blob: 00c4beb760c357132b9c70d883cf9d079421c149 [file] [log] [blame]
Googler9398cc32022-12-02 17:21:52 +08001/* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2 *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
18 *
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/init.h>
34#include <linux/module.h>
35#include <linux/of_platform.h>
36#include <linux/of_mdio.h>
37#include <linux/of_net.h>
38#include <linux/io.h>
39#include <linux/if_arp.h>
40#include <linux/if_vlan.h>
41#include <linux/icmp.h>
42#include <linux/ip.h>
43#include <linux/ipv6.h>
44#include <linux/udp.h>
45#include <linux/tcp.h>
46#include <linux/net.h>
47#include <linux/skbuff.h>
48#include <linux/etherdevice.h>
49#include <linux/if_ether.h>
50#include <linux/highmem.h>
51#include <linux/percpu.h>
52#include <linux/dma-mapping.h>
53#include <linux/sort.h>
54#include <linux/phy_fixed.h>
55#include <soc/fsl/bman.h>
56#include <soc/fsl/qman.h>
57#include "fman.h"
58#include "fman_port.h"
59#include "mac.h"
60#include "dpaa_eth.h"
61
62/* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63 * using trace events only need to #include <trace/events/sched.h>
64 */
65#define CREATE_TRACE_POINTS
66#include "dpaa_eth_trace.h"
67
68static int debug = -1;
69module_param(debug, int, 0444);
70MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72static u16 tx_timeout = 1000;
73module_param(tx_timeout, ushort, 0444);
74MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76#define FM_FD_STAT_RX_ERRORS \
77 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
78 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
80 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 FM_FD_ERR_PRS_HDR_ERR)
82
83#define FM_FD_STAT_TX_ERRORS \
84 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87#define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 NETIF_MSG_IFDOWN)
90
91#define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92/* Ingress congestion threshold on FMan ports
93 * The size in bytes of the ingress tail-drop threshold on FMan ports.
94 * Traffic piling up above this value will be rejected by QMan and discarded
95 * by FMan.
96 */
97
98/* Size in bytes of the FQ taildrop threshold */
99#define DPAA_FQ_TD 0x200000
100
101#define DPAA_CS_THRESHOLD_1G 0x06000000
102/* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103 * The size in bytes of the egress Congestion State notification threshold on
104 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106 * and the larger the frame size, the more acute the problem.
107 * So we have to find a balance between these factors:
108 * - avoiding the device staying congested for a prolonged time (risking
109 * the netdev watchdog to fire - see also the tx_timeout module param);
110 * - affecting performance of protocols such as TCP, which otherwise
111 * behave well under the congestion notification mechanism;
112 * - preventing the Tx cores from tightly-looping (as if the congestion
113 * threshold was too low to be effective);
114 * - running out of memory if the CS threshold is set too high.
115 */
116
117#define DPAA_CS_THRESHOLD_10G 0x10000000
118/* The size in bytes of the egress Congestion State notification threshold on
119 * 10G ports, range 0x1000 .. 0x10000000
120 */
121
122/* Largest value that the FQD's OAL field can hold */
123#define FSL_QMAN_MAX_OAL 127
124
125/* Default alignment for start of data in an Rx FD */
126#define DPAA_FD_DATA_ALIGNMENT 16
127
128/* The DPAA requires 256 bytes reserved and mapped for the SGT */
129#define DPAA_SGT_SIZE 256
130
131/* Values for the L3R field of the FM Parse Results
132 */
133/* L3 Type field: First IP Present IPv4 */
134#define FM_L3_PARSE_RESULT_IPV4 0x8000
135/* L3 Type field: First IP Present IPv6 */
136#define FM_L3_PARSE_RESULT_IPV6 0x4000
137/* Values for the L4R field of the FM Parse Results */
138/* L4 Type field: UDP */
139#define FM_L4_PARSE_RESULT_UDP 0x40
140/* L4 Type field: TCP */
141#define FM_L4_PARSE_RESULT_TCP 0x20
142
143/* FD status field indicating whether the FM Parser has attempted to validate
144 * the L4 csum of the frame.
145 * Note that having this bit set doesn't necessarily imply that the checksum
146 * is valid. One would have to check the parse results to find that out.
147 */
148#define FM_FD_STAT_L4CV 0x00000004
149
150#define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
151#define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
152
153#define FSL_DPAA_BPID_INV 0xff
154#define FSL_DPAA_ETH_MAX_BUF_COUNT 128
155#define FSL_DPAA_ETH_REFILL_THRESHOLD 80
156
157#define DPAA_TX_PRIV_DATA_SIZE 16
158#define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
159#define DPAA_TIME_STAMP_SIZE 8
160#define DPAA_HASH_RESULTS_SIZE 8
161#define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \
162 dpaa_rx_extra_headroom)
163
164#define DPAA_ETH_PCD_RXQ_NUM 128
165
166#define DPAA_ENQUEUE_RETRIES 100000
167
168enum port_type {RX, TX};
169
170struct fm_port_fqs {
171 struct dpaa_fq *tx_defq;
172 struct dpaa_fq *tx_errq;
173 struct dpaa_fq *rx_defq;
174 struct dpaa_fq *rx_errq;
175 struct dpaa_fq *rx_pcdq;
176};
177
178/* All the dpa bps in use at any moment */
179static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
180
181/* The raw buffer size must be cacheline aligned */
182#define DPAA_BP_RAW_SIZE 4096
183/* When using more than one buffer pool, the raw sizes are as follows:
184 * 1 bp: 4KB
185 * 2 bp: 2KB, 4KB
186 * 3 bp: 1KB, 2KB, 4KB
187 * 4 bp: 1KB, 2KB, 4KB, 8KB
188 */
189static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
190{
191 size_t res = DPAA_BP_RAW_SIZE / 4;
192 u8 i;
193
194 for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
195 res *= 2;
196 return res;
197}
198
199/* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
200 * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
201 * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
202 * half-page-aligned buffers, so we reserve some more space for start-of-buffer
203 * alignment.
204 */
205#define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
206
207static int dpaa_max_frm;
208
209static int dpaa_rx_extra_headroom;
210
211#define dpaa_get_max_mtu() \
212 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
213
214static int dpaa_netdev_init(struct net_device *net_dev,
215 const struct net_device_ops *dpaa_ops,
216 u16 tx_timeout)
217{
218 struct dpaa_priv *priv = netdev_priv(net_dev);
219 struct device *dev = net_dev->dev.parent;
220 struct dpaa_percpu_priv *percpu_priv;
221 const u8 *mac_addr;
222 int i, err;
223
224 /* Although we access another CPU's private data here
225 * we do it at initialization so it is safe
226 */
227 for_each_possible_cpu(i) {
228 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
229 percpu_priv->net_dev = net_dev;
230 }
231
232 net_dev->netdev_ops = dpaa_ops;
233 mac_addr = priv->mac_dev->addr;
234
235 net_dev->mem_start = priv->mac_dev->res->start;
236 net_dev->mem_end = priv->mac_dev->res->end;
237
238 net_dev->min_mtu = ETH_MIN_MTU;
239 net_dev->max_mtu = dpaa_get_max_mtu();
240
241 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
242 NETIF_F_LLTX | NETIF_F_RXHASH);
243
244 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
245 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
246 * For conformity, we'll still declare GSO explicitly.
247 */
248 net_dev->features |= NETIF_F_GSO;
249 net_dev->features |= NETIF_F_RXCSUM;
250
251 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
252 /* we do not want shared skbs on TX */
253 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
254
255 net_dev->features |= net_dev->hw_features;
256 net_dev->vlan_features = net_dev->features;
257
258 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
259 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
260
261 net_dev->ethtool_ops = &dpaa_ethtool_ops;
262
263 net_dev->needed_headroom = priv->tx_headroom;
264 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
265
266 /* start without the RUNNING flag, phylib controls it later */
267 netif_carrier_off(net_dev);
268
269 err = register_netdev(net_dev);
270 if (err < 0) {
271 dev_err(dev, "register_netdev() = %d\n", err);
272 return err;
273 }
274
275 return 0;
276}
277
278static int dpaa_stop(struct net_device *net_dev)
279{
280 struct mac_device *mac_dev;
281 struct dpaa_priv *priv;
282 int i, err, error;
283
284 priv = netdev_priv(net_dev);
285 mac_dev = priv->mac_dev;
286
287 netif_tx_stop_all_queues(net_dev);
288 /* Allow the Fman (Tx) port to process in-flight frames before we
289 * try switching it off.
290 */
291 usleep_range(5000, 10000);
292
293 err = mac_dev->stop(mac_dev);
294 if (err < 0)
295 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
296 err);
297
298 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
299 error = fman_port_disable(mac_dev->port[i]);
300 if (error)
301 err = error;
302 }
303
304 if (net_dev->phydev)
305 phy_disconnect(net_dev->phydev);
306 net_dev->phydev = NULL;
307
308 return err;
309}
310
311static void dpaa_tx_timeout(struct net_device *net_dev)
312{
313 struct dpaa_percpu_priv *percpu_priv;
314 const struct dpaa_priv *priv;
315
316 priv = netdev_priv(net_dev);
317 percpu_priv = this_cpu_ptr(priv->percpu_priv);
318
319 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
320 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
321
322 percpu_priv->stats.tx_errors++;
323}
324
325/* Calculates the statistics for the given device by adding the statistics
326 * collected by each CPU.
327 */
328static void dpaa_get_stats64(struct net_device *net_dev,
329 struct rtnl_link_stats64 *s)
330{
331 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
332 struct dpaa_priv *priv = netdev_priv(net_dev);
333 struct dpaa_percpu_priv *percpu_priv;
334 u64 *netstats = (u64 *)s;
335 u64 *cpustats;
336 int i, j;
337
338 for_each_possible_cpu(i) {
339 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
340
341 cpustats = (u64 *)&percpu_priv->stats;
342
343 /* add stats from all CPUs */
344 for (j = 0; j < numstats; j++)
345 netstats[j] += cpustats[j];
346 }
347}
348
349static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
350 void *type_data)
351{
352 struct dpaa_priv *priv = netdev_priv(net_dev);
353 struct tc_mqprio_qopt *mqprio = type_data;
354 u8 num_tc;
355 int i;
356
357 if (type != TC_SETUP_QDISC_MQPRIO)
358 return -EOPNOTSUPP;
359
360 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
361 num_tc = mqprio->num_tc;
362
363 if (num_tc == priv->num_tc)
364 return 0;
365
366 if (!num_tc) {
367 netdev_reset_tc(net_dev);
368 goto out;
369 }
370
371 if (num_tc > DPAA_TC_NUM) {
372 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
373 DPAA_TC_NUM);
374 return -EINVAL;
375 }
376
377 netdev_set_num_tc(net_dev, num_tc);
378
379 for (i = 0; i < num_tc; i++)
380 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
381 i * DPAA_TC_TXQ_NUM);
382
383out:
384 priv->num_tc = num_tc ? : 1;
385 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
386 return 0;
387}
388
389static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
390{
391 struct dpaa_eth_data *eth_data;
392 struct device *dpaa_dev;
393 struct mac_device *mac_dev;
394
395 dpaa_dev = &pdev->dev;
396 eth_data = dpaa_dev->platform_data;
397 if (!eth_data) {
398 dev_err(dpaa_dev, "eth_data missing\n");
399 return ERR_PTR(-ENODEV);
400 }
401 mac_dev = eth_data->mac_dev;
402 if (!mac_dev) {
403 dev_err(dpaa_dev, "mac_dev missing\n");
404 return ERR_PTR(-EINVAL);
405 }
406
407 return mac_dev;
408}
409
410static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
411{
412 const struct dpaa_priv *priv;
413 struct mac_device *mac_dev;
414 struct sockaddr old_addr;
415 int err;
416
417 priv = netdev_priv(net_dev);
418
419 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
420
421 err = eth_mac_addr(net_dev, addr);
422 if (err < 0) {
423 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
424 return err;
425 }
426
427 mac_dev = priv->mac_dev;
428
429 err = mac_dev->change_addr(mac_dev->fman_mac,
430 (enet_addr_t *)net_dev->dev_addr);
431 if (err < 0) {
432 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
433 err);
434 /* reverting to previous address */
435 eth_mac_addr(net_dev, &old_addr);
436
437 return err;
438 }
439
440 return 0;
441}
442
443static void dpaa_set_rx_mode(struct net_device *net_dev)
444{
445 const struct dpaa_priv *priv;
446 int err;
447
448 priv = netdev_priv(net_dev);
449
450 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
451 priv->mac_dev->promisc = !priv->mac_dev->promisc;
452 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
453 priv->mac_dev->promisc);
454 if (err < 0)
455 netif_err(priv, drv, net_dev,
456 "mac_dev->set_promisc() = %d\n",
457 err);
458 }
459
460 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
461 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
462 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
463 priv->mac_dev->allmulti);
464 if (err < 0)
465 netif_err(priv, drv, net_dev,
466 "mac_dev->set_allmulti() = %d\n",
467 err);
468 }
469
470 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
471 if (err < 0)
472 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
473 err);
474}
475
476static struct dpaa_bp *dpaa_bpid2pool(int bpid)
477{
478 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
479 return NULL;
480
481 return dpaa_bp_array[bpid];
482}
483
484/* checks if this bpool is already allocated */
485static bool dpaa_bpid2pool_use(int bpid)
486{
487 if (dpaa_bpid2pool(bpid)) {
488 refcount_inc(&dpaa_bp_array[bpid]->refs);
489 return true;
490 }
491
492 return false;
493}
494
495/* called only once per bpid by dpaa_bp_alloc_pool() */
496static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
497{
498 dpaa_bp_array[bpid] = dpaa_bp;
499 refcount_set(&dpaa_bp->refs, 1);
500}
501
502static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
503{
504 int err;
505
506 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
507 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
508 __func__);
509 return -EINVAL;
510 }
511
512 /* If the pool is already specified, we only create one per bpid */
513 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
514 dpaa_bpid2pool_use(dpaa_bp->bpid))
515 return 0;
516
517 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
518 dpaa_bp->pool = bman_new_pool();
519 if (!dpaa_bp->pool) {
520 pr_err("%s: bman_new_pool() failed\n",
521 __func__);
522 return -ENODEV;
523 }
524
525 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
526 }
527
528 if (dpaa_bp->seed_cb) {
529 err = dpaa_bp->seed_cb(dpaa_bp);
530 if (err)
531 goto pool_seed_failed;
532 }
533
534 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
535
536 return 0;
537
538pool_seed_failed:
539 pr_err("%s: pool seeding failed\n", __func__);
540 bman_free_pool(dpaa_bp->pool);
541
542 return err;
543}
544
545/* remove and free all the buffers from the given buffer pool */
546static void dpaa_bp_drain(struct dpaa_bp *bp)
547{
548 u8 num = 8;
549 int ret;
550
551 do {
552 struct bm_buffer bmb[8];
553 int i;
554
555 ret = bman_acquire(bp->pool, bmb, num);
556 if (ret < 0) {
557 if (num == 8) {
558 /* we have less than 8 buffers left;
559 * drain them one by one
560 */
561 num = 1;
562 ret = 1;
563 continue;
564 } else {
565 /* Pool is fully drained */
566 break;
567 }
568 }
569
570 if (bp->free_buf_cb)
571 for (i = 0; i < num; i++)
572 bp->free_buf_cb(bp, &bmb[i]);
573 } while (ret > 0);
574}
575
576static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
577{
578 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
579
580 /* the mapping between bpid and dpaa_bp is done very late in the
581 * allocation procedure; if something failed before the mapping, the bp
582 * was not configured, therefore we don't need the below instructions
583 */
584 if (!bp)
585 return;
586
587 if (!refcount_dec_and_test(&bp->refs))
588 return;
589
590 if (bp->free_buf_cb)
591 dpaa_bp_drain(bp);
592
593 dpaa_bp_array[bp->bpid] = NULL;
594 bman_free_pool(bp->pool);
595}
596
597static void dpaa_bps_free(struct dpaa_priv *priv)
598{
599 int i;
600
601 for (i = 0; i < DPAA_BPS_NUM; i++)
602 dpaa_bp_free(priv->dpaa_bps[i]);
603}
604
605/* Use multiple WQs for FQ assignment:
606 * - Tx Confirmation queues go to WQ1.
607 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
608 * to be scheduled, in case there are many more FQs in WQ6).
609 * - Rx Default goes to WQ6.
610 * - Tx queues go to different WQs depending on their priority. Equal
611 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
612 * WQ0 (highest priority).
613 * This ensures that Tx-confirmed buffers are timely released. In particular,
614 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
615 * are greatly outnumbered by other FQs in the system, while
616 * dequeue scheduling is round-robin.
617 */
618static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
619{
620 switch (fq->fq_type) {
621 case FQ_TYPE_TX_CONFIRM:
622 case FQ_TYPE_TX_CONF_MQ:
623 fq->wq = 1;
624 break;
625 case FQ_TYPE_RX_ERROR:
626 case FQ_TYPE_TX_ERROR:
627 fq->wq = 5;
628 break;
629 case FQ_TYPE_RX_DEFAULT:
630 case FQ_TYPE_RX_PCD:
631 fq->wq = 6;
632 break;
633 case FQ_TYPE_TX:
634 switch (idx / DPAA_TC_TXQ_NUM) {
635 case 0:
636 /* Low priority (best effort) */
637 fq->wq = 6;
638 break;
639 case 1:
640 /* Medium priority */
641 fq->wq = 2;
642 break;
643 case 2:
644 /* High priority */
645 fq->wq = 1;
646 break;
647 case 3:
648 /* Very high priority */
649 fq->wq = 0;
650 break;
651 default:
652 WARN(1, "Too many TX FQs: more than %d!\n",
653 DPAA_ETH_TXQ_NUM);
654 }
655 break;
656 default:
657 WARN(1, "Invalid FQ type %d for FQID %d!\n",
658 fq->fq_type, fq->fqid);
659 }
660}
661
662static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
663 u32 start, u32 count,
664 struct list_head *list,
665 enum dpaa_fq_type fq_type)
666{
667 struct dpaa_fq *dpaa_fq;
668 int i;
669
670 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
671 GFP_KERNEL);
672 if (!dpaa_fq)
673 return NULL;
674
675 for (i = 0; i < count; i++) {
676 dpaa_fq[i].fq_type = fq_type;
677 dpaa_fq[i].fqid = start ? start + i : 0;
678 list_add_tail(&dpaa_fq[i].list, list);
679 }
680
681 for (i = 0; i < count; i++)
682 dpaa_assign_wq(dpaa_fq + i, i);
683
684 return dpaa_fq;
685}
686
687static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
688 struct fm_port_fqs *port_fqs)
689{
690 struct dpaa_fq *dpaa_fq;
691 u32 fq_base, fq_base_aligned, i;
692
693 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
694 if (!dpaa_fq)
695 goto fq_alloc_failed;
696
697 port_fqs->rx_errq = &dpaa_fq[0];
698
699 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
700 if (!dpaa_fq)
701 goto fq_alloc_failed;
702
703 port_fqs->rx_defq = &dpaa_fq[0];
704
705 /* the PCD FQIDs range needs to be aligned for correct operation */
706 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
707 goto fq_alloc_failed;
708
709 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
710
711 for (i = fq_base; i < fq_base_aligned; i++)
712 qman_release_fqid(i);
713
714 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
715 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
716 qman_release_fqid(i);
717
718 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
719 list, FQ_TYPE_RX_PCD);
720 if (!dpaa_fq)
721 goto fq_alloc_failed;
722
723 port_fqs->rx_pcdq = &dpaa_fq[0];
724
725 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
726 goto fq_alloc_failed;
727
728 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
729 if (!dpaa_fq)
730 goto fq_alloc_failed;
731
732 port_fqs->tx_errq = &dpaa_fq[0];
733
734 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
735 if (!dpaa_fq)
736 goto fq_alloc_failed;
737
738 port_fqs->tx_defq = &dpaa_fq[0];
739
740 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
741 goto fq_alloc_failed;
742
743 return 0;
744
745fq_alloc_failed:
746 dev_err(dev, "dpaa_fq_alloc() failed\n");
747 return -ENOMEM;
748}
749
750static u32 rx_pool_channel;
751static DEFINE_SPINLOCK(rx_pool_channel_init);
752
753static int dpaa_get_channel(void)
754{
755 spin_lock(&rx_pool_channel_init);
756 if (!rx_pool_channel) {
757 u32 pool;
758 int ret;
759
760 ret = qman_alloc_pool(&pool);
761
762 if (!ret)
763 rx_pool_channel = pool;
764 }
765 spin_unlock(&rx_pool_channel_init);
766 if (!rx_pool_channel)
767 return -ENOMEM;
768 return rx_pool_channel;
769}
770
771static void dpaa_release_channel(void)
772{
773 qman_release_pool(rx_pool_channel);
774}
775
776static void dpaa_eth_add_channel(u16 channel)
777{
778 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
779 const cpumask_t *cpus = qman_affine_cpus();
780 struct qman_portal *portal;
781 int cpu;
782
783 for_each_cpu_and(cpu, cpus, cpu_online_mask) {
784 portal = qman_get_affine_portal(cpu);
785 qman_p_static_dequeue_add(portal, pool);
786 }
787}
788
789/* Congestion group state change notification callback.
790 * Stops the device's egress queues while they are congested and
791 * wakes them upon exiting congested state.
792 * Also updates some CGR-related stats.
793 */
794static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
795 int congested)
796{
797 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
798 struct dpaa_priv, cgr_data.cgr);
799
800 if (congested) {
801 priv->cgr_data.congestion_start_jiffies = jiffies;
802 netif_tx_stop_all_queues(priv->net_dev);
803 priv->cgr_data.cgr_congested_count++;
804 } else {
805 priv->cgr_data.congested_jiffies +=
806 (jiffies - priv->cgr_data.congestion_start_jiffies);
807 netif_tx_wake_all_queues(priv->net_dev);
808 }
809}
810
811static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
812{
813 struct qm_mcc_initcgr initcgr;
814 u32 cs_th;
815 int err;
816
817 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
818 if (err < 0) {
819 if (netif_msg_drv(priv))
820 pr_err("%s: Error %d allocating CGR ID\n",
821 __func__, err);
822 goto out_error;
823 }
824 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
825
826 /* Enable Congestion State Change Notifications and CS taildrop */
827 memset(&initcgr, 0, sizeof(initcgr));
828 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
829 initcgr.cgr.cscn_en = QM_CGR_EN;
830
831 /* Set different thresholds based on the MAC speed.
832 * This may turn suboptimal if the MAC is reconfigured at a speed
833 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
834 * In such cases, we ought to reconfigure the threshold, too.
835 */
836 if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
837 cs_th = DPAA_CS_THRESHOLD_10G;
838 else
839 cs_th = DPAA_CS_THRESHOLD_1G;
840 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
841
842 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
843 initcgr.cgr.cstd_en = QM_CGR_EN;
844
845 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
846 &initcgr);
847 if (err < 0) {
848 if (netif_msg_drv(priv))
849 pr_err("%s: Error %d creating CGR with ID %d\n",
850 __func__, err, priv->cgr_data.cgr.cgrid);
851 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
852 goto out_error;
853 }
854 if (netif_msg_drv(priv))
855 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
856 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
857 priv->cgr_data.cgr.chan);
858
859out_error:
860 return err;
861}
862
863static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
864 struct dpaa_fq *fq,
865 const struct qman_fq *template)
866{
867 fq->fq_base = *template;
868 fq->net_dev = priv->net_dev;
869
870 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
871 fq->channel = priv->channel;
872}
873
874static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
875 struct dpaa_fq *fq,
876 struct fman_port *port,
877 const struct qman_fq *template)
878{
879 fq->fq_base = *template;
880 fq->net_dev = priv->net_dev;
881
882 if (port) {
883 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
884 fq->channel = (u16)fman_port_get_qman_channel_id(port);
885 } else {
886 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
887 }
888}
889
890static void dpaa_fq_setup(struct dpaa_priv *priv,
891 const struct dpaa_fq_cbs *fq_cbs,
892 struct fman_port *tx_port)
893{
894 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
895 const cpumask_t *affine_cpus = qman_affine_cpus();
896 u16 channels[NR_CPUS];
897 struct dpaa_fq *fq;
898
899 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
900 channels[num_portals++] = qman_affine_channel(cpu);
901
902 if (num_portals == 0)
903 dev_err(priv->net_dev->dev.parent,
904 "No Qman software (affine) channels found");
905
906 /* Initialize each FQ in the list */
907 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
908 switch (fq->fq_type) {
909 case FQ_TYPE_RX_DEFAULT:
910 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
911 break;
912 case FQ_TYPE_RX_ERROR:
913 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
914 break;
915 case FQ_TYPE_RX_PCD:
916 if (!num_portals)
917 continue;
918 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
919 fq->channel = channels[portal_cnt++ % num_portals];
920 break;
921 case FQ_TYPE_TX:
922 dpaa_setup_egress(priv, fq, tx_port,
923 &fq_cbs->egress_ern);
924 /* If we have more Tx queues than the number of cores,
925 * just ignore the extra ones.
926 */
927 if (egress_cnt < DPAA_ETH_TXQ_NUM)
928 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
929 break;
930 case FQ_TYPE_TX_CONF_MQ:
931 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
932 /* fall through */
933 case FQ_TYPE_TX_CONFIRM:
934 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
935 break;
936 case FQ_TYPE_TX_ERROR:
937 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
938 break;
939 default:
940 dev_warn(priv->net_dev->dev.parent,
941 "Unknown FQ type detected!\n");
942 break;
943 }
944 }
945
946 /* Make sure all CPUs receive a corresponding Tx queue. */
947 while (egress_cnt < DPAA_ETH_TXQ_NUM) {
948 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
949 if (fq->fq_type != FQ_TYPE_TX)
950 continue;
951 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
952 if (egress_cnt == DPAA_ETH_TXQ_NUM)
953 break;
954 }
955 }
956}
957
958static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
959 struct qman_fq *tx_fq)
960{
961 int i;
962
963 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
964 if (priv->egress_fqs[i] == tx_fq)
965 return i;
966
967 return -EINVAL;
968}
969
970static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
971{
972 const struct dpaa_priv *priv;
973 struct qman_fq *confq = NULL;
974 struct qm_mcc_initfq initfq;
975 struct device *dev;
976 struct qman_fq *fq;
977 int queue_id;
978 int err;
979
980 priv = netdev_priv(dpaa_fq->net_dev);
981 dev = dpaa_fq->net_dev->dev.parent;
982
983 if (dpaa_fq->fqid == 0)
984 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
985
986 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
987
988 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
989 if (err) {
990 dev_err(dev, "qman_create_fq() failed\n");
991 return err;
992 }
993 fq = &dpaa_fq->fq_base;
994
995 if (dpaa_fq->init) {
996 memset(&initfq, 0, sizeof(initfq));
997
998 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
999 /* Note: we may get to keep an empty FQ in cache */
1000 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1001
1002 /* Try to reduce the number of portal interrupts for
1003 * Tx Confirmation FQs.
1004 */
1005 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1006 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1007
1008 /* FQ placement */
1009 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1010
1011 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1012
1013 /* Put all egress queues in a congestion group of their own.
1014 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1015 * rather than Tx - but they nonetheless account for the
1016 * memory footprint on behalf of egress traffic. We therefore
1017 * place them in the netdev's CGR, along with the Tx FQs.
1018 */
1019 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1020 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1021 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1022 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1023 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1024 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1025 /* Set a fixed overhead accounting, in an attempt to
1026 * reduce the impact of fixed-size skb shells and the
1027 * driver's needed headroom on system memory. This is
1028 * especially the case when the egress traffic is
1029 * composed of small datagrams.
1030 * Unfortunately, QMan's OAL value is capped to an
1031 * insufficient value, but even that is better than
1032 * no overhead accounting at all.
1033 */
1034 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1035 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1036 qm_fqd_set_oal(&initfq.fqd,
1037 min(sizeof(struct sk_buff) +
1038 priv->tx_headroom,
1039 (size_t)FSL_QMAN_MAX_OAL));
1040 }
1041
1042 if (td_enable) {
1043 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1044 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1045 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1046 }
1047
1048 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1049 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1050 if (queue_id >= 0)
1051 confq = priv->conf_fqs[queue_id];
1052 if (confq) {
1053 initfq.we_mask |=
1054 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1055 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1056 * A2V=1 (contextA A2 field is valid)
1057 * A0V=1 (contextA A0 field is valid)
1058 * B0V=1 (contextB field is valid)
1059 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1060 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1061 */
1062 qm_fqd_context_a_set64(&initfq.fqd,
1063 0x1e00000080000000ULL);
1064 }
1065 }
1066
1067 /* Put all the ingress queues in our "ingress CGR". */
1068 if (priv->use_ingress_cgr &&
1069 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1070 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1071 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1072 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1073 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1074 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1075 /* Set a fixed overhead accounting, just like for the
1076 * egress CGR.
1077 */
1078 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1079 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1080 qm_fqd_set_oal(&initfq.fqd,
1081 min(sizeof(struct sk_buff) +
1082 priv->tx_headroom,
1083 (size_t)FSL_QMAN_MAX_OAL));
1084 }
1085
1086 /* Initialization common to all ingress queues */
1087 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1088 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1089 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1090 QM_FQCTRL_CTXASTASHING);
1091 initfq.fqd.context_a.stashing.exclusive =
1092 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1093 QM_STASHING_EXCL_ANNOTATION;
1094 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1095 DIV_ROUND_UP(sizeof(struct qman_fq),
1096 64));
1097 }
1098
1099 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1100 if (err < 0) {
1101 dev_err(dev, "qman_init_fq(%u) = %d\n",
1102 qman_fq_fqid(fq), err);
1103 qman_destroy_fq(fq);
1104 return err;
1105 }
1106 }
1107
1108 dpaa_fq->fqid = qman_fq_fqid(fq);
1109
1110 return 0;
1111}
1112
1113static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1114{
1115 const struct dpaa_priv *priv;
1116 struct dpaa_fq *dpaa_fq;
1117 int err, error;
1118
1119 err = 0;
1120
1121 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1122 priv = netdev_priv(dpaa_fq->net_dev);
1123
1124 if (dpaa_fq->init) {
1125 err = qman_retire_fq(fq, NULL);
1126 if (err < 0 && netif_msg_drv(priv))
1127 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1128 qman_fq_fqid(fq), err);
1129
1130 error = qman_oos_fq(fq);
1131 if (error < 0 && netif_msg_drv(priv)) {
1132 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1133 qman_fq_fqid(fq), error);
1134 if (err >= 0)
1135 err = error;
1136 }
1137 }
1138
1139 qman_destroy_fq(fq);
1140 list_del(&dpaa_fq->list);
1141
1142 return err;
1143}
1144
1145static int dpaa_fq_free(struct device *dev, struct list_head *list)
1146{
1147 struct dpaa_fq *dpaa_fq, *tmp;
1148 int err, error;
1149
1150 err = 0;
1151 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1152 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1153 if (error < 0 && err >= 0)
1154 err = error;
1155 }
1156
1157 return err;
1158}
1159
1160static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1161 struct dpaa_fq *defq,
1162 struct dpaa_buffer_layout *buf_layout)
1163{
1164 struct fman_buffer_prefix_content buf_prefix_content;
1165 struct fman_port_params params;
1166 int err;
1167
1168 memset(&params, 0, sizeof(params));
1169 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1170
1171 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1172 buf_prefix_content.pass_prs_result = true;
1173 buf_prefix_content.pass_hash_result = true;
1174 buf_prefix_content.pass_time_stamp = true;
1175 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1176
1177 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1178 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1179
1180 err = fman_port_config(port, &params);
1181 if (err) {
1182 pr_err("%s: fman_port_config failed\n", __func__);
1183 return err;
1184 }
1185
1186 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1187 if (err) {
1188 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1189 __func__);
1190 return err;
1191 }
1192
1193 err = fman_port_init(port);
1194 if (err)
1195 pr_err("%s: fm_port_init failed\n", __func__);
1196
1197 return err;
1198}
1199
1200static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1201 size_t count, struct dpaa_fq *errq,
1202 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1203 struct dpaa_buffer_layout *buf_layout)
1204{
1205 struct fman_buffer_prefix_content buf_prefix_content;
1206 struct fman_port_rx_params *rx_p;
1207 struct fman_port_params params;
1208 int i, err;
1209
1210 memset(&params, 0, sizeof(params));
1211 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1212
1213 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1214 buf_prefix_content.pass_prs_result = true;
1215 buf_prefix_content.pass_hash_result = true;
1216 buf_prefix_content.pass_time_stamp = true;
1217 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1218
1219 rx_p = &params.specific_params.rx_params;
1220 rx_p->err_fqid = errq->fqid;
1221 rx_p->dflt_fqid = defq->fqid;
1222 if (pcdq) {
1223 rx_p->pcd_base_fqid = pcdq->fqid;
1224 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1225 }
1226
1227 count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1228 rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1229 for (i = 0; i < count; i++) {
1230 rx_p->ext_buf_pools.ext_buf_pool[i].id = bps[i]->bpid;
1231 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1232 }
1233
1234 err = fman_port_config(port, &params);
1235 if (err) {
1236 pr_err("%s: fman_port_config failed\n", __func__);
1237 return err;
1238 }
1239
1240 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1241 if (err) {
1242 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1243 __func__);
1244 return err;
1245 }
1246
1247 err = fman_port_init(port);
1248 if (err)
1249 pr_err("%s: fm_port_init failed\n", __func__);
1250
1251 return err;
1252}
1253
1254static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1255 struct dpaa_bp **bps, size_t count,
1256 struct fm_port_fqs *port_fqs,
1257 struct dpaa_buffer_layout *buf_layout,
1258 struct device *dev)
1259{
1260 struct fman_port *rxport = mac_dev->port[RX];
1261 struct fman_port *txport = mac_dev->port[TX];
1262 int err;
1263
1264 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1265 port_fqs->tx_defq, &buf_layout[TX]);
1266 if (err)
1267 return err;
1268
1269 err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1270 port_fqs->rx_defq, port_fqs->rx_pcdq,
1271 &buf_layout[RX]);
1272
1273 return err;
1274}
1275
1276static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1277 struct bm_buffer *bmb, int cnt)
1278{
1279 int err;
1280
1281 err = bman_release(dpaa_bp->pool, bmb, cnt);
1282 /* Should never occur, address anyway to avoid leaking the buffers */
1283 if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1284 while (cnt-- > 0)
1285 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1286
1287 return cnt;
1288}
1289
1290static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1291{
1292 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1293 struct dpaa_bp *dpaa_bp;
1294 int i = 0, j;
1295
1296 memset(bmb, 0, sizeof(bmb));
1297
1298 do {
1299 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1300 if (!dpaa_bp)
1301 return;
1302
1303 j = 0;
1304 do {
1305 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1306
1307 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1308
1309 j++; i++;
1310 } while (j < ARRAY_SIZE(bmb) &&
1311 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1312 sgt[i - 1].bpid == sgt[i].bpid);
1313
1314 dpaa_bman_release(dpaa_bp, bmb, j);
1315 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1316}
1317
1318static void dpaa_fd_release(const struct net_device *net_dev,
1319 const struct qm_fd *fd)
1320{
1321 struct qm_sg_entry *sgt;
1322 struct dpaa_bp *dpaa_bp;
1323 struct bm_buffer bmb;
1324 dma_addr_t addr;
1325 void *vaddr;
1326
1327 bmb.data = 0;
1328 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1329
1330 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1331 if (!dpaa_bp)
1332 return;
1333
1334 if (qm_fd_get_format(fd) == qm_fd_sg) {
1335 vaddr = phys_to_virt(qm_fd_addr(fd));
1336 sgt = vaddr + qm_fd_get_offset(fd);
1337
1338 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1339 DMA_FROM_DEVICE);
1340
1341 dpaa_release_sgt_members(sgt);
1342
1343 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1344 DMA_FROM_DEVICE);
1345 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1346 dev_err(dpaa_bp->dev, "DMA mapping failed");
1347 return;
1348 }
1349 bm_buffer_set64(&bmb, addr);
1350 }
1351
1352 dpaa_bman_release(dpaa_bp, &bmb, 1);
1353}
1354
1355static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1356 const union qm_mr_entry *msg)
1357{
1358 switch (msg->ern.rc & QM_MR_RC_MASK) {
1359 case QM_MR_RC_CGR_TAILDROP:
1360 percpu_priv->ern_cnt.cg_tdrop++;
1361 break;
1362 case QM_MR_RC_WRED:
1363 percpu_priv->ern_cnt.wred++;
1364 break;
1365 case QM_MR_RC_ERROR:
1366 percpu_priv->ern_cnt.err_cond++;
1367 break;
1368 case QM_MR_RC_ORPWINDOW_EARLY:
1369 percpu_priv->ern_cnt.early_window++;
1370 break;
1371 case QM_MR_RC_ORPWINDOW_LATE:
1372 percpu_priv->ern_cnt.late_window++;
1373 break;
1374 case QM_MR_RC_FQ_TAILDROP:
1375 percpu_priv->ern_cnt.fq_tdrop++;
1376 break;
1377 case QM_MR_RC_ORPWINDOW_RETIRED:
1378 percpu_priv->ern_cnt.fq_retired++;
1379 break;
1380 case QM_MR_RC_ORP_ZERO:
1381 percpu_priv->ern_cnt.orp_zero++;
1382 break;
1383 }
1384}
1385
1386/* Turn on HW checksum computation for this outgoing frame.
1387 * If the current protocol is not something we support in this regard
1388 * (or if the stack has already computed the SW checksum), we do nothing.
1389 *
1390 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1391 * otherwise.
1392 *
1393 * Note that this function may modify the fd->cmd field and the skb data buffer
1394 * (the Parse Results area).
1395 */
1396static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1397 struct sk_buff *skb,
1398 struct qm_fd *fd,
1399 char *parse_results)
1400{
1401 struct fman_prs_result *parse_result;
1402 u16 ethertype = ntohs(skb->protocol);
1403 struct ipv6hdr *ipv6h = NULL;
1404 struct iphdr *iph;
1405 int retval = 0;
1406 u8 l4_proto;
1407
1408 if (skb->ip_summed != CHECKSUM_PARTIAL)
1409 return 0;
1410
1411 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1412 * L4 alone from the FM configuration anyway.
1413 */
1414
1415 /* Fill in some fields of the Parse Results array, so the FMan
1416 * can find them as if they came from the FMan Parser.
1417 */
1418 parse_result = (struct fman_prs_result *)parse_results;
1419
1420 /* If we're dealing with VLAN, get the real Ethernet type */
1421 if (ethertype == ETH_P_8021Q) {
1422 /* We can't always assume the MAC header is set correctly
1423 * by the stack, so reset to beginning of skb->data
1424 */
1425 skb_reset_mac_header(skb);
1426 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1427 }
1428
1429 /* Fill in the relevant L3 parse result fields
1430 * and read the L4 protocol type
1431 */
1432 switch (ethertype) {
1433 case ETH_P_IP:
1434 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1435 iph = ip_hdr(skb);
1436 WARN_ON(!iph);
1437 l4_proto = iph->protocol;
1438 break;
1439 case ETH_P_IPV6:
1440 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1441 ipv6h = ipv6_hdr(skb);
1442 WARN_ON(!ipv6h);
1443 l4_proto = ipv6h->nexthdr;
1444 break;
1445 default:
1446 /* We shouldn't even be here */
1447 if (net_ratelimit())
1448 netif_alert(priv, tx_err, priv->net_dev,
1449 "Can't compute HW csum for L3 proto 0x%x\n",
1450 ntohs(skb->protocol));
1451 retval = -EIO;
1452 goto return_error;
1453 }
1454
1455 /* Fill in the relevant L4 parse result fields */
1456 switch (l4_proto) {
1457 case IPPROTO_UDP:
1458 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1459 break;
1460 case IPPROTO_TCP:
1461 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1462 break;
1463 default:
1464 if (net_ratelimit())
1465 netif_alert(priv, tx_err, priv->net_dev,
1466 "Can't compute HW csum for L4 proto 0x%x\n",
1467 l4_proto);
1468 retval = -EIO;
1469 goto return_error;
1470 }
1471
1472 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1473 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1474 parse_result->l4_off = (u8)skb_transport_offset(skb);
1475
1476 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1477 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1478
1479 /* On P1023 and similar platforms fd->cmd interpretation could
1480 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1481 * is not set so we do not need to check; in the future, if/when
1482 * using context_a we need to check this bit
1483 */
1484
1485return_error:
1486 return retval;
1487}
1488
1489static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1490{
1491 struct device *dev = dpaa_bp->dev;
1492 struct bm_buffer bmb[8];
1493 dma_addr_t addr;
1494 void *new_buf;
1495 u8 i;
1496
1497 for (i = 0; i < 8; i++) {
1498 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1499 if (unlikely(!new_buf)) {
1500 dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1501 dpaa_bp->raw_size);
1502 goto release_previous_buffs;
1503 }
1504 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1505
1506 addr = dma_map_single(dev, new_buf,
1507 dpaa_bp->size, DMA_FROM_DEVICE);
1508 if (unlikely(dma_mapping_error(dev, addr))) {
1509 dev_err(dpaa_bp->dev, "DMA map failed");
1510 goto release_previous_buffs;
1511 }
1512
1513 bmb[i].data = 0;
1514 bm_buffer_set64(&bmb[i], addr);
1515 }
1516
1517release_bufs:
1518 return dpaa_bman_release(dpaa_bp, bmb, i);
1519
1520release_previous_buffs:
1521 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1522
1523 bm_buffer_set64(&bmb[i], 0);
1524 /* Avoid releasing a completely null buffer; bman_release() requires
1525 * at least one buffer.
1526 */
1527 if (likely(i))
1528 goto release_bufs;
1529
1530 return 0;
1531}
1532
1533static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1534{
1535 int i;
1536
1537 /* Give each CPU an allotment of "config_count" buffers */
1538 for_each_possible_cpu(i) {
1539 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1540 int j;
1541
1542 /* Although we access another CPU's counters here
1543 * we do it at boot time so it is safe
1544 */
1545 for (j = 0; j < dpaa_bp->config_count; j += 8)
1546 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1547 }
1548 return 0;
1549}
1550
1551/* Add buffers/(pages) for Rx processing whenever bpool count falls below
1552 * REFILL_THRESHOLD.
1553 */
1554static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1555{
1556 int count = *countptr;
1557 int new_bufs;
1558
1559 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1560 do {
1561 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1562 if (unlikely(!new_bufs)) {
1563 /* Avoid looping forever if we've temporarily
1564 * run out of memory. We'll try again at the
1565 * next NAPI cycle.
1566 */
1567 break;
1568 }
1569 count += new_bufs;
1570 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1571
1572 *countptr = count;
1573 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1574 return -ENOMEM;
1575 }
1576
1577 return 0;
1578}
1579
1580static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1581{
1582 struct dpaa_bp *dpaa_bp;
1583 int *countptr;
1584 int res, i;
1585
1586 for (i = 0; i < DPAA_BPS_NUM; i++) {
1587 dpaa_bp = priv->dpaa_bps[i];
1588 if (!dpaa_bp)
1589 return -EINVAL;
1590 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1591 res = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1592 if (res)
1593 return res;
1594 }
1595 return 0;
1596}
1597
1598/* Cleanup function for outgoing frame descriptors that were built on Tx path,
1599 * either contiguous frames or scatter/gather ones.
1600 * Skb freeing is not handled here.
1601 *
1602 * This function may be called on error paths in the Tx function, so guard
1603 * against cases when not all fd relevant fields were filled in. To avoid
1604 * reading the invalid transmission timestamp for the error paths set ts to
1605 * false.
1606 *
1607 * Return the skb backpointer, since for S/G frames the buffer containing it
1608 * gets freed here.
1609 */
1610static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1611 const struct qm_fd *fd, bool ts)
1612{
1613 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1614 struct device *dev = priv->net_dev->dev.parent;
1615 struct skb_shared_hwtstamps shhwtstamps;
1616 dma_addr_t addr = qm_fd_addr(fd);
1617 const struct qm_sg_entry *sgt;
1618 struct sk_buff **skbh, *skb;
1619 int nr_frags, i;
1620 u64 ns;
1621
1622 skbh = (struct sk_buff **)phys_to_virt(addr);
1623 skb = *skbh;
1624
1625 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1626 nr_frags = skb_shinfo(skb)->nr_frags;
1627 dma_unmap_single(dev, addr,
1628 qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1629 dma_dir);
1630
1631 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1632 * it's from lowmem.
1633 */
1634 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1635
1636 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1637 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1638 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1639
1640 /* remaining pages were mapped with skb_frag_dma_map() */
1641 for (i = 1; i <= nr_frags; i++) {
1642 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1643
1644 dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1645 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1646 }
1647 } else {
1648 dma_unmap_single(dev, addr,
1649 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1650 }
1651
1652 /* DMA unmapping is required before accessing the HW provided info */
1653 if (ts && priv->tx_tstamp &&
1654 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1655 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1656
1657 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], (void *)skbh,
1658 &ns)) {
1659 shhwtstamps.hwtstamp = ns_to_ktime(ns);
1660 skb_tstamp_tx(skb, &shhwtstamps);
1661 } else {
1662 dev_warn(dev, "fman_port_get_tstamp failed!\n");
1663 }
1664 }
1665
1666 if (qm_fd_get_format(fd) == qm_fd_sg)
1667 /* Free the page frag that we allocated on Tx */
1668 skb_free_frag(phys_to_virt(addr));
1669
1670 return skb;
1671}
1672
1673static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1674{
1675 /* The parser has run and performed L4 checksum validation.
1676 * We know there were no parser errors (and implicitly no
1677 * L4 csum error), otherwise we wouldn't be here.
1678 */
1679 if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1680 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1681 return CHECKSUM_UNNECESSARY;
1682
1683 /* We're here because either the parser didn't run or the L4 checksum
1684 * was not verified. This may include the case of a UDP frame with
1685 * checksum zero or an L4 proto other than TCP/UDP
1686 */
1687 return CHECKSUM_NONE;
1688}
1689
1690/* Build a linear skb around the received buffer.
1691 * We are guaranteed there is enough room at the end of the data buffer to
1692 * accommodate the shared info area of the skb.
1693 */
1694static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1695 const struct qm_fd *fd)
1696{
1697 ssize_t fd_off = qm_fd_get_offset(fd);
1698 dma_addr_t addr = qm_fd_addr(fd);
1699 struct dpaa_bp *dpaa_bp;
1700 struct sk_buff *skb;
1701 void *vaddr;
1702
1703 vaddr = phys_to_virt(addr);
1704 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1705
1706 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1707 if (!dpaa_bp)
1708 goto free_buffer;
1709
1710 skb = build_skb(vaddr, dpaa_bp->size +
1711 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1712 if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1713 goto free_buffer;
1714 WARN_ON(fd_off != priv->rx_headroom);
1715 skb_reserve(skb, fd_off);
1716 skb_put(skb, qm_fd_get_length(fd));
1717
1718 skb->ip_summed = rx_csum_offload(priv, fd);
1719
1720 return skb;
1721
1722free_buffer:
1723 skb_free_frag(vaddr);
1724 return NULL;
1725}
1726
1727/* Build an skb with the data of the first S/G entry in the linear portion and
1728 * the rest of the frame as skb fragments.
1729 *
1730 * The page fragment holding the S/G Table is recycled here.
1731 */
1732static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1733 const struct qm_fd *fd)
1734{
1735 ssize_t fd_off = qm_fd_get_offset(fd);
1736 dma_addr_t addr = qm_fd_addr(fd);
1737 const struct qm_sg_entry *sgt;
1738 struct page *page, *head_page;
1739 struct dpaa_bp *dpaa_bp;
1740 void *vaddr, *sg_vaddr;
1741 int frag_off, frag_len;
1742 struct sk_buff *skb;
1743 dma_addr_t sg_addr;
1744 int page_offset;
1745 unsigned int sz;
1746 int *count_ptr;
1747 int i;
1748
1749 vaddr = phys_to_virt(addr);
1750 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1751
1752 /* Iterate through the SGT entries and add data buffers to the skb */
1753 sgt = vaddr + fd_off;
1754 skb = NULL;
1755 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1756 /* Extension bit is not supported */
1757 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1758
1759 sg_addr = qm_sg_addr(&sgt[i]);
1760 sg_vaddr = phys_to_virt(sg_addr);
1761 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1762 SMP_CACHE_BYTES));
1763
1764 /* We may use multiple Rx pools */
1765 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1766 if (!dpaa_bp)
1767 goto free_buffers;
1768
1769 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1770 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1771 DMA_FROM_DEVICE);
1772 if (!skb) {
1773 sz = dpaa_bp->size +
1774 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1775 skb = build_skb(sg_vaddr, sz);
1776 if (WARN_ON(!skb))
1777 goto free_buffers;
1778
1779 skb->ip_summed = rx_csum_offload(priv, fd);
1780
1781 /* Make sure forwarded skbs will have enough space
1782 * on Tx, if extra headers are added.
1783 */
1784 WARN_ON(fd_off != priv->rx_headroom);
1785 skb_reserve(skb, fd_off);
1786 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1787 } else {
1788 /* Not the first S/G entry; all data from buffer will
1789 * be added in an skb fragment; fragment index is offset
1790 * by one since first S/G entry was incorporated in the
1791 * linear part of the skb.
1792 *
1793 * Caution: 'page' may be a tail page.
1794 */
1795 page = virt_to_page(sg_vaddr);
1796 head_page = virt_to_head_page(sg_vaddr);
1797
1798 /* Compute offset in (possibly tail) page */
1799 page_offset = ((unsigned long)sg_vaddr &
1800 (PAGE_SIZE - 1)) +
1801 (page_address(page) - page_address(head_page));
1802 /* page_offset only refers to the beginning of sgt[i];
1803 * but the buffer itself may have an internal offset.
1804 */
1805 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1806 frag_len = qm_sg_entry_get_len(&sgt[i]);
1807 /* skb_add_rx_frag() does no checking on the page; if
1808 * we pass it a tail page, we'll end up with
1809 * bad page accounting and eventually with segafults.
1810 */
1811 skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1812 frag_len, dpaa_bp->size);
1813 }
1814 /* Update the pool count for the current {cpu x bpool} */
1815 (*count_ptr)--;
1816
1817 if (qm_sg_entry_is_final(&sgt[i]))
1818 break;
1819 }
1820 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1821
1822 /* free the SG table buffer */
1823 skb_free_frag(vaddr);
1824
1825 return skb;
1826
1827free_buffers:
1828 /* compensate sw bpool counter changes */
1829 for (i--; i >= 0; i--) {
1830 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1831 if (dpaa_bp) {
1832 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1833 (*count_ptr)++;
1834 }
1835 }
1836 /* free all the SG entries */
1837 for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1838 sg_addr = qm_sg_addr(&sgt[i]);
1839 sg_vaddr = phys_to_virt(sg_addr);
1840 skb_free_frag(sg_vaddr);
1841 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1842 if (dpaa_bp) {
1843 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1844 (*count_ptr)--;
1845 }
1846
1847 if (qm_sg_entry_is_final(&sgt[i]))
1848 break;
1849 }
1850 /* free the SGT fragment */
1851 skb_free_frag(vaddr);
1852
1853 return NULL;
1854}
1855
1856static int skb_to_contig_fd(struct dpaa_priv *priv,
1857 struct sk_buff *skb, struct qm_fd *fd,
1858 int *offset)
1859{
1860 struct net_device *net_dev = priv->net_dev;
1861 struct device *dev = net_dev->dev.parent;
1862 enum dma_data_direction dma_dir;
1863 unsigned char *buffer_start;
1864 struct sk_buff **skbh;
1865 dma_addr_t addr;
1866 int err;
1867
1868 /* We are guaranteed to have at least tx_headroom bytes
1869 * available, so just use that for offset.
1870 */
1871 fd->bpid = FSL_DPAA_BPID_INV;
1872 buffer_start = skb->data - priv->tx_headroom;
1873 dma_dir = DMA_TO_DEVICE;
1874
1875 skbh = (struct sk_buff **)buffer_start;
1876 *skbh = skb;
1877
1878 /* Enable L3/L4 hardware checksum computation.
1879 *
1880 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1881 * need to write into the skb.
1882 */
1883 err = dpaa_enable_tx_csum(priv, skb, fd,
1884 ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1885 if (unlikely(err < 0)) {
1886 if (net_ratelimit())
1887 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1888 err);
1889 return err;
1890 }
1891
1892 /* Fill in the rest of the FD fields */
1893 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1894 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1895
1896 /* Map the entire buffer size that may be seen by FMan, but no more */
1897 addr = dma_map_single(dev, skbh,
1898 skb_tail_pointer(skb) - buffer_start, dma_dir);
1899 if (unlikely(dma_mapping_error(dev, addr))) {
1900 if (net_ratelimit())
1901 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1902 return -EINVAL;
1903 }
1904 qm_fd_addr_set64(fd, addr);
1905
1906 return 0;
1907}
1908
1909static int skb_to_sg_fd(struct dpaa_priv *priv,
1910 struct sk_buff *skb, struct qm_fd *fd)
1911{
1912 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1913 const int nr_frags = skb_shinfo(skb)->nr_frags;
1914 struct net_device *net_dev = priv->net_dev;
1915 struct device *dev = net_dev->dev.parent;
1916 struct qm_sg_entry *sgt;
1917 struct sk_buff **skbh;
1918 int i, j, err, sz;
1919 void *buffer_start;
1920 skb_frag_t *frag;
1921 dma_addr_t addr;
1922 size_t frag_len;
1923 void *sgt_buf;
1924
1925 /* get a page frag to store the SGTable */
1926 sz = SKB_DATA_ALIGN(priv->tx_headroom + DPAA_SGT_SIZE);
1927 sgt_buf = netdev_alloc_frag(sz);
1928 if (unlikely(!sgt_buf)) {
1929 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1930 sz);
1931 return -ENOMEM;
1932 }
1933
1934 /* Enable L3/L4 hardware checksum computation.
1935 *
1936 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1937 * need to write into the skb.
1938 */
1939 err = dpaa_enable_tx_csum(priv, skb, fd,
1940 sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1941 if (unlikely(err < 0)) {
1942 if (net_ratelimit())
1943 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1944 err);
1945 goto csum_failed;
1946 }
1947
1948 /* SGT[0] is used by the linear part */
1949 sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1950 frag_len = skb_headlen(skb);
1951 qm_sg_entry_set_len(&sgt[0], frag_len);
1952 sgt[0].bpid = FSL_DPAA_BPID_INV;
1953 sgt[0].offset = 0;
1954 addr = dma_map_single(dev, skb->data,
1955 skb_headlen(skb), dma_dir);
1956 if (unlikely(dma_mapping_error(dev, addr))) {
1957 dev_err(dev, "DMA mapping failed");
1958 err = -EINVAL;
1959 goto sg0_map_failed;
1960 }
1961 qm_sg_entry_set64(&sgt[0], addr);
1962
1963 /* populate the rest of SGT entries */
1964 for (i = 0; i < nr_frags; i++) {
1965 frag = &skb_shinfo(skb)->frags[i];
1966 frag_len = skb_frag_size(frag);
1967 WARN_ON(!skb_frag_page(frag));
1968 addr = skb_frag_dma_map(dev, frag, 0,
1969 frag_len, dma_dir);
1970 if (unlikely(dma_mapping_error(dev, addr))) {
1971 dev_err(dev, "DMA mapping failed");
1972 err = -EINVAL;
1973 goto sg_map_failed;
1974 }
1975
1976 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
1977 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
1978 sgt[i + 1].offset = 0;
1979
1980 /* keep the offset in the address */
1981 qm_sg_entry_set64(&sgt[i + 1], addr);
1982 }
1983
1984 /* Set the final bit in the last used entry of the SGT */
1985 qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
1986
1987 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1988
1989 /* DMA map the SGT page */
1990 buffer_start = (void *)sgt - priv->tx_headroom;
1991 skbh = (struct sk_buff **)buffer_start;
1992 *skbh = skb;
1993
1994 addr = dma_map_single(dev, buffer_start,
1995 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
1996 if (unlikely(dma_mapping_error(dev, addr))) {
1997 dev_err(dev, "DMA mapping failed");
1998 err = -EINVAL;
1999 goto sgt_map_failed;
2000 }
2001
2002 fd->bpid = FSL_DPAA_BPID_INV;
2003 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2004 qm_fd_addr_set64(fd, addr);
2005
2006 return 0;
2007
2008sgt_map_failed:
2009sg_map_failed:
2010 for (j = 0; j < i; j++)
2011 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
2012 qm_sg_entry_get_len(&sgt[j]), dma_dir);
2013sg0_map_failed:
2014csum_failed:
2015 skb_free_frag(sgt_buf);
2016
2017 return err;
2018}
2019
2020static inline int dpaa_xmit(struct dpaa_priv *priv,
2021 struct rtnl_link_stats64 *percpu_stats,
2022 int queue,
2023 struct qm_fd *fd)
2024{
2025 struct qman_fq *egress_fq;
2026 int err, i;
2027
2028 egress_fq = priv->egress_fqs[queue];
2029 if (fd->bpid == FSL_DPAA_BPID_INV)
2030 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2031
2032 /* Trace this Tx fd */
2033 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2034
2035 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2036 err = qman_enqueue(egress_fq, fd);
2037 if (err != -EBUSY)
2038 break;
2039 }
2040
2041 if (unlikely(err < 0)) {
2042 percpu_stats->tx_fifo_errors++;
2043 return err;
2044 }
2045
2046 percpu_stats->tx_packets++;
2047 percpu_stats->tx_bytes += qm_fd_get_length(fd);
2048
2049 return 0;
2050}
2051
2052static netdev_tx_t
2053dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2054{
2055 const int queue_mapping = skb_get_queue_mapping(skb);
2056 bool nonlinear = skb_is_nonlinear(skb);
2057 struct rtnl_link_stats64 *percpu_stats;
2058 struct dpaa_percpu_priv *percpu_priv;
2059 struct netdev_queue *txq;
2060 struct dpaa_priv *priv;
2061 struct qm_fd fd;
2062 int offset = 0;
2063 int err = 0;
2064
2065 priv = netdev_priv(net_dev);
2066 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2067 percpu_stats = &percpu_priv->stats;
2068
2069 qm_fd_clear_fd(&fd);
2070
2071 if (!nonlinear) {
2072 /* We're going to store the skb backpointer at the beginning
2073 * of the data buffer, so we need a privately owned skb
2074 *
2075 * We've made sure skb is not shared in dev->priv_flags,
2076 * we need to verify the skb head is not cloned
2077 */
2078 if (skb_cow_head(skb, priv->tx_headroom))
2079 goto enomem;
2080
2081 WARN_ON(skb_is_nonlinear(skb));
2082 }
2083
2084 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2085 * make sure we don't feed FMan with more fragments than it supports.
2086 */
2087 if (unlikely(nonlinear &&
2088 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2089 /* If the egress skb contains more fragments than we support
2090 * we have no choice but to linearize it ourselves.
2091 */
2092 if (__skb_linearize(skb))
2093 goto enomem;
2094
2095 nonlinear = skb_is_nonlinear(skb);
2096 }
2097
2098 if (nonlinear) {
2099 /* Just create a S/G fd based on the skb */
2100 err = skb_to_sg_fd(priv, skb, &fd);
2101 percpu_priv->tx_frag_skbuffs++;
2102 } else {
2103 /* Create a contig FD from this skb */
2104 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2105 }
2106 if (unlikely(err < 0))
2107 goto skb_to_fd_failed;
2108
2109 txq = netdev_get_tx_queue(net_dev, queue_mapping);
2110
2111 /* LLTX requires to do our own update of trans_start */
2112 txq->trans_start = jiffies;
2113
2114 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2115 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2116 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2117 }
2118
2119 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2120 return NETDEV_TX_OK;
2121
2122 dpaa_cleanup_tx_fd(priv, &fd, false);
2123skb_to_fd_failed:
2124enomem:
2125 percpu_stats->tx_errors++;
2126 dev_kfree_skb(skb);
2127 return NETDEV_TX_OK;
2128}
2129
2130static void dpaa_rx_error(struct net_device *net_dev,
2131 const struct dpaa_priv *priv,
2132 struct dpaa_percpu_priv *percpu_priv,
2133 const struct qm_fd *fd,
2134 u32 fqid)
2135{
2136 if (net_ratelimit())
2137 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2138 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2139
2140 percpu_priv->stats.rx_errors++;
2141
2142 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2143 percpu_priv->rx_errors.dme++;
2144 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2145 percpu_priv->rx_errors.fpe++;
2146 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2147 percpu_priv->rx_errors.fse++;
2148 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2149 percpu_priv->rx_errors.phe++;
2150
2151 dpaa_fd_release(net_dev, fd);
2152}
2153
2154static void dpaa_tx_error(struct net_device *net_dev,
2155 const struct dpaa_priv *priv,
2156 struct dpaa_percpu_priv *percpu_priv,
2157 const struct qm_fd *fd,
2158 u32 fqid)
2159{
2160 struct sk_buff *skb;
2161
2162 if (net_ratelimit())
2163 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2164 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2165
2166 percpu_priv->stats.tx_errors++;
2167
2168 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2169 dev_kfree_skb(skb);
2170}
2171
2172static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2173{
2174 struct dpaa_napi_portal *np =
2175 container_of(napi, struct dpaa_napi_portal, napi);
2176
2177 int cleaned = qman_p_poll_dqrr(np->p, budget);
2178
2179 if (cleaned < budget) {
2180 napi_complete_done(napi, cleaned);
2181 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2182 } else if (np->down) {
2183 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2184 }
2185
2186 return cleaned;
2187}
2188
2189static void dpaa_tx_conf(struct net_device *net_dev,
2190 const struct dpaa_priv *priv,
2191 struct dpaa_percpu_priv *percpu_priv,
2192 const struct qm_fd *fd,
2193 u32 fqid)
2194{
2195 struct sk_buff *skb;
2196
2197 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2198 if (net_ratelimit())
2199 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2200 be32_to_cpu(fd->status) &
2201 FM_FD_STAT_TX_ERRORS);
2202
2203 percpu_priv->stats.tx_errors++;
2204 }
2205
2206 percpu_priv->tx_confirm++;
2207
2208 skb = dpaa_cleanup_tx_fd(priv, fd, true);
2209
2210 consume_skb(skb);
2211}
2212
2213static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2214 struct qman_portal *portal)
2215{
2216 if (unlikely(in_irq() || !in_serving_softirq())) {
2217 /* Disable QMan IRQ and invoke NAPI */
2218 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2219
2220 percpu_priv->np.p = portal;
2221 napi_schedule(&percpu_priv->np.napi);
2222 percpu_priv->in_interrupt++;
2223 return 1;
2224 }
2225 return 0;
2226}
2227
2228static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2229 struct qman_fq *fq,
2230 const struct qm_dqrr_entry *dq)
2231{
2232 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2233 struct dpaa_percpu_priv *percpu_priv;
2234 struct net_device *net_dev;
2235 struct dpaa_bp *dpaa_bp;
2236 struct dpaa_priv *priv;
2237
2238 net_dev = dpaa_fq->net_dev;
2239 priv = netdev_priv(net_dev);
2240 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2241 if (!dpaa_bp)
2242 return qman_cb_dqrr_consume;
2243
2244 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2245
2246 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2247 return qman_cb_dqrr_stop;
2248
2249 dpaa_eth_refill_bpools(priv);
2250 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2251
2252 return qman_cb_dqrr_consume;
2253}
2254
2255static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2256 struct qman_fq *fq,
2257 const struct qm_dqrr_entry *dq)
2258{
2259 struct skb_shared_hwtstamps *shhwtstamps;
2260 struct rtnl_link_stats64 *percpu_stats;
2261 struct dpaa_percpu_priv *percpu_priv;
2262 const struct qm_fd *fd = &dq->fd;
2263 dma_addr_t addr = qm_fd_addr(fd);
2264 enum qm_fd_format fd_format;
2265 struct net_device *net_dev;
2266 u32 fd_status, hash_offset;
2267 struct dpaa_bp *dpaa_bp;
2268 struct dpaa_priv *priv;
2269 unsigned int skb_len;
2270 struct sk_buff *skb;
2271 int *count_ptr;
2272 void *vaddr;
2273 u64 ns;
2274
2275 fd_status = be32_to_cpu(fd->status);
2276 fd_format = qm_fd_get_format(fd);
2277 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2278 priv = netdev_priv(net_dev);
2279 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2280 if (!dpaa_bp)
2281 return qman_cb_dqrr_consume;
2282
2283 /* Trace the Rx fd */
2284 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2285
2286 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2287 percpu_stats = &percpu_priv->stats;
2288
2289 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2290 return qman_cb_dqrr_stop;
2291
2292 /* Make sure we didn't run out of buffers */
2293 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2294 /* Unable to refill the buffer pool due to insufficient
2295 * system memory. Just release the frame back into the pool,
2296 * otherwise we'll soon end up with an empty buffer pool.
2297 */
2298 dpaa_fd_release(net_dev, &dq->fd);
2299 return qman_cb_dqrr_consume;
2300 }
2301
2302 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2303 if (net_ratelimit())
2304 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2305 fd_status & FM_FD_STAT_RX_ERRORS);
2306
2307 percpu_stats->rx_errors++;
2308 dpaa_fd_release(net_dev, fd);
2309 return qman_cb_dqrr_consume;
2310 }
2311
2312 dpaa_bp = dpaa_bpid2pool(fd->bpid);
2313 if (!dpaa_bp)
2314 return qman_cb_dqrr_consume;
2315
2316 dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2317
2318 /* prefetch the first 64 bytes of the frame or the SGT start */
2319 vaddr = phys_to_virt(addr);
2320 prefetch(vaddr + qm_fd_get_offset(fd));
2321
2322 /* The only FD types that we may receive are contig and S/G */
2323 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2324
2325 /* Account for either the contig buffer or the SGT buffer (depending on
2326 * which case we were in) having been removed from the pool.
2327 */
2328 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2329 (*count_ptr)--;
2330
2331 if (likely(fd_format == qm_fd_contig))
2332 skb = contig_fd_to_skb(priv, fd);
2333 else
2334 skb = sg_fd_to_skb(priv, fd);
2335 if (!skb)
2336 return qman_cb_dqrr_consume;
2337
2338 if (priv->rx_tstamp) {
2339 shhwtstamps = skb_hwtstamps(skb);
2340 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2341
2342 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2343 shhwtstamps->hwtstamp = ns_to_ktime(ns);
2344 else
2345 dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
2346 }
2347
2348 skb->protocol = eth_type_trans(skb, net_dev);
2349
2350 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2351 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2352 &hash_offset)) {
2353 enum pkt_hash_types type;
2354
2355 /* if L4 exists, it was used in the hash generation */
2356 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2357 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2358 skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2359 type);
2360 }
2361
2362 skb_len = skb->len;
2363
2364 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2365 percpu_stats->rx_dropped++;
2366 return qman_cb_dqrr_consume;
2367 }
2368
2369 percpu_stats->rx_packets++;
2370 percpu_stats->rx_bytes += skb_len;
2371
2372 return qman_cb_dqrr_consume;
2373}
2374
2375static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2376 struct qman_fq *fq,
2377 const struct qm_dqrr_entry *dq)
2378{
2379 struct dpaa_percpu_priv *percpu_priv;
2380 struct net_device *net_dev;
2381 struct dpaa_priv *priv;
2382
2383 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2384 priv = netdev_priv(net_dev);
2385
2386 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2387
2388 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2389 return qman_cb_dqrr_stop;
2390
2391 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2392
2393 return qman_cb_dqrr_consume;
2394}
2395
2396static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2397 struct qman_fq *fq,
2398 const struct qm_dqrr_entry *dq)
2399{
2400 struct dpaa_percpu_priv *percpu_priv;
2401 struct net_device *net_dev;
2402 struct dpaa_priv *priv;
2403
2404 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2405 priv = netdev_priv(net_dev);
2406
2407 /* Trace the fd */
2408 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2409
2410 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2411
2412 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2413 return qman_cb_dqrr_stop;
2414
2415 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2416
2417 return qman_cb_dqrr_consume;
2418}
2419
2420static void egress_ern(struct qman_portal *portal,
2421 struct qman_fq *fq,
2422 const union qm_mr_entry *msg)
2423{
2424 const struct qm_fd *fd = &msg->ern.fd;
2425 struct dpaa_percpu_priv *percpu_priv;
2426 const struct dpaa_priv *priv;
2427 struct net_device *net_dev;
2428 struct sk_buff *skb;
2429
2430 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2431 priv = netdev_priv(net_dev);
2432 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2433
2434 percpu_priv->stats.tx_dropped++;
2435 percpu_priv->stats.tx_fifo_errors++;
2436 count_ern(percpu_priv, msg);
2437
2438 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2439 dev_kfree_skb_any(skb);
2440}
2441
2442static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2443 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2444 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2445 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2446 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2447 .egress_ern = { .cb = { .ern = egress_ern } }
2448};
2449
2450static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2451{
2452 struct dpaa_percpu_priv *percpu_priv;
2453 int i;
2454
2455 for_each_online_cpu(i) {
2456 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2457
2458 percpu_priv->np.down = 0;
2459 napi_enable(&percpu_priv->np.napi);
2460 }
2461}
2462
2463static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2464{
2465 struct dpaa_percpu_priv *percpu_priv;
2466 int i;
2467
2468 for_each_online_cpu(i) {
2469 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2470
2471 percpu_priv->np.down = 1;
2472 napi_disable(&percpu_priv->np.napi);
2473 }
2474}
2475
2476static void dpaa_adjust_link(struct net_device *net_dev)
2477{
2478 struct mac_device *mac_dev;
2479 struct dpaa_priv *priv;
2480
2481 priv = netdev_priv(net_dev);
2482 mac_dev = priv->mac_dev;
2483 mac_dev->adjust_link(mac_dev);
2484}
2485
2486/* The Aquantia PHYs are capable of performing rate adaptation */
2487#define PHY_VEND_AQUANTIA 0x03a1b400
2488
2489static int dpaa_phy_init(struct net_device *net_dev)
2490{
2491 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2492 struct mac_device *mac_dev;
2493 struct phy_device *phy_dev;
2494 struct dpaa_priv *priv;
2495
2496 priv = netdev_priv(net_dev);
2497 mac_dev = priv->mac_dev;
2498
2499 phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2500 &dpaa_adjust_link, 0,
2501 mac_dev->phy_if);
2502 if (!phy_dev) {
2503 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2504 return -ENODEV;
2505 }
2506
2507 /* Unless the PHY is capable of rate adaptation */
2508 if (mac_dev->phy_if != PHY_INTERFACE_MODE_XGMII ||
2509 ((phy_dev->drv->phy_id & GENMASK(31, 10)) != PHY_VEND_AQUANTIA)) {
2510 /* remove any features not supported by the controller */
2511 ethtool_convert_legacy_u32_to_link_mode(mask,
2512 mac_dev->if_support);
2513 linkmode_and(phy_dev->supported, phy_dev->supported, mask);
2514 }
2515
2516 phy_support_asym_pause(phy_dev);
2517
2518 mac_dev->phy_dev = phy_dev;
2519 net_dev->phydev = phy_dev;
2520
2521 return 0;
2522}
2523
2524static int dpaa_open(struct net_device *net_dev)
2525{
2526 struct mac_device *mac_dev;
2527 struct dpaa_priv *priv;
2528 int err, i;
2529
2530 priv = netdev_priv(net_dev);
2531 mac_dev = priv->mac_dev;
2532 dpaa_eth_napi_enable(priv);
2533
2534 err = dpaa_phy_init(net_dev);
2535 if (err)
2536 goto phy_init_failed;
2537
2538 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2539 err = fman_port_enable(mac_dev->port[i]);
2540 if (err)
2541 goto mac_start_failed;
2542 }
2543
2544 err = priv->mac_dev->start(mac_dev);
2545 if (err < 0) {
2546 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2547 goto mac_start_failed;
2548 }
2549
2550 netif_tx_start_all_queues(net_dev);
2551
2552 return 0;
2553
2554mac_start_failed:
2555 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2556 fman_port_disable(mac_dev->port[i]);
2557
2558phy_init_failed:
2559 dpaa_eth_napi_disable(priv);
2560
2561 return err;
2562}
2563
2564static int dpaa_eth_stop(struct net_device *net_dev)
2565{
2566 struct dpaa_priv *priv;
2567 int err;
2568
2569 err = dpaa_stop(net_dev);
2570
2571 priv = netdev_priv(net_dev);
2572 dpaa_eth_napi_disable(priv);
2573
2574 return err;
2575}
2576
2577static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2578{
2579 struct dpaa_priv *priv = netdev_priv(dev);
2580 struct hwtstamp_config config;
2581
2582 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
2583 return -EFAULT;
2584
2585 switch (config.tx_type) {
2586 case HWTSTAMP_TX_OFF:
2587 /* Couldn't disable rx/tx timestamping separately.
2588 * Do nothing here.
2589 */
2590 priv->tx_tstamp = false;
2591 break;
2592 case HWTSTAMP_TX_ON:
2593 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2594 priv->tx_tstamp = true;
2595 break;
2596 default:
2597 return -ERANGE;
2598 }
2599
2600 if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
2601 /* Couldn't disable rx/tx timestamping separately.
2602 * Do nothing here.
2603 */
2604 priv->rx_tstamp = false;
2605 } else {
2606 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2607 priv->rx_tstamp = true;
2608 /* TS is set for all frame types, not only those requested */
2609 config.rx_filter = HWTSTAMP_FILTER_ALL;
2610 }
2611
2612 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
2613 -EFAULT : 0;
2614}
2615
2616static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2617{
2618 int ret = -EINVAL;
2619
2620 if (cmd == SIOCGMIIREG) {
2621 if (net_dev->phydev)
2622 return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2623 }
2624
2625 if (cmd == SIOCSHWTSTAMP)
2626 return dpaa_ts_ioctl(net_dev, rq, cmd);
2627
2628 return ret;
2629}
2630
2631static const struct net_device_ops dpaa_ops = {
2632 .ndo_open = dpaa_open,
2633 .ndo_start_xmit = dpaa_start_xmit,
2634 .ndo_stop = dpaa_eth_stop,
2635 .ndo_tx_timeout = dpaa_tx_timeout,
2636 .ndo_get_stats64 = dpaa_get_stats64,
2637 .ndo_change_carrier = fixed_phy_change_carrier,
2638 .ndo_set_mac_address = dpaa_set_mac_address,
2639 .ndo_validate_addr = eth_validate_addr,
2640 .ndo_set_rx_mode = dpaa_set_rx_mode,
2641 .ndo_do_ioctl = dpaa_ioctl,
2642 .ndo_setup_tc = dpaa_setup_tc,
2643};
2644
2645static int dpaa_napi_add(struct net_device *net_dev)
2646{
2647 struct dpaa_priv *priv = netdev_priv(net_dev);
2648 struct dpaa_percpu_priv *percpu_priv;
2649 int cpu;
2650
2651 for_each_possible_cpu(cpu) {
2652 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2653
2654 netif_napi_add(net_dev, &percpu_priv->np.napi,
2655 dpaa_eth_poll, NAPI_POLL_WEIGHT);
2656 }
2657
2658 return 0;
2659}
2660
2661static void dpaa_napi_del(struct net_device *net_dev)
2662{
2663 struct dpaa_priv *priv = netdev_priv(net_dev);
2664 struct dpaa_percpu_priv *percpu_priv;
2665 int cpu;
2666
2667 for_each_possible_cpu(cpu) {
2668 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2669
2670 netif_napi_del(&percpu_priv->np.napi);
2671 }
2672}
2673
2674static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2675 struct bm_buffer *bmb)
2676{
2677 dma_addr_t addr = bm_buf_addr(bmb);
2678
2679 dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2680
2681 skb_free_frag(phys_to_virt(addr));
2682}
2683
2684/* Alloc the dpaa_bp struct and configure default values */
2685static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2686{
2687 struct dpaa_bp *dpaa_bp;
2688
2689 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2690 if (!dpaa_bp)
2691 return ERR_PTR(-ENOMEM);
2692
2693 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2694 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2695 if (!dpaa_bp->percpu_count)
2696 return ERR_PTR(-ENOMEM);
2697
2698 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2699
2700 dpaa_bp->seed_cb = dpaa_bp_seed;
2701 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2702
2703 return dpaa_bp;
2704}
2705
2706/* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2707 * We won't be sending congestion notifications to FMan; for now, we just use
2708 * this CGR to generate enqueue rejections to FMan in order to drop the frames
2709 * before they reach our ingress queues and eat up memory.
2710 */
2711static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2712{
2713 struct qm_mcc_initcgr initcgr;
2714 u32 cs_th;
2715 int err;
2716
2717 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2718 if (err < 0) {
2719 if (netif_msg_drv(priv))
2720 pr_err("Error %d allocating CGR ID\n", err);
2721 goto out_error;
2722 }
2723
2724 /* Enable CS TD, but disable Congestion State Change Notifications. */
2725 memset(&initcgr, 0, sizeof(initcgr));
2726 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2727 initcgr.cgr.cscn_en = QM_CGR_EN;
2728 cs_th = DPAA_INGRESS_CS_THRESHOLD;
2729 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2730
2731 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2732 initcgr.cgr.cstd_en = QM_CGR_EN;
2733
2734 /* This CGR will be associated with the SWP affined to the current CPU.
2735 * However, we'll place all our ingress FQs in it.
2736 */
2737 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2738 &initcgr);
2739 if (err < 0) {
2740 if (netif_msg_drv(priv))
2741 pr_err("Error %d creating ingress CGR with ID %d\n",
2742 err, priv->ingress_cgr.cgrid);
2743 qman_release_cgrid(priv->ingress_cgr.cgrid);
2744 goto out_error;
2745 }
2746 if (netif_msg_drv(priv))
2747 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2748 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2749
2750 priv->use_ingress_cgr = true;
2751
2752out_error:
2753 return err;
2754}
2755
2756static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2757{
2758 u16 headroom;
2759
2760 /* The frame headroom must accommodate:
2761 * - the driver private data area
2762 * - parse results, hash results, timestamp if selected
2763 * If either hash results or time stamp are selected, both will
2764 * be copied to/from the frame headroom, as TS is located between PR and
2765 * HR in the IC and IC copy size has a granularity of 16bytes
2766 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2767 *
2768 * Also make sure the headroom is a multiple of data_align bytes
2769 */
2770 headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2771 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2772
2773 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
2774}
2775
2776static int dpaa_eth_probe(struct platform_device *pdev)
2777{
2778 struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2779 struct net_device *net_dev = NULL;
2780 struct dpaa_fq *dpaa_fq, *tmp;
2781 struct dpaa_priv *priv = NULL;
2782 struct fm_port_fqs port_fqs;
2783 struct mac_device *mac_dev;
2784 int err = 0, i, channel;
2785 struct device *dev;
2786
2787 /* device used for DMA mapping */
2788 dev = pdev->dev.parent;
2789 err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2790 if (err) {
2791 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2792 return err;
2793 }
2794
2795 /* Allocate this early, so we can store relevant information in
2796 * the private area
2797 */
2798 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2799 if (!net_dev) {
2800 dev_err(dev, "alloc_etherdev_mq() failed\n");
2801 return -ENOMEM;
2802 }
2803
2804 /* Do this here, so we can be verbose early */
2805 SET_NETDEV_DEV(net_dev, dev);
2806 dev_set_drvdata(dev, net_dev);
2807
2808 priv = netdev_priv(net_dev);
2809 priv->net_dev = net_dev;
2810
2811 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2812
2813 mac_dev = dpaa_mac_dev_get(pdev);
2814 if (IS_ERR(mac_dev)) {
2815 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2816 err = PTR_ERR(mac_dev);
2817 goto free_netdev;
2818 }
2819
2820 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2821 * we choose conservatively and let the user explicitly set a higher
2822 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2823 * in the same LAN.
2824 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2825 * start with the maximum allowed.
2826 */
2827 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2828
2829 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2830 net_dev->mtu);
2831
2832 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2833 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2834
2835 /* bp init */
2836 for (i = 0; i < DPAA_BPS_NUM; i++) {
2837 dpaa_bps[i] = dpaa_bp_alloc(dev);
2838 if (IS_ERR(dpaa_bps[i])) {
2839 err = PTR_ERR(dpaa_bps[i]);
2840 goto free_dpaa_bps;
2841 }
2842 /* the raw size of the buffers used for reception */
2843 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2844 /* avoid runtime computations by keeping the usable size here */
2845 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2846 dpaa_bps[i]->dev = dev;
2847
2848 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2849 if (err < 0)
2850 goto free_dpaa_bps;
2851 priv->dpaa_bps[i] = dpaa_bps[i];
2852 }
2853
2854 INIT_LIST_HEAD(&priv->dpaa_fq_list);
2855
2856 memset(&port_fqs, 0, sizeof(port_fqs));
2857
2858 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2859 if (err < 0) {
2860 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2861 goto free_dpaa_bps;
2862 }
2863
2864 priv->mac_dev = mac_dev;
2865
2866 channel = dpaa_get_channel();
2867 if (channel < 0) {
2868 dev_err(dev, "dpaa_get_channel() failed\n");
2869 err = channel;
2870 goto free_dpaa_bps;
2871 }
2872
2873 priv->channel = (u16)channel;
2874
2875 /* Walk the CPUs with affine portals
2876 * and add this pool channel to each's dequeue mask.
2877 */
2878 dpaa_eth_add_channel(priv->channel);
2879
2880 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2881
2882 /* Create a congestion group for this netdev, with
2883 * dynamically-allocated CGR ID.
2884 * Must be executed after probing the MAC, but before
2885 * assigning the egress FQs to the CGRs.
2886 */
2887 err = dpaa_eth_cgr_init(priv);
2888 if (err < 0) {
2889 dev_err(dev, "Error initializing CGR\n");
2890 goto free_dpaa_bps;
2891 }
2892
2893 err = dpaa_ingress_cgr_init(priv);
2894 if (err < 0) {
2895 dev_err(dev, "Error initializing ingress CGR\n");
2896 goto delete_egress_cgr;
2897 }
2898
2899 /* Add the FQs to the interface, and make them active */
2900 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2901 err = dpaa_fq_init(dpaa_fq, false);
2902 if (err < 0)
2903 goto free_dpaa_fqs;
2904 }
2905
2906 priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2907 priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2908
2909 /* All real interfaces need their ports initialized */
2910 err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2911 &priv->buf_layout[0], dev);
2912 if (err)
2913 goto free_dpaa_fqs;
2914
2915 /* Rx traffic distribution based on keygen hashing defaults to on */
2916 priv->keygen_in_use = true;
2917
2918 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2919 if (!priv->percpu_priv) {
2920 dev_err(dev, "devm_alloc_percpu() failed\n");
2921 err = -ENOMEM;
2922 goto free_dpaa_fqs;
2923 }
2924
2925 priv->num_tc = 1;
2926 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2927
2928 /* Initialize NAPI */
2929 err = dpaa_napi_add(net_dev);
2930 if (err < 0)
2931 goto delete_dpaa_napi;
2932
2933 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2934 if (err < 0)
2935 goto delete_dpaa_napi;
2936
2937 dpaa_eth_sysfs_init(&net_dev->dev);
2938
2939 netif_info(priv, probe, net_dev, "Probed interface %s\n",
2940 net_dev->name);
2941
2942 return 0;
2943
2944delete_dpaa_napi:
2945 dpaa_napi_del(net_dev);
2946free_dpaa_fqs:
2947 dpaa_fq_free(dev, &priv->dpaa_fq_list);
2948 qman_delete_cgr_safe(&priv->ingress_cgr);
2949 qman_release_cgrid(priv->ingress_cgr.cgrid);
2950delete_egress_cgr:
2951 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2952 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2953free_dpaa_bps:
2954 dpaa_bps_free(priv);
2955free_netdev:
2956 dev_set_drvdata(dev, NULL);
2957 free_netdev(net_dev);
2958
2959 return err;
2960}
2961
2962static int dpaa_remove(struct platform_device *pdev)
2963{
2964 struct net_device *net_dev;
2965 struct dpaa_priv *priv;
2966 struct device *dev;
2967 int err;
2968
2969 dev = pdev->dev.parent;
2970 net_dev = dev_get_drvdata(dev);
2971
2972 priv = netdev_priv(net_dev);
2973
2974 dpaa_eth_sysfs_remove(dev);
2975
2976 dev_set_drvdata(dev, NULL);
2977 unregister_netdev(net_dev);
2978
2979 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2980
2981 qman_delete_cgr_safe(&priv->ingress_cgr);
2982 qman_release_cgrid(priv->ingress_cgr.cgrid);
2983 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2984 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2985
2986 dpaa_napi_del(net_dev);
2987
2988 dpaa_bps_free(priv);
2989
2990 free_netdev(net_dev);
2991
2992 return err;
2993}
2994
2995static const struct platform_device_id dpaa_devtype[] = {
2996 {
2997 .name = "dpaa-ethernet",
2998 .driver_data = 0,
2999 }, {
3000 }
3001};
3002MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3003
3004static struct platform_driver dpaa_driver = {
3005 .driver = {
3006 .name = KBUILD_MODNAME,
3007 },
3008 .id_table = dpaa_devtype,
3009 .probe = dpaa_eth_probe,
3010 .remove = dpaa_remove
3011};
3012
3013static int __init dpaa_load(void)
3014{
3015 int err;
3016
3017 pr_debug("FSL DPAA Ethernet driver\n");
3018
3019 /* initialize dpaa_eth mirror values */
3020 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3021 dpaa_max_frm = fman_get_max_frm();
3022
3023 err = platform_driver_register(&dpaa_driver);
3024 if (err < 0)
3025 pr_err("Error, platform_driver_register() = %d\n", err);
3026
3027 return err;
3028}
3029module_init(dpaa_load);
3030
3031static void __exit dpaa_unload(void)
3032{
3033 platform_driver_unregister(&dpaa_driver);
3034
3035 /* Only one channel is used and needs to be released after all
3036 * interfaces are removed
3037 */
3038 dpaa_release_channel();
3039}
3040module_exit(dpaa_unload);
3041
3042MODULE_LICENSE("Dual BSD/GPL");
3043MODULE_DESCRIPTION("FSL DPAA Ethernet driver");