blob: 8013562751a50a1a3914670621afea11da7c7863 [file] [log] [blame]
Googler9398cc32022-12-02 17:21:52 +08001/* SPDX-License-Identifier: GPL-2.0-or-later */
Googleraf606d22022-10-26 21:40:12 -07002/*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5#ifndef LINUX_DMAENGINE_H
6#define LINUX_DMAENGINE_H
7
8#include <linux/device.h>
9#include <linux/err.h>
10#include <linux/uio.h>
11#include <linux/bug.h>
12#include <linux/scatterlist.h>
13#include <linux/bitmap.h>
14#include <linux/types.h>
15#include <asm/page.h>
16
17/**
18 * typedef dma_cookie_t - an opaque DMA cookie
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22typedef s32 dma_cookie_t;
23#define DMA_MIN_COOKIE 1
24
25static inline int dma_submit_error(dma_cookie_t cookie)
26{
27 return cookie < 0 ? cookie : 0;
28}
29
30/**
31 * enum dma_status - DMA transaction status
32 * @DMA_COMPLETE: transaction completed
33 * @DMA_IN_PROGRESS: transaction not yet processed
34 * @DMA_PAUSED: transaction is paused
35 * @DMA_ERROR: transaction failed
36 */
37enum dma_status {
38 DMA_COMPLETE,
39 DMA_IN_PROGRESS,
40 DMA_PAUSED,
41 DMA_ERROR,
42};
43
44/**
45 * enum dma_transaction_type - DMA transaction types/indexes
46 *
47 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
48 * automatically set as dma devices are registered.
49 */
50enum dma_transaction_type {
51 DMA_MEMCPY,
52 DMA_XOR,
53 DMA_PQ,
54 DMA_XOR_VAL,
55 DMA_PQ_VAL,
56 DMA_MEMSET,
57 DMA_MEMSET_SG,
58 DMA_INTERRUPT,
59 DMA_PRIVATE,
60 DMA_ASYNC_TX,
61 DMA_SLAVE,
62 DMA_CYCLIC,
63 DMA_INTERLEAVE,
64/* last transaction type for creation of the capabilities mask */
65 DMA_TX_TYPE_END,
66};
67
68/**
69 * enum dma_transfer_direction - dma transfer mode and direction indicator
70 * @DMA_MEM_TO_MEM: Async/Memcpy mode
71 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
72 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
73 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
74 */
75enum dma_transfer_direction {
76 DMA_MEM_TO_MEM,
77 DMA_MEM_TO_DEV,
78 DMA_DEV_TO_MEM,
79 DMA_DEV_TO_DEV,
80 DMA_TRANS_NONE,
81};
82
83/**
84 * Interleaved Transfer Request
85 * ----------------------------
86 * A chunk is collection of contiguous bytes to be transfered.
87 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
88 * ICGs may or maynot change between chunks.
89 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
90 * that when repeated an integral number of times, specifies the transfer.
91 * A transfer template is specification of a Frame, the number of times
92 * it is to be repeated and other per-transfer attributes.
93 *
94 * Practically, a client driver would have ready a template for each
95 * type of transfer it is going to need during its lifetime and
96 * set only 'src_start' and 'dst_start' before submitting the requests.
97 *
98 *
99 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
100 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
101 *
102 * == Chunk size
103 * ... ICG
104 */
105
106/**
107 * struct data_chunk - Element of scatter-gather list that makes a frame.
108 * @size: Number of bytes to read from source.
109 * size_dst := fn(op, size_src), so doesn't mean much for destination.
110 * @icg: Number of bytes to jump after last src/dst address of this
111 * chunk and before first src/dst address for next chunk.
112 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
113 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
114 * @dst_icg: Number of bytes to jump after last dst address of this
115 * chunk and before the first dst address for next chunk.
116 * Ignored if dst_inc is true and dst_sgl is false.
117 * @src_icg: Number of bytes to jump after last src address of this
118 * chunk and before the first src address for next chunk.
119 * Ignored if src_inc is true and src_sgl is false.
120 */
121struct data_chunk {
122 size_t size;
123 size_t icg;
124 size_t dst_icg;
125 size_t src_icg;
126};
127
128/**
129 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
130 * and attributes.
131 * @src_start: Bus address of source for the first chunk.
132 * @dst_start: Bus address of destination for the first chunk.
133 * @dir: Specifies the type of Source and Destination.
134 * @src_inc: If the source address increments after reading from it.
135 * @dst_inc: If the destination address increments after writing to it.
136 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
137 * Otherwise, source is read contiguously (icg ignored).
138 * Ignored if src_inc is false.
139 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
140 * Otherwise, destination is filled contiguously (icg ignored).
141 * Ignored if dst_inc is false.
142 * @numf: Number of frames in this template.
143 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
144 * @sgl: Array of {chunk,icg} pairs that make up a frame.
145 */
146struct dma_interleaved_template {
147 dma_addr_t src_start;
148 dma_addr_t dst_start;
149 enum dma_transfer_direction dir;
150 bool src_inc;
151 bool dst_inc;
152 bool src_sgl;
153 bool dst_sgl;
154 size_t numf;
155 size_t frame_size;
156 struct data_chunk sgl[0];
157};
158
159/**
160 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
161 * control completion, and communicate status.
162 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
163 * this transaction
164 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
165 * acknowledges receipt, i.e. has has a chance to establish any dependency
166 * chains
167 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
168 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
169 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
170 * sources that were the result of a previous operation, in the case of a PQ
171 * operation it continues the calculation with new sources
172 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
173 * on the result of this operation
174 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
175 * cleared or freed
Googler9398cc32022-12-02 17:21:52 +0800176 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
177 * data and the descriptor should be in different format from normal
178 * data descriptors.
Googleraf606d22022-10-26 21:40:12 -0700179 */
180enum dma_ctrl_flags {
181 DMA_PREP_INTERRUPT = (1 << 0),
182 DMA_CTRL_ACK = (1 << 1),
183 DMA_PREP_PQ_DISABLE_P = (1 << 2),
184 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
185 DMA_PREP_CONTINUE = (1 << 4),
186 DMA_PREP_FENCE = (1 << 5),
187 DMA_CTRL_REUSE = (1 << 6),
Googler9398cc32022-12-02 17:21:52 +0800188 DMA_PREP_CMD = (1 << 7),
Googleraf606d22022-10-26 21:40:12 -0700189};
190
191/**
192 * enum sum_check_bits - bit position of pq_check_flags
193 */
194enum sum_check_bits {
195 SUM_CHECK_P = 0,
196 SUM_CHECK_Q = 1,
197};
198
199/**
200 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
201 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
202 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
203 */
204enum sum_check_flags {
205 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
206 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
207};
208
209
210/**
211 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
212 * See linux/cpumask.h
213 */
214typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
215
216/**
217 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
218 * @memcpy_count: transaction counter
219 * @bytes_transferred: byte counter
220 */
221
222struct dma_chan_percpu {
223 /* stats */
224 unsigned long memcpy_count;
225 unsigned long bytes_transferred;
226};
227
228/**
229 * struct dma_router - DMA router structure
230 * @dev: pointer to the DMA router device
231 * @route_free: function to be called when the route can be disconnected
232 */
233struct dma_router {
234 struct device *dev;
235 void (*route_free)(struct device *dev, void *route_data);
236};
237
238/**
239 * struct dma_chan - devices supply DMA channels, clients use them
240 * @device: ptr to the dma device who supplies this channel, always !%NULL
241 * @cookie: last cookie value returned to client
242 * @completed_cookie: last completed cookie for this channel
243 * @chan_id: channel ID for sysfs
244 * @dev: class device for sysfs
245 * @device_node: used to add this to the device chan list
246 * @local: per-cpu pointer to a struct dma_chan_percpu
247 * @client_count: how many clients are using this channel
248 * @table_count: number of appearances in the mem-to-mem allocation table
249 * @router: pointer to the DMA router structure
250 * @route_data: channel specific data for the router
251 * @private: private data for certain client-channel associations
252 */
253struct dma_chan {
254 struct dma_device *device;
255 dma_cookie_t cookie;
256 dma_cookie_t completed_cookie;
257
258 /* sysfs */
259 int chan_id;
260 struct dma_chan_dev *dev;
261
262 struct list_head device_node;
263 struct dma_chan_percpu __percpu *local;
264 int client_count;
265 int table_count;
266
267 /* DMA router */
268 struct dma_router *router;
269 void *route_data;
270
271 void *private;
272};
273
274/**
275 * struct dma_chan_dev - relate sysfs device node to backing channel device
276 * @chan: driver channel device
277 * @device: sysfs device
278 * @dev_id: parent dma_device dev_id
279 * @idr_ref: reference count to gate release of dma_device dev_id
280 */
281struct dma_chan_dev {
282 struct dma_chan *chan;
283 struct device device;
284 int dev_id;
285 atomic_t *idr_ref;
286};
287
288/**
289 * enum dma_slave_buswidth - defines bus width of the DMA slave
290 * device, source or target buses
291 */
292enum dma_slave_buswidth {
293 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
294 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
295 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
296 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
297 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
298 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
299 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
300 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
301 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
302};
303
304/**
305 * struct dma_slave_config - dma slave channel runtime config
306 * @direction: whether the data shall go in or out on this slave
307 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
308 * legal values. DEPRECATED, drivers should use the direction argument
309 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
310 * the dir field in the dma_interleaved_template structure.
311 * @src_addr: this is the physical address where DMA slave data
312 * should be read (RX), if the source is memory this argument is
313 * ignored.
314 * @dst_addr: this is the physical address where DMA slave data
315 * should be written (TX), if the source is memory this argument
316 * is ignored.
317 * @src_addr_width: this is the width in bytes of the source (RX)
318 * register where DMA data shall be read. If the source
319 * is memory this may be ignored depending on architecture.
Googler9398cc32022-12-02 17:21:52 +0800320 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
Googleraf606d22022-10-26 21:40:12 -0700321 * @dst_addr_width: same as src_addr_width but for destination
322 * target (TX) mutatis mutandis.
323 * @src_maxburst: the maximum number of words (note: words, as in
324 * units of the src_addr_width member, not bytes) that can be sent
325 * in one burst to the device. Typically something like half the
326 * FIFO depth on I/O peripherals so you don't overflow it. This
327 * may or may not be applicable on memory sources.
328 * @dst_maxburst: same as src_maxburst but for destination target
329 * mutatis mutandis.
Googler9398cc32022-12-02 17:21:52 +0800330 * @src_port_window_size: The length of the register area in words the data need
331 * to be accessed on the device side. It is only used for devices which is using
332 * an area instead of a single register to receive the data. Typically the DMA
333 * loops in this area in order to transfer the data.
334 * @dst_port_window_size: same as src_port_window_size but for the destination
335 * port.
Googleraf606d22022-10-26 21:40:12 -0700336 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
337 * with 'true' if peripheral should be flow controller. Direction will be
338 * selected at Runtime.
339 * @slave_id: Slave requester id. Only valid for slave channels. The dma
340 * slave peripheral will have unique id as dma requester which need to be
341 * pass as slave config.
342 *
343 * This struct is passed in as configuration data to a DMA engine
344 * in order to set up a certain channel for DMA transport at runtime.
345 * The DMA device/engine has to provide support for an additional
346 * callback in the dma_device structure, device_config and this struct
347 * will then be passed in as an argument to the function.
348 *
349 * The rationale for adding configuration information to this struct is as
350 * follows: if it is likely that more than one DMA slave controllers in
351 * the world will support the configuration option, then make it generic.
352 * If not: if it is fixed so that it be sent in static from the platform
353 * data, then prefer to do that.
354 */
355struct dma_slave_config {
356 enum dma_transfer_direction direction;
357 phys_addr_t src_addr;
358 phys_addr_t dst_addr;
359 enum dma_slave_buswidth src_addr_width;
360 enum dma_slave_buswidth dst_addr_width;
361 u32 src_maxburst;
362 u32 dst_maxburst;
Googler9398cc32022-12-02 17:21:52 +0800363 u32 src_port_window_size;
364 u32 dst_port_window_size;
Googleraf606d22022-10-26 21:40:12 -0700365 bool device_fc;
366 unsigned int slave_id;
367};
368
369/**
370 * enum dma_residue_granularity - Granularity of the reported transfer residue
371 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
372 * DMA channel is only able to tell whether a descriptor has been completed or
373 * not, which means residue reporting is not supported by this channel. The
374 * residue field of the dma_tx_state field will always be 0.
375 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
376 * completed segment of the transfer (For cyclic transfers this is after each
377 * period). This is typically implemented by having the hardware generate an
378 * interrupt after each transferred segment and then the drivers updates the
379 * outstanding residue by the size of the segment. Another possibility is if
380 * the hardware supports scatter-gather and the segment descriptor has a field
381 * which gets set after the segment has been completed. The driver then counts
382 * the number of segments without the flag set to compute the residue.
383 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
384 * burst. This is typically only supported if the hardware has a progress
385 * register of some sort (E.g. a register with the current read/write address
386 * or a register with the amount of bursts/beats/bytes that have been
387 * transferred or still need to be transferred).
388 */
389enum dma_residue_granularity {
390 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
391 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
392 DMA_RESIDUE_GRANULARITY_BURST = 2,
393};
394
Googler9398cc32022-12-02 17:21:52 +0800395/**
396 * struct dma_slave_caps - expose capabilities of a slave channel only
397 * @src_addr_widths: bit mask of src addr widths the channel supports.
398 * Width is specified in bytes, e.g. for a channel supporting
399 * a width of 4 the mask should have BIT(4) set.
400 * @dst_addr_widths: bit mask of dst addr widths the channel supports
401 * @directions: bit mask of slave directions the channel supports.
402 * Since the enum dma_transfer_direction is not defined as bit flag for
403 * each type, the dma controller should set BIT(<TYPE>) and same
404 * should be checked by controller as well
Googleraf606d22022-10-26 21:40:12 -0700405 * @max_burst: max burst capability per-transfer
Googler9398cc32022-12-02 17:21:52 +0800406 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
407 * for resume later)
408 * @cmd_resume: true, if resume is supported
Googleraf606d22022-10-26 21:40:12 -0700409 * @cmd_terminate: true, if terminate cmd is supported
410 * @residue_granularity: granularity of the reported transfer residue
411 * @descriptor_reuse: if a descriptor can be reused by client and
412 * resubmitted multiple times
413 */
414struct dma_slave_caps {
415 u32 src_addr_widths;
416 u32 dst_addr_widths;
417 u32 directions;
418 u32 max_burst;
419 bool cmd_pause;
Googler9398cc32022-12-02 17:21:52 +0800420 bool cmd_resume;
Googleraf606d22022-10-26 21:40:12 -0700421 bool cmd_terminate;
422 enum dma_residue_granularity residue_granularity;
423 bool descriptor_reuse;
424};
425
426static inline const char *dma_chan_name(struct dma_chan *chan)
427{
428 return dev_name(&chan->dev->device);
429}
430
431void dma_chan_cleanup(struct kref *kref);
432
433/**
434 * typedef dma_filter_fn - callback filter for dma_request_channel
435 * @chan: channel to be reviewed
436 * @filter_param: opaque parameter passed through dma_request_channel
437 *
438 * When this optional parameter is specified in a call to dma_request_channel a
439 * suitable channel is passed to this routine for further dispositioning before
440 * being returned. Where 'suitable' indicates a non-busy channel that
441 * satisfies the given capability mask. It returns 'true' to indicate that the
442 * channel is suitable.
443 */
444typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
445
446typedef void (*dma_async_tx_callback)(void *dma_async_param);
447
448enum dmaengine_tx_result {
449 DMA_TRANS_NOERROR = 0, /* SUCCESS */
450 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
451 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
452 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
453};
454
455struct dmaengine_result {
456 enum dmaengine_tx_result result;
457 u32 residue;
458};
459
460typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
461 const struct dmaengine_result *result);
462
463struct dmaengine_unmap_data {
Googler9398cc32022-12-02 17:21:52 +0800464#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
465 u16 map_cnt;
466#else
Googleraf606d22022-10-26 21:40:12 -0700467 u8 map_cnt;
Googler9398cc32022-12-02 17:21:52 +0800468#endif
Googleraf606d22022-10-26 21:40:12 -0700469 u8 to_cnt;
470 u8 from_cnt;
471 u8 bidi_cnt;
472 struct device *dev;
473 struct kref kref;
474 size_t len;
475 dma_addr_t addr[0];
476};
477
478/**
479 * struct dma_async_tx_descriptor - async transaction descriptor
480 * ---dma generic offload fields---
481 * @cookie: tracking cookie for this transaction, set to -EBUSY if
482 * this tx is sitting on a dependency list
483 * @flags: flags to augment operation preparation, control completion, and
484 * communicate status
485 * @phys: physical address of the descriptor
486 * @chan: target channel for this operation
487 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
488 * descriptor pending. To be pushed on .issue_pending() call
489 * @callback: routine to call after this operation is complete
490 * @callback_param: general parameter to pass to the callback routine
491 * ---async_tx api specific fields---
492 * @next: at completion submit this descriptor
493 * @parent: pointer to the next level up in the dependency chain
494 * @lock: protect the parent and next pointers
495 */
496struct dma_async_tx_descriptor {
497 dma_cookie_t cookie;
498 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
499 dma_addr_t phys;
500 struct dma_chan *chan;
501 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
502 int (*desc_free)(struct dma_async_tx_descriptor *tx);
503 dma_async_tx_callback callback;
504 dma_async_tx_callback_result callback_result;
505 void *callback_param;
506 struct dmaengine_unmap_data *unmap;
507#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
508 struct dma_async_tx_descriptor *next;
509 struct dma_async_tx_descriptor *parent;
510 spinlock_t lock;
511#endif
512};
513
514#ifdef CONFIG_DMA_ENGINE
515static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
516 struct dmaengine_unmap_data *unmap)
517{
518 kref_get(&unmap->kref);
519 tx->unmap = unmap;
520}
521
522struct dmaengine_unmap_data *
523dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
524void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
525#else
526static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
527 struct dmaengine_unmap_data *unmap)
528{
529}
530static inline struct dmaengine_unmap_data *
531dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
532{
533 return NULL;
534}
535static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
536{
537}
538#endif
539
540static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
541{
542 if (tx->unmap) {
543 dmaengine_unmap_put(tx->unmap);
544 tx->unmap = NULL;
545 }
546}
547
548#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
549static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550{
551}
552static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
553{
554}
555static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
556{
557 BUG();
558}
559static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
560{
561}
562static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
563{
564}
565static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
566{
567 return NULL;
568}
569static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
570{
571 return NULL;
572}
573
574#else
575static inline void txd_lock(struct dma_async_tx_descriptor *txd)
576{
577 spin_lock_bh(&txd->lock);
578}
579static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
580{
581 spin_unlock_bh(&txd->lock);
582}
583static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
584{
585 txd->next = next;
586 next->parent = txd;
587}
588static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
589{
590 txd->parent = NULL;
591}
592static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
593{
594 txd->next = NULL;
595}
596static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
597{
598 return txd->parent;
599}
600static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
601{
602 return txd->next;
603}
604#endif
605
606/**
607 * struct dma_tx_state - filled in to report the status of
608 * a transfer.
609 * @last: last completed DMA cookie
610 * @used: last issued DMA cookie (i.e. the one in progress)
611 * @residue: the remaining number of bytes left to transmit
612 * on the selected transfer for states DMA_IN_PROGRESS and
613 * DMA_PAUSED if this is implemented in the driver, else 0
614 */
615struct dma_tx_state {
616 dma_cookie_t last;
617 dma_cookie_t used;
618 u32 residue;
619};
620
621/**
622 * enum dmaengine_alignment - defines alignment of the DMA async tx
623 * buffers
624 */
625enum dmaengine_alignment {
626 DMAENGINE_ALIGN_1_BYTE = 0,
627 DMAENGINE_ALIGN_2_BYTES = 1,
628 DMAENGINE_ALIGN_4_BYTES = 2,
629 DMAENGINE_ALIGN_8_BYTES = 3,
630 DMAENGINE_ALIGN_16_BYTES = 4,
631 DMAENGINE_ALIGN_32_BYTES = 5,
632 DMAENGINE_ALIGN_64_BYTES = 6,
633};
634
635/**
636 * struct dma_slave_map - associates slave device and it's slave channel with
637 * parameter to be used by a filter function
638 * @devname: name of the device
639 * @slave: slave channel name
640 * @param: opaque parameter to pass to struct dma_filter.fn
641 */
642struct dma_slave_map {
643 const char *devname;
644 const char *slave;
645 void *param;
646};
647
648/**
649 * struct dma_filter - information for slave device/channel to filter_fn/param
650 * mapping
651 * @fn: filter function callback
652 * @mapcnt: number of slave device/channel in the map
653 * @map: array of channel to filter mapping data
654 */
655struct dma_filter {
656 dma_filter_fn fn;
657 int mapcnt;
658 const struct dma_slave_map *map;
659};
660
661/**
662 * struct dma_device - info on the entity supplying DMA services
663 * @chancnt: how many DMA channels are supported
664 * @privatecnt: how many DMA channels are requested by dma_request_channel
665 * @channels: the list of struct dma_chan
666 * @global_node: list_head for global dma_device_list
667 * @filter: information for device/slave to filter function/param mapping
668 * @cap_mask: one or more dma_capability flags
669 * @max_xor: maximum number of xor sources, 0 if no capability
670 * @max_pq: maximum number of PQ sources and PQ-continue capability
671 * @copy_align: alignment shift for memcpy operations
672 * @xor_align: alignment shift for xor operations
673 * @pq_align: alignment shift for pq operations
674 * @fill_align: alignment shift for memset operations
675 * @dev_id: unique device ID
676 * @dev: struct device reference for dma mapping api
Googler9398cc32022-12-02 17:21:52 +0800677 * @owner: owner module (automatically set based on the provided dev)
Googleraf606d22022-10-26 21:40:12 -0700678 * @src_addr_widths: bit mask of src addr widths the device supports
Googler9398cc32022-12-02 17:21:52 +0800679 * Width is specified in bytes, e.g. for a device supporting
680 * a width of 4 the mask should have BIT(4) set.
Googleraf606d22022-10-26 21:40:12 -0700681 * @dst_addr_widths: bit mask of dst addr widths the device supports
Googler9398cc32022-12-02 17:21:52 +0800682 * @directions: bit mask of slave directions the device supports.
683 * Since the enum dma_transfer_direction is not defined as bit flag for
684 * each type, the dma controller should set BIT(<TYPE>) and same
685 * should be checked by controller as well
Googleraf606d22022-10-26 21:40:12 -0700686 * @max_burst: max burst capability per-transfer
687 * @residue_granularity: granularity of the transfer residue reported
688 * by tx_status
689 * @device_alloc_chan_resources: allocate resources and return the
690 * number of allocated descriptors
691 * @device_free_chan_resources: release DMA channel's resources
692 * @device_prep_dma_memcpy: prepares a memcpy operation
693 * @device_prep_dma_xor: prepares a xor operation
694 * @device_prep_dma_xor_val: prepares a xor validation operation
695 * @device_prep_dma_pq: prepares a pq operation
696 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
697 * @device_prep_dma_memset: prepares a memset operation
698 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
699 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
700 * @device_prep_slave_sg: prepares a slave dma operation
701 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
702 * The function takes a buffer of size buf_len. The callback function will
703 * be called after period_len bytes have been transferred.
704 * @device_prep_interleaved_dma: Transfer expression in a generic way.
705 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
706 * @device_config: Pushes a new configuration to a channel, return 0 or an error
707 * code
708 * @device_pause: Pauses any transfer happening on a channel. Returns
709 * 0 or an error code
710 * @device_resume: Resumes any transfer on a channel previously
711 * paused. Returns 0 or an error code
712 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
713 * or an error code
714 * @device_synchronize: Synchronizes the termination of a transfers to the
715 * current context.
716 * @device_tx_status: poll for transaction completion, the optional
717 * txstate parameter can be supplied with a pointer to get a
718 * struct with auxiliary transfer status information, otherwise the call
719 * will just return a simple status code
720 * @device_issue_pending: push pending transactions to hardware
721 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
722 */
723struct dma_device {
724
725 unsigned int chancnt;
726 unsigned int privatecnt;
727 struct list_head channels;
728 struct list_head global_node;
729 struct dma_filter filter;
730 dma_cap_mask_t cap_mask;
731 unsigned short max_xor;
732 unsigned short max_pq;
733 enum dmaengine_alignment copy_align;
734 enum dmaengine_alignment xor_align;
735 enum dmaengine_alignment pq_align;
736 enum dmaengine_alignment fill_align;
737 #define DMA_HAS_PQ_CONTINUE (1 << 15)
738
739 int dev_id;
740 struct device *dev;
Googler9398cc32022-12-02 17:21:52 +0800741 struct module *owner;
Googleraf606d22022-10-26 21:40:12 -0700742
743 u32 src_addr_widths;
744 u32 dst_addr_widths;
745 u32 directions;
746 u32 max_burst;
747 bool descriptor_reuse;
748 enum dma_residue_granularity residue_granularity;
749
750 int (*device_alloc_chan_resources)(struct dma_chan *chan);
751 void (*device_free_chan_resources)(struct dma_chan *chan);
752
753 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
754 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
755 size_t len, unsigned long flags);
756 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
757 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
758 unsigned int src_cnt, size_t len, unsigned long flags);
759 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
760 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
761 size_t len, enum sum_check_flags *result, unsigned long flags);
762 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
763 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
764 unsigned int src_cnt, const unsigned char *scf,
765 size_t len, unsigned long flags);
766 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
767 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
768 unsigned int src_cnt, const unsigned char *scf, size_t len,
769 enum sum_check_flags *pqres, unsigned long flags);
770 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
771 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
772 unsigned long flags);
773 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
774 struct dma_chan *chan, struct scatterlist *sg,
775 unsigned int nents, int value, unsigned long flags);
776 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
777 struct dma_chan *chan, unsigned long flags);
778
779 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
780 struct dma_chan *chan, struct scatterlist *sgl,
781 unsigned int sg_len, enum dma_transfer_direction direction,
782 unsigned long flags, void *context);
783 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
784 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
785 size_t period_len, enum dma_transfer_direction direction,
786 unsigned long flags);
787 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
788 struct dma_chan *chan, struct dma_interleaved_template *xt,
789 unsigned long flags);
790 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
791 struct dma_chan *chan, dma_addr_t dst, u64 data,
792 unsigned long flags);
793
794 int (*device_config)(struct dma_chan *chan,
795 struct dma_slave_config *config);
796 int (*device_pause)(struct dma_chan *chan);
797 int (*device_resume)(struct dma_chan *chan);
798 int (*device_terminate_all)(struct dma_chan *chan);
799 void (*device_synchronize)(struct dma_chan *chan);
800
801 enum dma_status (*device_tx_status)(struct dma_chan *chan,
802 dma_cookie_t cookie,
803 struct dma_tx_state *txstate);
804 void (*device_issue_pending)(struct dma_chan *chan);
805};
806
807static inline int dmaengine_slave_config(struct dma_chan *chan,
808 struct dma_slave_config *config)
809{
810 if (chan->device->device_config)
811 return chan->device->device_config(chan, config);
812
813 return -ENOSYS;
814}
815
816static inline bool is_slave_direction(enum dma_transfer_direction direction)
817{
818 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
819}
820
821static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
822 struct dma_chan *chan, dma_addr_t buf, size_t len,
823 enum dma_transfer_direction dir, unsigned long flags)
824{
825 struct scatterlist sg;
826 sg_init_table(&sg, 1);
827 sg_dma_address(&sg) = buf;
828 sg_dma_len(&sg) = len;
829
830 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
831 return NULL;
832
833 return chan->device->device_prep_slave_sg(chan, &sg, 1,
834 dir, flags, NULL);
835}
836
837static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
838 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
839 enum dma_transfer_direction dir, unsigned long flags)
840{
841 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
842 return NULL;
843
844 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
845 dir, flags, NULL);
846}
847
848#ifdef CONFIG_RAPIDIO_DMA_ENGINE
849struct rio_dma_ext;
850static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
851 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
852 enum dma_transfer_direction dir, unsigned long flags,
853 struct rio_dma_ext *rio_ext)
854{
855 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
856 return NULL;
857
858 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
859 dir, flags, rio_ext);
860}
861#endif
862
863static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
864 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
865 size_t period_len, enum dma_transfer_direction dir,
866 unsigned long flags)
867{
868 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
869 return NULL;
870
871 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
872 period_len, dir, flags);
873}
874
875static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
876 struct dma_chan *chan, struct dma_interleaved_template *xt,
877 unsigned long flags)
878{
879 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
880 return NULL;
881
882 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
883}
884
885static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
886 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
887 unsigned long flags)
888{
889 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
890 return NULL;
891
892 return chan->device->device_prep_dma_memset(chan, dest, value,
893 len, flags);
894}
895
Googler9398cc32022-12-02 17:21:52 +0800896static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
897 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
898 size_t len, unsigned long flags)
Googleraf606d22022-10-26 21:40:12 -0700899{
Googler9398cc32022-12-02 17:21:52 +0800900 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
Googleraf606d22022-10-26 21:40:12 -0700901 return NULL;
902
Googler9398cc32022-12-02 17:21:52 +0800903 return chan->device->device_prep_dma_memcpy(chan, dest, src,
904 len, flags);
Googleraf606d22022-10-26 21:40:12 -0700905}
906
907/**
908 * dmaengine_terminate_all() - Terminate all active DMA transfers
909 * @chan: The channel for which to terminate the transfers
910 *
911 * This function is DEPRECATED use either dmaengine_terminate_sync() or
912 * dmaengine_terminate_async() instead.
913 */
914static inline int dmaengine_terminate_all(struct dma_chan *chan)
915{
916 if (chan->device->device_terminate_all)
917 return chan->device->device_terminate_all(chan);
918
919 return -ENOSYS;
920}
921
922/**
923 * dmaengine_terminate_async() - Terminate all active DMA transfers
924 * @chan: The channel for which to terminate the transfers
925 *
926 * Calling this function will terminate all active and pending descriptors
927 * that have previously been submitted to the channel. It is not guaranteed
928 * though that the transfer for the active descriptor has stopped when the
929 * function returns. Furthermore it is possible the complete callback of a
930 * submitted transfer is still running when this function returns.
931 *
932 * dmaengine_synchronize() needs to be called before it is safe to free
933 * any memory that is accessed by previously submitted descriptors or before
934 * freeing any resources accessed from within the completion callback of any
935 * perviously submitted descriptors.
936 *
937 * This function can be called from atomic context as well as from within a
938 * complete callback of a descriptor submitted on the same channel.
939 *
940 * If none of the two conditions above apply consider using
941 * dmaengine_terminate_sync() instead.
942 */
943static inline int dmaengine_terminate_async(struct dma_chan *chan)
944{
945 if (chan->device->device_terminate_all)
946 return chan->device->device_terminate_all(chan);
947
948 return -EINVAL;
949}
950
951/**
952 * dmaengine_synchronize() - Synchronize DMA channel termination
953 * @chan: The channel to synchronize
954 *
955 * Synchronizes to the DMA channel termination to the current context. When this
956 * function returns it is guaranteed that all transfers for previously issued
957 * descriptors have stopped and and it is safe to free the memory assoicated
958 * with them. Furthermore it is guaranteed that all complete callback functions
959 * for a previously submitted descriptor have finished running and it is safe to
960 * free resources accessed from within the complete callbacks.
961 *
962 * The behavior of this function is undefined if dma_async_issue_pending() has
963 * been called between dmaengine_terminate_async() and this function.
964 *
965 * This function must only be called from non-atomic context and must not be
966 * called from within a complete callback of a descriptor submitted on the same
967 * channel.
968 */
969static inline void dmaengine_synchronize(struct dma_chan *chan)
970{
971 might_sleep();
972
973 if (chan->device->device_synchronize)
974 chan->device->device_synchronize(chan);
975}
976
977/**
978 * dmaengine_terminate_sync() - Terminate all active DMA transfers
979 * @chan: The channel for which to terminate the transfers
980 *
981 * Calling this function will terminate all active and pending transfers
982 * that have previously been submitted to the channel. It is similar to
983 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
984 * stopped and that all complete callbacks have finished running when the
985 * function returns.
986 *
987 * This function must only be called from non-atomic context and must not be
988 * called from within a complete callback of a descriptor submitted on the same
989 * channel.
990 */
991static inline int dmaengine_terminate_sync(struct dma_chan *chan)
992{
993 int ret;
994
995 ret = dmaengine_terminate_async(chan);
996 if (ret)
997 return ret;
998
999 dmaengine_synchronize(chan);
1000
1001 return 0;
1002}
1003
1004static inline int dmaengine_pause(struct dma_chan *chan)
1005{
1006 if (chan->device->device_pause)
1007 return chan->device->device_pause(chan);
1008
1009 return -ENOSYS;
1010}
1011
1012static inline int dmaengine_resume(struct dma_chan *chan)
1013{
1014 if (chan->device->device_resume)
1015 return chan->device->device_resume(chan);
1016
1017 return -ENOSYS;
1018}
1019
1020static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1021 dma_cookie_t cookie, struct dma_tx_state *state)
1022{
1023 return chan->device->device_tx_status(chan, cookie, state);
1024}
1025
1026static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1027{
1028 return desc->tx_submit(desc);
1029}
1030
1031static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1032 size_t off1, size_t off2, size_t len)
1033{
1034 size_t mask;
1035
1036 if (!align)
1037 return true;
1038 mask = (1 << align) - 1;
1039 if (mask & (off1 | off2 | len))
1040 return false;
1041 return true;
1042}
1043
1044static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1045 size_t off2, size_t len)
1046{
1047 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1048}
1049
1050static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1051 size_t off2, size_t len)
1052{
1053 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1054}
1055
1056static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1057 size_t off2, size_t len)
1058{
1059 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1060}
1061
1062static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1063 size_t off2, size_t len)
1064{
1065 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1066}
1067
1068static inline void
1069dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1070{
1071 dma->max_pq = maxpq;
1072 if (has_pq_continue)
1073 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1074}
1075
1076static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1077{
1078 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1079}
1080
1081static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1082{
1083 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1084
1085 return (flags & mask) == mask;
1086}
1087
1088static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1089{
1090 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1091}
1092
1093static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1094{
1095 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1096}
1097
1098/* dma_maxpq - reduce maxpq in the face of continued operations
1099 * @dma - dma device with PQ capability
1100 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1101 *
1102 * When an engine does not support native continuation we need 3 extra
1103 * source slots to reuse P and Q with the following coefficients:
1104 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1105 * 2/ {01} * Q : use Q to continue Q' calculation
1106 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1107 *
1108 * In the case where P is disabled we only need 1 extra source:
1109 * 1/ {01} * Q : use Q to continue Q' calculation
1110 */
1111static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1112{
1113 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1114 return dma_dev_to_maxpq(dma);
1115 else if (dmaf_p_disabled_continue(flags))
1116 return dma_dev_to_maxpq(dma) - 1;
1117 else if (dmaf_continue(flags))
1118 return dma_dev_to_maxpq(dma) - 3;
1119 BUG();
1120}
1121
1122static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1123 size_t dir_icg)
1124{
1125 if (inc) {
1126 if (dir_icg)
1127 return dir_icg;
1128 else if (sgl)
1129 return icg;
1130 }
1131
1132 return 0;
1133}
1134
1135static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1136 struct data_chunk *chunk)
1137{
1138 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1139 chunk->icg, chunk->dst_icg);
1140}
1141
1142static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1143 struct data_chunk *chunk)
1144{
1145 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1146 chunk->icg, chunk->src_icg);
1147}
1148
1149/* --- public DMA engine API --- */
1150
1151#ifdef CONFIG_DMA_ENGINE
1152void dmaengine_get(void);
1153void dmaengine_put(void);
1154#else
1155static inline void dmaengine_get(void)
1156{
1157}
1158static inline void dmaengine_put(void)
1159{
1160}
1161#endif
1162
1163#ifdef CONFIG_ASYNC_TX_DMA
1164#define async_dmaengine_get() dmaengine_get()
1165#define async_dmaengine_put() dmaengine_put()
1166#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1167#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1168#else
1169#define async_dma_find_channel(type) dma_find_channel(type)
1170#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1171#else
1172static inline void async_dmaengine_get(void)
1173{
1174}
1175static inline void async_dmaengine_put(void)
1176{
1177}
1178static inline struct dma_chan *
1179async_dma_find_channel(enum dma_transaction_type type)
1180{
1181 return NULL;
1182}
1183#endif /* CONFIG_ASYNC_TX_DMA */
1184void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1185 struct dma_chan *chan);
1186
1187static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1188{
1189 tx->flags |= DMA_CTRL_ACK;
1190}
1191
1192static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1193{
1194 tx->flags &= ~DMA_CTRL_ACK;
1195}
1196
1197static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1198{
1199 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1200}
1201
1202#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1203static inline void
1204__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1205{
1206 set_bit(tx_type, dstp->bits);
1207}
1208
1209#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1210static inline void
1211__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1212{
1213 clear_bit(tx_type, dstp->bits);
1214}
1215
1216#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1217static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1218{
1219 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1220}
1221
1222#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1223static inline int
1224__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1225{
1226 return test_bit(tx_type, srcp->bits);
1227}
1228
1229#define for_each_dma_cap_mask(cap, mask) \
1230 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1231
1232/**
1233 * dma_async_issue_pending - flush pending transactions to HW
1234 * @chan: target DMA channel
1235 *
1236 * This allows drivers to push copies to HW in batches,
1237 * reducing MMIO writes where possible.
1238 */
1239static inline void dma_async_issue_pending(struct dma_chan *chan)
1240{
1241 chan->device->device_issue_pending(chan);
1242}
1243
1244/**
1245 * dma_async_is_tx_complete - poll for transaction completion
1246 * @chan: DMA channel
1247 * @cookie: transaction identifier to check status of
1248 * @last: returns last completed cookie, can be NULL
1249 * @used: returns last issued cookie, can be NULL
1250 *
1251 * If @last and @used are passed in, upon return they reflect the driver
1252 * internal state and can be used with dma_async_is_complete() to check
1253 * the status of multiple cookies without re-checking hardware state.
1254 */
1255static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1256 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1257{
1258 struct dma_tx_state state;
1259 enum dma_status status;
1260
1261 status = chan->device->device_tx_status(chan, cookie, &state);
1262 if (last)
1263 *last = state.last;
1264 if (used)
1265 *used = state.used;
1266 return status;
1267}
1268
1269/**
1270 * dma_async_is_complete - test a cookie against chan state
1271 * @cookie: transaction identifier to test status of
1272 * @last_complete: last know completed transaction
1273 * @last_used: last cookie value handed out
1274 *
1275 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1276 * the test logic is separated for lightweight testing of multiple cookies
1277 */
1278static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1279 dma_cookie_t last_complete, dma_cookie_t last_used)
1280{
1281 if (last_complete <= last_used) {
1282 if ((cookie <= last_complete) || (cookie > last_used))
1283 return DMA_COMPLETE;
1284 } else {
1285 if ((cookie <= last_complete) && (cookie > last_used))
1286 return DMA_COMPLETE;
1287 }
1288 return DMA_IN_PROGRESS;
1289}
1290
1291static inline void
1292dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1293{
1294 if (st) {
1295 st->last = last;
1296 st->used = used;
1297 st->residue = residue;
1298 }
1299}
1300
1301#ifdef CONFIG_DMA_ENGINE
1302struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1303enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1304enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1305void dma_issue_pending_all(void);
1306struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
Googler9398cc32022-12-02 17:21:52 +08001307 dma_filter_fn fn, void *fn_param,
1308 struct device_node *np);
Googleraf606d22022-10-26 21:40:12 -07001309struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1310
1311struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1312struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1313
1314void dma_release_channel(struct dma_chan *chan);
1315int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1316#else
1317static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1318{
1319 return NULL;
1320}
1321static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1322{
1323 return DMA_COMPLETE;
1324}
1325static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1326{
1327 return DMA_COMPLETE;
1328}
1329static inline void dma_issue_pending_all(void)
1330{
1331}
1332static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
Googler9398cc32022-12-02 17:21:52 +08001333 dma_filter_fn fn,
1334 void *fn_param,
1335 struct device_node *np)
Googleraf606d22022-10-26 21:40:12 -07001336{
1337 return NULL;
1338}
1339static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1340 const char *name)
1341{
1342 return NULL;
1343}
1344static inline struct dma_chan *dma_request_chan(struct device *dev,
1345 const char *name)
1346{
1347 return ERR_PTR(-ENODEV);
1348}
1349static inline struct dma_chan *dma_request_chan_by_mask(
1350 const dma_cap_mask_t *mask)
1351{
1352 return ERR_PTR(-ENODEV);
1353}
1354static inline void dma_release_channel(struct dma_chan *chan)
1355{
1356}
1357static inline int dma_get_slave_caps(struct dma_chan *chan,
1358 struct dma_slave_caps *caps)
1359{
1360 return -ENXIO;
1361}
1362#endif
1363
1364#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1365
1366static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1367{
1368 struct dma_slave_caps caps;
1369 int ret;
1370
1371 ret = dma_get_slave_caps(tx->chan, &caps);
1372 if (ret)
1373 return ret;
1374
1375 if (caps.descriptor_reuse) {
1376 tx->flags |= DMA_CTRL_REUSE;
1377 return 0;
1378 } else {
1379 return -EPERM;
1380 }
1381}
1382
1383static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1384{
1385 tx->flags &= ~DMA_CTRL_REUSE;
1386}
1387
1388static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1389{
1390 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1391}
1392
1393static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1394{
1395 /* this is supported for reusable desc, so check that */
1396 if (dmaengine_desc_test_reuse(desc))
1397 return desc->desc_free(desc);
1398 else
1399 return -EPERM;
1400}
1401
1402/* --- DMA device --- */
1403
1404int dma_async_device_register(struct dma_device *device);
Googler9398cc32022-12-02 17:21:52 +08001405int dmaenginem_async_device_register(struct dma_device *device);
Googleraf606d22022-10-26 21:40:12 -07001406void dma_async_device_unregister(struct dma_device *device);
1407void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1408struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1409struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
Googler9398cc32022-12-02 17:21:52 +08001410#define dma_request_channel(mask, x, y) \
1411 __dma_request_channel(&(mask), x, y, NULL)
Googleraf606d22022-10-26 21:40:12 -07001412#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1413 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1414
1415static inline struct dma_chan
1416*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1417 dma_filter_fn fn, void *fn_param,
1418 struct device *dev, const char *name)
1419{
1420 struct dma_chan *chan;
1421
1422 chan = dma_request_slave_channel(dev, name);
1423 if (chan)
1424 return chan;
1425
1426 if (!fn || !fn_param)
1427 return NULL;
1428
Googler9398cc32022-12-02 17:21:52 +08001429 return __dma_request_channel(mask, fn, fn_param, NULL);
Googleraf606d22022-10-26 21:40:12 -07001430}
1431#endif /* DMAENGINE_H */