PHY is capable of rate adaptation */ |
| 2508 | if (mac_dev->phy_if != PHY_INTERFACE_MODE_XGMII || |
| 2509 | ((phy_dev->drv->phy_id & GENMASK(31, 10)) != PHY_VEND_AQUANTIA)) { |
| 2510 | /* remove any features not supported by the controller */ |
| 2511 | ethtool_convert_legacy_u32_to_link_mode(mask, |
| 2512 | mac_dev->if_support); |
| 2513 | linkmode_and(phy_dev->supported, phy_dev->supported, mask); |
| 2514 | } |
| 2515 | |
| 2516 | phy_support_asym_pause(phy_dev); |
| 2517 | |
| 2518 | mac_dev->phy_dev = phy_dev; |
| 2519 | net_dev->phydev = phy_dev; |
| 2520 | |
| 2521 | return 0; |
| 2522 | } |
| 2523 | |
| 2524 | static int dpaa_open(struct net_device *net_dev) |
| 2525 | { |
| 2526 | struct mac_device *mac_dev; |
| 2527 | struct dpaa_priv *priv; |
| 2528 | int err, i; |
| 2529 | |
| 2530 | priv = netdev_priv(net_dev); |
| 2531 | mac_dev = priv->mac_dev; |
| 2532 | dpaa_eth_napi_enable(priv); |
| 2533 | |
| 2534 | err = dpaa_phy_init(net_dev); |
| 2535 | if (err) |
| 2536 | goto phy_init_failed; |
| 2537 | |
| 2538 | for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { |
| 2539 | err = fman_port_enable(mac_dev->port[i]); |
| 2540 | if (err) |
| 2541 | goto mac_start_failed; |
| 2542 | } |
| 2543 | |
| 2544 | err = priv->mac_dev->start(mac_dev); |
| 2545 | if (err < 0) { |
| 2546 | netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err); |
| 2547 | goto mac_start_failed; |
| 2548 | } |
| 2549 | |
| 2550 | netif_tx_start_all_queues(net_dev); |
| 2551 | |
| 2552 | return 0; |
| 2553 | |
| 2554 | mac_start_failed: |
| 2555 | for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) |
| 2556 | fman_port_disable(mac_dev->port[i]); |
| 2557 | |
| 2558 | phy_init_failed: |
| 2559 | dpaa_eth_napi_disable(priv); |
| 2560 | |
| 2561 | return err; |
| 2562 | } |
| 2563 | |
| 2564 | static int dpaa_eth_stop(struct net_device *net_dev) |
| 2565 | { |
| 2566 | struct dpaa_priv *priv; |
| 2567 | int err; |
| 2568 | |
| 2569 | err = dpaa_stop(net_dev); |
| 2570 | |
| 2571 | priv = netdev_priv(net_dev); |
| 2572 | dpaa_eth_napi_disable(priv); |
| 2573 | |
| 2574 | return err; |
| 2575 | } |
| 2576 | |
| 2577 | static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| 2578 | { |
| 2579 | struct dpaa_priv *priv = netdev_priv(dev); |
| 2580 | struct hwtstamp_config config; |
| 2581 | |
| 2582 | if (copy_from_user(&config, rq->ifr_data, sizeof(config))) |
| 2583 | return -EFAULT; |
| 2584 | |
| 2585 | switch (config.tx_type) { |
| 2586 | case HWTSTAMP_TX_OFF: |
| 2587 | /* Couldn't disable rx/tx timestamping separately. |
| 2588 | * Do nothing here. |
| 2589 | */ |
| 2590 | priv->tx_tstamp = false; |
| 2591 | break; |
| 2592 | case HWTSTAMP_TX_ON: |
| 2593 | priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); |
| 2594 | priv->tx_tstamp = true; |
| 2595 | break; |
| 2596 | default: |
| 2597 | return -ERANGE; |
| 2598 | } |
| 2599 | |
| 2600 | if (config.rx_filter == HWTSTAMP_FILTER_NONE) { |
| 2601 | /* Couldn't disable rx/tx timestamping separately. |
| 2602 | * Do nothing here. |
| 2603 | */ |
| 2604 | priv->rx_tstamp = false; |
| 2605 | } else { |
| 2606 | priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); |
| 2607 | priv->rx_tstamp = true; |
| 2608 | /* TS is set for all frame types, not only those requested */ |
| 2609 | config.rx_filter = HWTSTAMP_FILTER_ALL; |
| 2610 | } |
| 2611 | |
| 2612 | return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? |
| 2613 | -EFAULT : 0; |
| 2614 | } |
| 2615 | |
| 2616 | static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) |
| 2617 | { |
| 2618 | int ret = -EINVAL; |
| 2619 | |
| 2620 | if (cmd == SIOCGMIIREG) { |
| 2621 | if (net_dev->phydev) |
| 2622 | return phy_mii_ioctl(net_dev->phydev, rq, cmd); |
| 2623 | } |
| 2624 | |
| 2625 | if (cmd == SIOCSHWTSTAMP) |
| 2626 | return dpaa_ts_ioctl(net_dev, rq, cmd); |
| 2627 | |
| 2628 | return ret; |
| 2629 | } |
| 2630 | |
| 2631 | static const struct net_device_ops dpaa_ops = { |
| 2632 | .ndo_open = dpaa_open, |
| 2633 | .ndo_start_xmit = dpaa_start_xmit, |
| 2634 | .ndo_stop = dpaa_eth_stop, |
| 2635 | .ndo_tx_timeout = dpaa_tx_timeout, |
| 2636 | .ndo_get_stats64 = dpaa_get_stats64, |
| 2637 | .ndo_change_carrier = fixed_phy_change_carrier, |
| 2638 | .ndo_set_mac_address = dpaa_set_mac_address, |
| 2639 | .ndo_validate_addr = eth_validate_addr, |
| 2640 | .ndo_set_rx_mode = dpaa_set_rx_mode, |
| 2641 | .ndo_do_ioctl = dpaa_ioctl, |
| 2642 | .ndo_setup_tc = dpaa_setup_tc, |
| 2643 | }; |
| 2644 | |
| 2645 | static int dpaa_napi_add(struct net_device *net_dev) |
| 2646 | { |
| 2647 | struct dpaa_priv *priv = netdev_priv(net_dev); |
| 2648 | struct dpaa_percpu_priv *percpu_priv; |
| 2649 | int cpu; |
| 2650 | |
| 2651 | for_each_possible_cpu(cpu) { |
| 2652 | percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); |
| 2653 | |
| 2654 | netif_napi_add(net_dev, &percpu_priv->np.napi, |
| 2655 | dpaa_eth_poll, NAPI_POLL_WEIGHT); |
| 2656 | } |
| 2657 | |
| 2658 | return 0; |
| 2659 | } |
| 2660 | |
| 2661 | static void dpaa_napi_del(struct net_device *net_dev) |
| 2662 | { |
| 2663 | struct dpaa_priv *priv = netdev_priv(net_dev); |
| 2664 | struct dpaa_percpu_priv *percpu_priv; |
| 2665 | int cpu; |
| 2666 | |
| 2667 | for_each_possible_cpu(cpu) { |
| 2668 | percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); |
| 2669 | |
| 2670 | netif_napi_del(&percpu_priv->np.napi); |
| 2671 | } |
| 2672 | } |
| 2673 | |
| 2674 | static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, |
| 2675 | struct bm_buffer *bmb) |
| 2676 | { |
| 2677 | dma_addr_t addr = bm_buf_addr(bmb); |
| 2678 | |
| 2679 | dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE); |
| 2680 | |
| 2681 | skb_free_frag(phys_to_virt(addr)); |
| 2682 | } |
| 2683 | |
| 2684 | /* Alloc the dpaa_bp struct and configure default values */ |
| 2685 | static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) |
| 2686 | { |
| 2687 | struct dpaa_bp *dpaa_bp; |
| 2688 | |
| 2689 | dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); |
| 2690 | if (!dpaa_bp) |
| 2691 | return ERR_PTR(-ENOMEM); |
| 2692 | |
| 2693 | dpaa_bp->bpid = FSL_DPAA_BPID_INV; |
| 2694 | dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); |
| 2695 | if (!dpaa_bp->percpu_count) |
| 2696 | return ERR_PTR(-ENOMEM); |
| 2697 | |
| 2698 | dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; |
| 2699 | |
| 2700 | dpaa_bp->seed_cb = dpaa_bp_seed; |
| 2701 | dpaa_bp->free_buf_cb = dpaa_bp_free_pf; |
| 2702 | |
| 2703 | return dpaa_bp; |
| 2704 | } |
| 2705 | |
| 2706 | /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. |
| 2707 | * We won't be sending congestion notifications to FMan; for now, we just use |
| 2708 | * this CGR to generate enqueue rejections to FMan in order to drop the frames |
| 2709 | * before they reach our ingress queues and eat up memory. |
| 2710 | */ |
| 2711 | static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) |
| 2712 | { |
| 2713 | struct qm_mcc_initcgr initcgr; |
| 2714 | u32 cs_th; |
| 2715 | int err; |
| 2716 | |
| 2717 | err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); |
| 2718 | if (err < 0) { |
| 2719 | if (netif_msg_drv(priv)) |
| 2720 | pr_err("Error %d allocating CGR ID\n", err); |
| 2721 | goto out_error; |
| 2722 | } |
| 2723 | |
| 2724 | /* Enable CS TD, but disable Congestion State Change Notifications. */ |
| 2725 | memset(&initcgr, 0, sizeof(initcgr)); |
| 2726 | initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); |
| 2727 | initcgr.cgr.cscn_en = QM_CGR_EN; |
| 2728 | cs_th = DPAA_INGRESS_CS_THRESHOLD; |
| 2729 | qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); |
| 2730 | |
| 2731 | initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); |
| 2732 | initcgr.cgr.cstd_en = QM_CGR_EN; |
| 2733 | |
| 2734 | /* This CGR will be associated with the SWP affined to the current CPU. |
| 2735 | * However, we'll place all our ingress FQs in it. |
| 2736 | */ |
| 2737 | err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, |
| 2738 | &initcgr); |
| 2739 | if (err < 0) { |
| 2740 | if (netif_msg_drv(priv)) |
| 2741 | pr_err("Error %d creating ingress CGR with ID %d\n", |
| 2742 | err, priv->ingress_cgr.cgrid); |
| 2743 | qman_release_cgrid(priv->ingress_cgr.cgrid); |
| 2744 | goto out_error; |
| 2745 | } |
| 2746 | if (netif_msg_drv(priv)) |
| 2747 | pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", |
| 2748 | priv->ingress_cgr.cgrid, priv->mac_dev->addr); |
| 2749 | |
| 2750 | priv->use_ingress_cgr = true; |
| 2751 | |
| 2752 | out_error: |
| 2753 | return err; |
| 2754 | } |
| 2755 | |
| 2756 | static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl) |
| 2757 | { |
| 2758 | u16 headroom; |
| 2759 | |
| 2760 | /* The frame headroom must accommodate: |
| 2761 | * - the driver private data area |
| 2762 | * - parse results, hash results, timestamp if selected |
| 2763 | * If either hash results or time stamp are selected, both will |
| 2764 | * be copied to/from the frame headroom, as TS is located between PR and |
| 2765 | * HR in the IC and IC copy size has a granularity of 16bytes |
| 2766 | * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) |
| 2767 | * |
| 2768 | * Also make sure the headroom is a multiple of data_align bytes |
| 2769 | */ |
| 2770 | headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE + |
| 2771 | DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE); |
| 2772 | |
| 2773 | return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); |
| 2774 | } |
| 2775 | |
| 2776 | static int dpaa_eth_probe(struct platform_device *pdev) |
| 2777 | { |
| 2778 | struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL}; |
| 2779 | struct net_device *net_dev = NULL; |
| 2780 | struct dpaa_fq *dpaa_fq, *tmp; |
| 2781 | struct dpaa_priv *priv = NULL; |
| 2782 | struct fm_port_fqs port_fqs; |
| 2783 | struct mac_device *mac_dev; |
| 2784 | int err = 0, i, channel; |
| 2785 | struct device *dev; |
| 2786 | |
| 2787 | /* device used for DMA mapping */ |
| 2788 | dev = pdev->dev.parent; |
| 2789 | err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40)); |
| 2790 | if (err) { |
| 2791 | dev_err(dev, "dma_coerce_mask_and_coherent() failed\n"); |
| 2792 | return err; |
| 2793 | } |
| 2794 | |
| 2795 | /* Allocate this early, so we can store relevant information in |
| 2796 | * the private area |
| 2797 | */ |
| 2798 | net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM); |
| 2799 | if (!net_dev) { |
| 2800 | dev_err(dev, "alloc_etherdev_mq() failed\n"); |
| 2801 | return -ENOMEM; |
| 2802 | } |
| 2803 | |
| 2804 | /* Do this here, so we can be verbose early */ |
| 2805 | SET_NETDEV_DEV(net_dev, dev); |
| 2806 | dev_set_drvdata(dev, net_dev); |
| 2807 | |
| 2808 | priv = netdev_priv(net_dev); |
| 2809 | priv->net_dev = net_dev; |
| 2810 | |
| 2811 | priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); |
| 2812 | |
| 2813 | mac_dev = dpaa_mac_dev_get(pdev); |
| 2814 | if (IS_ERR(mac_dev)) { |
| 2815 | dev_err(dev, "dpaa_mac_dev_get() failed\n"); |
| 2816 | err = PTR_ERR(mac_dev); |
| 2817 | goto free_netdev; |
| 2818 | } |
| 2819 | |
| 2820 | /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, |
| 2821 | * we choose conservatively and let the user explicitly set a higher |
| 2822 | * MTU via ifconfig. Otherwise, the user may end up with different MTUs |
| 2823 | * in the same LAN. |
| 2824 | * If on the other hand fsl_fm_max_frm has been chosen below 1500, |
| 2825 | * start with the maximum allowed. |
| 2826 | */ |
| 2827 | net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); |
| 2828 | |
| 2829 | netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", |
| 2830 | net_dev->mtu); |
| 2831 | |
| 2832 | priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ |
| 2833 | priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ |
| 2834 | |
| 2835 | /* bp init */ |
| 2836 | for (i = 0; i < DPAA_BPS_NUM; i++) { |
| 2837 | dpaa_bps[i] = dpaa_bp_alloc(dev); |
| 2838 | if (IS_ERR(dpaa_bps[i])) { |
| 2839 | err = PTR_ERR(dpaa_bps[i]); |
| 2840 | goto free_dpaa_bps; |
| 2841 | } |
| 2842 | /* the raw size of the buffers used for reception */ |
| 2843 | dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM); |
| 2844 | /* avoid runtime computations by keeping the usable size here */ |
| 2845 | dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size); |
| 2846 | dpaa_bps[i]->dev = dev; |
| 2847 | |
| 2848 | err = dpaa_bp_alloc_pool(dpaa_bps[i]); |
| 2849 | if (err < 0) |
| 2850 | goto free_dpaa_bps; |
| 2851 | priv->dpaa_bps[i] = dpaa_bps[i]; |
| 2852 | } |
| 2853 | |
| 2854 | INIT_LIST_HEAD(&priv->dpaa_fq_list); |
| 2855 | |
| 2856 | memset(&port_fqs, 0, sizeof(port_fqs)); |
| 2857 | |
| 2858 | err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); |
| 2859 | if (err < 0) { |
| 2860 | dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); |
| 2861 | goto free_dpaa_bps; |
| 2862 | } |
| 2863 | |
| 2864 | priv->mac_dev = mac_dev; |
| 2865 | |
| 2866 | channel = dpaa_get_channel(); |
| 2867 | if (channel < 0) { |
| 2868 | dev_err(dev, "dpaa_get_channel() failed\n"); |
| 2869 | err = channel; |
| 2870 | goto free_dpaa_bps; |
| 2871 | } |
| 2872 | |
| 2873 | priv->channel = (u16)channel; |
| 2874 | |
| 2875 | /* Walk the CPUs with affine portals |
| 2876 | * and add this pool channel to each's dequeue mask. |
| 2877 | */ |
| 2878 | dpaa_eth_add_channel(priv->channel); |
| 2879 | |
| 2880 | dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); |
| 2881 | |
| 2882 | /* Create a congestion group for this netdev, with |
| 2883 | * dynamically-allocated CGR ID. |
| 2884 | * Must be executed after probing the MAC, but before |
| 2885 | * assigning the egress FQs to the CGRs. |
| 2886 | */ |
| 2887 | err = dpaa_eth_cgr_init(priv); |
| 2888 | if (err < 0) { |
| 2889 | dev_err(dev, "Error initializing CGR\n"); |
| 2890 | goto free_dpaa_bps; |
| 2891 | } |
| 2892 | |
| 2893 | err = dpaa_ingress_cgr_init(priv); |
| 2894 | if (err < 0) { |
| 2895 | dev_err(dev, "Error initializing ingress CGR\n"); |
| 2896 | goto delete_egress_cgr; |
| 2897 | } |
| 2898 | |
| 2899 | /* Add the FQs to the interface, and make them active */ |
| 2900 | list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { |
| 2901 | err = dpaa_fq_init(dpaa_fq, false); |
| 2902 | if (err < 0) |
| 2903 | goto free_dpaa_fqs; |
| 2904 | } |
| 2905 | |
| 2906 | priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]); |
| 2907 | priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]); |
| 2908 | |
| 2909 | /* All real interfaces need their ports initialized */ |
| 2910 | err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs, |
| 2911 | &priv->buf_layout[0], dev); |
| 2912 | if (err) |
| 2913 | goto free_dpaa_fqs; |
| 2914 | |
| 2915 | /* Rx traffic distribution based on keygen hashing defaults to on */ |
| 2916 | priv->keygen_in_use = true; |
| 2917 | |
| 2918 | priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); |
| 2919 | if (!priv->percpu_priv) { |
| 2920 | dev_err(dev, "devm_alloc_percpu() failed\n"); |
| 2921 | err = -ENOMEM; |
| 2922 | goto free_dpaa_fqs; |
| 2923 | } |
| 2924 | |
| 2925 | priv->num_tc = 1; |
| 2926 | netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); |
| 2927 | |
| 2928 | /* Initialize NAPI */ |
| 2929 | err = dpaa_napi_add(net_dev); |
| 2930 | if (err < 0) |
| 2931 | goto delete_dpaa_napi; |
| 2932 | |
| 2933 | err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); |
| 2934 | if (err < 0) |
| 2935 | goto delete_dpaa_napi; |
| 2936 | |
| 2937 | dpaa_eth_sysfs_init(&net_dev->dev); |
| 2938 | |
| 2939 | netif_info(priv, probe, net_dev, "Probed interface %s\n", |
| 2940 | net_dev->name); |
| 2941 | |
| 2942 | return 0; |
| 2943 | |
| 2944 | delete_dpaa_napi: |
| 2945 | dpaa_napi_del(net_dev); |
| 2946 | free_dpaa_fqs: |
| 2947 | dpaa_fq_free(dev, &priv->dpaa_fq_list); |
| 2948 | qman_delete_cgr_safe(&priv->ingress_cgr); |
| 2949 | qman_release_cgrid(priv->ingress_cgr.cgrid); |
| 2950 | delete_egress_cgr: |
| 2951 | qman_delete_cgr_safe(&priv->cgr_data.cgr); |
| 2952 | qman_release_cgrid(priv->cgr_data.cgr.cgrid); |
| 2953 | free_dpaa_bps: |
| 2954 | dpaa_bps_free(priv); |
| 2955 | free_netdev: |
| 2956 | dev_set_drvdata(dev, NULL); |
| 2957 | free_netdev(net_dev); |
| 2958 | |
| 2959 | return err; |
| 2960 | } |
| 2961 | |
| 2962 | static int dpaa_remove(struct platform_device *pdev) |
| 2963 | { |
| 2964 | struct net_device *net_dev; |
| 2965 | struct dpaa_priv *priv; |
| 2966 | struct device *dev; |
| 2967 | int err; |
| 2968 | |
| 2969 | dev = pdev->dev.parent; |
| 2970 | net_dev = dev_get_drvdata(dev); |
| 2971 | |
| 2972 | priv = netdev_priv(net_dev); |
| 2973 | |
| 2974 | dpaa_eth_sysfs_remove(dev); |
| 2975 | |
| 2976 | dev_set_drvdata(dev, NULL); |
| 2977 | unregister_netdev(net_dev); |
| 2978 | |
| 2979 | err = dpaa_fq_free(dev, &priv->dpaa_fq_list); |
| 2980 | |
| 2981 | qman_delete_cgr_safe(&priv->ingress_cgr); |
| 2982 | qman_release_cgrid(priv->ingress_cgr.cgrid); |
| 2983 | qman_delete_cgr_safe(&priv->cgr_data.cgr); |
| 2984 | qman_release_cgrid(priv->cgr_data.cgr.cgrid); |
| 2985 | |
| 2986 | dpaa_napi_del(net_dev); |
| 2987 | |
| 2988 | dpaa_bps_free(priv); |
| 2989 | |
| 2990 | free_netdev(net_dev); |
| 2991 | |
| 2992 | return err; |
| 2993 | } |
| 2994 | |
| 2995 | static const struct platform_device_id dpaa_devtype[] = { |
| 2996 | { |
| 2997 | .name = "dpaa-ethernet", |
| 2998 | .driver_data = 0, |
| 2999 | }, { |
| 3000 | } |
| 3001 | }; |
| 3002 | MODULE_DEVICE_TABLE(platform, dpaa_devtype); |
| 3003 | |
| 3004 | static struct platform_driver dpaa_driver = { |
| 3005 | .driver = { |
| 3006 | .name = KBUILD_MODNAME, |
| 3007 | }, |
| 3008 | .id_table = dpaa_devtype, |
| 3009 | .probe = dpaa_eth_probe, |
| 3010 | .remove = dpaa_remove |
| 3011 | }; |
| 3012 | |
| 3013 | static int __init dpaa_load(void) |
| 3014 | { |
| 3015 | int err; |
| 3016 | |
| 3017 | pr_debug("FSL DPAA Ethernet driver\n"); |
| 3018 | |
| 3019 | /* initialize dpaa_eth mirror values */ |
| 3020 | dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); |
| 3021 | dpaa_max_frm = fman_get_max_frm(); |
| 3022 | |
| 3023 | err = platform_driver_register(&dpaa_driver); |
| 3024 | if (err < 0) |
| 3025 | pr_err("Error, platform_driver_register() = %d\n", err); |
| 3026 | |
| 3027 | return err; |
| 3028 | } |
| 3029 | module_init(dpaa_load); |
| 3030 | |
| 3031 | static void __exit dpaa_unload(void) |
| 3032 | { |
| 3033 | platform_driver_unregister(&dpaa_driver); |
| 3034 | |
| 3035 | /* Only one channel is used and needs to be released after all |
| 3036 | * interfaces are removed |
| 3037 | */ |
| 3038 | dpaa_release_channel(); |
| 3039 | } |
| 3040 | module_exit(dpaa_unload); |
| 3041 | |
| 3042 | MODULE_LICENSE("Dual BSD/GPL"); |
| 3043 | MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); |