blob: af6daf34fbae22d90475fd4f88d1f34c67eb9a6f [file] [log] [blame]
/*
* Copyright (C) 2014 NXP Semiconductors, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <linux/of_gpio.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/debugfs.h>
#include <linux/version.h>
#include <linux/input.h>
#include "config.h"
#include "tfa98xx.h"
#include "tfa.h"
#include "tfa_dsp_fw.h"
/* MTK platform header file. */
//#include <mtk-sp-spk-amp.h>
#ifdef pr_fmt
#undef pr_fmt
#endif
#define pr_fmt(fmt) "[tfa98xx.c Line(%04d)] %s(): " fmt, __LINE__, __func__
/* required for enum tfa9912_irq */
#include "tfa98xx_tfafieldnames.h"
#define TFA98XX_VERSION TFA98XX_API_REV_STR
#define DEVICENAME_MAX_LEN (30)
#define I2C_RETRIES 50
#define I2C_RETRY_DELAY 5 /* ms */
/* Change volume selection behavior:
* Uncomment following line to generate a profile change when updating
* a volume control (also changes to the profile of the modified volume
* control)
*/
/*#define TFA98XX_ALSA_CTRL_PROF_CHG_ON_VOL */
/* Supported rates and data formats */
#define TFA98XX_RATES SNDRV_PCM_RATE_8000_48000
#define TFA98XX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S32_LE)
#define TF98XX_MAX_DSP_START_TRY_COUNT 10
/* data accessible by all instances */
/* Memory pool used for DSP messages */
static struct kmem_cache *tfa98xx_cache;
/* Mutex protected data */
static DEFINE_MUTEX(tfa98xx_mutex);
static LIST_HEAD(tfa98xx_device_list);
static int tfa98xx_device_count;
static int tfa98xx_sync_count;
/* list of user selectable profiles */
static LIST_HEAD(profile_list);
/* number of user selectable profiles */
static int tfa98xx_mixer_profiles;
/* current mixer profile */
static int tfa98xx_mixer_profile;
static struct snd_kcontrol_new *tfa98xx_controls;
static struct nxpTfaContainer *tfa98xx_container;
static int tfa98xx_kmsg_regs;
static int tfa98xx_ftrace_regs;
static char *fw_name = "tfa98xx.cnt";
module_param(fw_name, charp, 0644);
MODULE_PARM_DESC(fw_name,
"TFA98xx DSP firmware (container file) name.");
static int trace_level;
module_param(trace_level, int, 0444);
MODULE_PARM_DESC(trace_level,
"TFA98xx debug trace level (0=off, bits:1=verbose, 2=regdmesg,3=regftrace,4=timing).");
static char *dflt_prof_name = "";
module_param(dflt_prof_name, charp, 0444);
static int no_start;
module_param(no_start, int, 0444);
MODULE_PARM_DESC(no_start,
"do not start the work queue;for debugging via user\n");
static int no_reset;
module_param(no_reset, int, 0444);
MODULE_PARM_DESC(no_reset,
"do not use the reset line;for debugging via user\n");
static int pcm_no_constraint;
module_param(pcm_no_constraint, int, 0444);
MODULE_PARM_DESC(pcm_no_constraint,
"do not use constraints for PCM parameters\n");
static void tfa98xx_tapdet_check_update(struct tfa98xx *tfa98xx);
static int tfa98xx_get_fssel(unsigned int rate);
static void tfa98xx_interrupt_enable(struct tfa98xx *tfa98xx, bool enable);
static int tfa98xx_load_container(struct tfa98xx *tfa98xx);
static int get_profile_from_list(char *buf, int id);
static int get_profile_id_for_sr(int id, unsigned int rate);
struct tfa98xx_rate {
unsigned int rate;
unsigned int fssel;
};
static uint8_t g_tfa98xx_firmware_status;
#if 0
int tfa98xx_send_data_to_dsp(int8_t *buffer, int16_t DataLength)
{
int result = 0;
if (buffer == NULL)
return -EFAULT;
result = mtk_spk_send_ipi_buf_to_dsp(buffer, DataLength);
/*msleep(50);*/
return result;
}
int tfa98xx_receive_data_from_dsp(int8_t *buffer,
int16_t size,
uint32_t *DataLength)
{
int result = 0;
result = mtk_spk_recv_ipi_buf_from_dsp(buffer, size, DataLength);
return result;
}
#endif
static const struct tfa98xx_rate rate_to_fssel[] = {
{ 8000, 0 },
{ 11025, 1 },
{ 12000, 2 },
{ 16000, 3 },
{ 22050, 4 },
{ 24000, 5 },
{ 32000, 6 },
{ 44100, 7 },
{ 48000, 8 },
};
static inline char *tfa_cont_profile_name(struct tfa98xx *tfa98xx, int prof_idx)
{
if (tfa98xx->tfa->cnt == NULL)
return NULL;
return tfaContProfileName(tfa98xx->tfa->cnt,
tfa98xx->tfa->dev_idx, prof_idx);
}
static enum tfa_error tfa98xx_write_re25(struct tfa_device *tfa, int value)
{
enum tfa_error err;
/* clear MTPEX */
err = tfa_dev_mtp_set(tfa, TFA_MTP_EX, 0);
if (err == tfa_error_ok) {
/* set RE25 in shadow regiser */
err = tfa_dev_mtp_set(tfa, TFA_MTP_RE25_PRIM, value);
}
if (err == tfa_error_ok) {
/* set MTPEX to copy RE25 into MTP */
err = tfa_dev_mtp_set(tfa, TFA_MTP_EX, 2);
}
return err;
}
/* Wrapper for tfa start */
static enum tfa_error tfa98xx_tfa_start(struct tfa98xx *tfa98xx,
int next_profile, int vstep)
{
enum tfa_error err;
ktime_t start_time = 0, stop_time;
u64 delta_time;
//pr_debug("next_profile=%d vstep=%d\n", next_profile, vstep);
if (trace_level & 8)
start_time = ktime_get_boottime();
err = tfa_dev_start(tfa98xx->tfa, next_profile, vstep);
pr_debug("next_profile=%d, vstep=%d, after performed tfa_dev_start return (%d)\n",
next_profile, vstep, err);
if (trace_level & 8) {
stop_time = ktime_get_boottime();
delta_time = ktime_to_ns(ktime_sub(stop_time, start_time));
do_div(delta_time, 1000);
dev_dbg(&tfa98xx->i2c->dev, "tfa_dev_start(%d,%d) time = %lld us\n",
next_profile, vstep, delta_time);
}
if ((err == tfa_error_ok) && (tfa98xx->set_mtp_cal)) {
enum tfa_error err_cal;
err_cal = tfa98xx_write_re25(tfa98xx->tfa, tfa98xx->cal_data);
if (err_cal != tfa_error_ok) {
pr_err("Error, setting calibration value in mtp, err=%d\n",
err_cal);
} else {
tfa98xx->set_mtp_cal = false;
pr_info("Calibration value (%d) set in mtp\n",
tfa98xx->cal_data);
}
}
/* Check and update tap-detection state (in case of profile change) */
tfa98xx_tapdet_check_update(tfa98xx);
/* Remove sticky bit by reading it once */
tfa_get_noclk(tfa98xx->tfa);
/* A cold start erases the configuration, including interrupts setting.
* Restore it if required
*/
tfa98xx_interrupt_enable(tfa98xx, true);
return err;
}
static int tfa98xx_input_open(struct input_dev *dev)
{
struct tfa98xx *tfa98xx = input_get_drvdata(dev);
dev_dbg(tfa98xx->codec->dev, "opening device file\n");
/* note: open function is called only once by the framework.
* No need to count number of open file instances.
*/
if (tfa98xx->dsp_fw_state != TFA98XX_DSP_FW_OK) {
dev_dbg(&tfa98xx->i2c->dev,
"DSP not loaded, cannot start tap-detection\n");
return -EIO;
}
/* enable tap-detection service */
tfa98xx->tapdet_open = true;
tfa98xx_tapdet_check_update(tfa98xx);
return 0;
}
static void tfa98xx_input_close(struct input_dev *dev)
{
struct tfa98xx *tfa98xx = input_get_drvdata(dev);
dev_dbg(tfa98xx->codec->dev, "closing device file\n");
/* Note: close function is called if the device is unregistered */
/* disable tap-detection service */
tfa98xx->tapdet_open = false;
tfa98xx_tapdet_check_update(tfa98xx);
}
static int tfa98xx_register_inputdev(struct tfa98xx *tfa98xx)
{
int err;
struct input_dev *input;
input = input_allocate_device();
if (!input) {
dev_err(tfa98xx->codec->dev, "Unable to allocate input device\n");
return -ENOMEM;
}
input->evbit[0] = BIT_MASK(EV_KEY);
input->keybit[BIT_WORD(BTN_0)] |= BIT_MASK(BTN_0);
input->keybit[BIT_WORD(BTN_1)] |= BIT_MASK(BTN_1);
input->keybit[BIT_WORD(BTN_2)] |= BIT_MASK(BTN_2);
input->keybit[BIT_WORD(BTN_3)] |= BIT_MASK(BTN_3);
input->keybit[BIT_WORD(BTN_4)] |= BIT_MASK(BTN_4);
input->keybit[BIT_WORD(BTN_5)] |= BIT_MASK(BTN_5);
input->keybit[BIT_WORD(BTN_6)] |= BIT_MASK(BTN_6);
input->keybit[BIT_WORD(BTN_7)] |= BIT_MASK(BTN_7);
input->keybit[BIT_WORD(BTN_8)] |= BIT_MASK(BTN_8);
input->keybit[BIT_WORD(BTN_9)] |= BIT_MASK(BTN_9);
input->open = tfa98xx_input_open;
input->close = tfa98xx_input_close;
input->name = "tfa98xx-tapdetect";
input->id.bustype = BUS_I2C;
input_set_drvdata(input, tfa98xx);
err = input_register_device(input);
if (err) {
dev_err(tfa98xx->codec->dev, "Unable to register input device\n");
goto err_free_dev;
}
dev_dbg(tfa98xx->codec->dev, "Input device for tap-detection registered: %s\n",
input->name);
tfa98xx->input = input;
return 0;
err_free_dev:
input_free_device(input);
return err;
}
/*
* Check if an input device for tap-detection can and shall be registered.
* Register it if appropriate.
* If already registered, check if still relevant and remove it if necessary.
* unregister: true to request inputdev unregistration.
*/
static void __tfa98xx_inputdev_check_register(struct tfa98xx *tfa98xx,
bool unregister)
{
bool tap_profile = false;
unsigned int i;
for (i = 0; i < tfa_cnt_get_dev_nprof(tfa98xx->tfa); i++) {
if (strstr(tfa_cont_profile_name(tfa98xx, i), ".tap")) {
tap_profile = true;
tfa98xx->tapdet_profiles |= 1 << i;
dev_info(tfa98xx->codec->dev,
"found a tap-detection profile (%d - %s)\n",
i, tfa_cont_profile_name(tfa98xx, i));
}
}
/* Check for device support:
* - at device level
* - at container (profile) level
*/
if (!(tfa98xx->flags & TFA98XX_FLAG_TAPDET_AVAILABLE) ||
!tap_profile || unregister) {
/* No input device supported or required */
if (tfa98xx->input) {
input_unregister_device(tfa98xx->input);
tfa98xx->input = NULL;
}
return;
}
/* input device required */
if (tfa98xx->input)
dev_info(tfa98xx->codec->dev, "Input device already registered, skipping\n");
else
tfa98xx_register_inputdev(tfa98xx);
}
static void tfa98xx_inputdev_check_register(struct tfa98xx *tfa98xx)
{
__tfa98xx_inputdev_check_register(tfa98xx, false);
}
static void tfa98xx_inputdev_unregister(struct tfa98xx *tfa98xx)
{
__tfa98xx_inputdev_check_register(tfa98xx, true);
}
#ifdef CONFIG_DEBUG_FS
/* OTC reporting
* Returns the MTP0 OTC bit value
*/
static int tfa98xx_dbgfs_otc_get(void *data, u64 *val)
{
struct i2c_client *i2c = (struct i2c_client *)data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
int value;
mutex_lock(&tfa98xx->dsp_lock);
value = tfa_dev_mtp_get(tfa98xx->tfa, TFA_MTP_OTC);
mutex_unlock(&tfa98xx->dsp_lock);
if (value < 0) {
pr_err("[0x%x] Unable to check DSP access: %d\n",
tfa98xx->i2c->addr, value);
return -EIO;
}
*val = value;
pr_debug("[0x%x] OTC : %d\n", tfa98xx->i2c->addr, value);
return 0;
}
static int tfa98xx_dbgfs_otc_set(void *data, u64 val)
{
struct i2c_client *i2c = (struct i2c_client *)data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
enum tfa_error err;
if (val != 0 && val != 1) {
pr_err("[0x%x] Unexpected value %llu\n",
tfa98xx->i2c->addr, val);
return -EINVAL;
}
mutex_lock(&tfa98xx->dsp_lock);
err = tfa_dev_mtp_set(tfa98xx->tfa, TFA_MTP_OTC, val);
mutex_unlock(&tfa98xx->dsp_lock);
if (err != tfa_error_ok) {
pr_err("[0x%x] Unable to check DSP access: %d\n",
tfa98xx->i2c->addr, err);
return -EIO;
}
pr_debug("[0x%x] OTC < %llu\n", tfa98xx->i2c->addr, val);
return 0;
}
static int tfa98xx_dbgfs_mtpex_get(void *data, u64 *val)
{
struct i2c_client *i2c = (struct i2c_client *)data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
int value;
mutex_lock(&tfa98xx->dsp_lock);
value = tfa_dev_mtp_get(tfa98xx->tfa, TFA_MTP_EX);
mutex_unlock(&tfa98xx->dsp_lock);
if (value < 0) {
pr_err("[0x%x] Unable to check DSP access: %d\n",
tfa98xx->i2c->addr, value);
return -EIO;
}
*val = value;
pr_debug("[0x%x] MTPEX : %d\n", tfa98xx->i2c->addr, value);
return 0;
}
static int tfa98xx_dbgfs_mtpex_set(void *data, u64 val)
{
struct i2c_client *i2c = (struct i2c_client *)data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
enum tfa_error err;
if (val != 0) {
pr_err("[0x%x] Can only clear MTPEX (0 value expected)\n",
tfa98xx->i2c->addr);
return -EINVAL;
}
mutex_lock(&tfa98xx->dsp_lock);
err = tfa_dev_mtp_set(tfa98xx->tfa, TFA_MTP_EX, val);
mutex_unlock(&tfa98xx->dsp_lock);
if (err != tfa_error_ok) {
pr_err("[0x%x] Unable to check DSP access: %d\n",
tfa98xx->i2c->addr, err);
return -EIO;
}
pr_debug("[0x%x] MTPEX < 0\n", tfa98xx->i2c->addr);
return 0;
}
static int tfa98xx_dbgfs_temp_get(void *data, u64 *val)
{
struct i2c_client *i2c = (struct i2c_client *)data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
mutex_lock(&tfa98xx->dsp_lock);
*val = tfa98xx_get_exttemp(tfa98xx->tfa);
mutex_unlock(&tfa98xx->dsp_lock);
pr_debug("[0x%x] TEMP : %llu\n", tfa98xx->i2c->addr, *val);
return 0;
}
static int tfa98xx_dbgfs_temp_set(void *data, u64 val)
{
struct i2c_client *i2c = (struct i2c_client *)data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
mutex_lock(&tfa98xx->dsp_lock);
tfa98xx_set_exttemp(tfa98xx->tfa, (short)val);
mutex_unlock(&tfa98xx->dsp_lock);
pr_debug("[0x%x] TEMP < %llu\n", tfa98xx->i2c->addr, val);
return 0;
}
static ssize_t tfa98xx_dbgfs_start_set(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct i2c_client *i2c = file->private_data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
enum tfa_error ret;
char buf[32];
const char ref[] = "please calibrate now";
int buf_size;
/* check string length, and account for eol */
if (count > sizeof(ref) + 1 || count < (sizeof(ref) - 1))
return -EINVAL;
buf_size = min(count, (size_t)(sizeof(buf)-1));
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
buf[buf_size] = 0;
/* Compare string, excluding the trailing \0 and the potentials eol */
if (strncmp(buf, ref, sizeof(ref) - 1))
return -EINVAL;
mutex_lock(&tfa98xx->dsp_lock);
ret = tfa_calibrate(tfa98xx->tfa);
if (ret == tfa_error_ok)
ret = tfa98xx_tfa_start(tfa98xx,
tfa98xx->profile,
tfa98xx->vstep);
if (ret == tfa_error_ok)
tfa_dev_set_state(tfa98xx->tfa, TFA_STATE_UNMUTE, 0);
mutex_unlock(&tfa98xx->dsp_lock);
if (ret) {
pr_info("[0x%x] Calibration start failed (%d)\n",
tfa98xx->i2c->addr, ret);
count = -EIO;
} else {
pr_info("[0x%x] Calibration started\n", tfa98xx->i2c->addr);
}
return count;
}
static ssize_t tfa98xx_dbgfs_r_read(struct file *file,
char __user *user_buf, size_t count,
loff_t *ppos)
{
struct i2c_client *i2c = file->private_data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
char *str;
uint16_t status;
int ret;
mutex_lock(&tfa98xx->dsp_lock);
/* Need to ensure DSP is access-able,
*use mtp read access for this purpose
*/
ret = tfa98xx_get_mtp(tfa98xx->tfa, &status);
if (ret) {
ret = -EIO;
pr_err("[0x%x] MTP read failed\n", tfa98xx->i2c->addr);
goto r_c_err;
}
ret = tfaRunSpeakerCalibration(tfa98xx->tfa);
if (ret) {
ret = -EIO;
pr_err("[0x%x] calibration failed\n", tfa98xx->i2c->addr);
goto r_c_err;
}
str = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!str) {
ret = -ENOMEM;
pr_err("[0x%x] memory allocation failed\n", tfa98xx->i2c->addr);
goto r_c_err;
}
if (tfa98xx->tfa->spkr_count > 1) {
ret = snprintf(str, PAGE_SIZE,
"Prim:%d mOhms, Sec:%d mOhms\n",
tfa98xx->tfa->mohm[0],
tfa98xx->tfa->mohm[1]);
} else {
ret = snprintf(str, PAGE_SIZE,
"Prim:%d mOhms\n",
tfa98xx->tfa->mohm[0]);
}
pr_debug("[0x%x] calib_done: %s", tfa98xx->i2c->addr, str);
if (ret < 0)
goto r_err;
ret = simple_read_from_buffer(user_buf, count, ppos, str, ret);
r_err:
kfree(str);
r_c_err:
mutex_unlock(&tfa98xx->dsp_lock);
return ret;
}
static ssize_t tfa98xx_dbgfs_version_read(struct file *file,
char __user *user_buf, size_t count,
loff_t *ppos)
{
char str[] = TFA98XX_VERSION "\n";
int ret;
ret = simple_read_from_buffer(user_buf, count, ppos, str, sizeof(str));
return ret;
}
static ssize_t tfa98xx_dbgfs_dsp_state_get(struct file *file,
char __user *user_buf, size_t count,
loff_t *ppos)
{
struct i2c_client *i2c = file->private_data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
int ret = 0;
char *str;
switch (tfa98xx->dsp_init) {
case TFA98XX_DSP_INIT_STOPPED:
str = "Stopped\n";
break;
case TFA98XX_DSP_INIT_RECOVER:
str = "Recover requested\n";
break;
case TFA98XX_DSP_INIT_FAIL:
str = "Failed init\n";
break;
case TFA98XX_DSP_INIT_PENDING:
str = "Pending init\n";
break;
case TFA98XX_DSP_INIT_DONE:
str = "Init complete\n";
break;
default:
str = "Invalid\n";
}
pr_debug("[0x%x] dsp_state : %s\n", tfa98xx->i2c->addr, str);
ret = simple_read_from_buffer(user_buf, count, ppos, str, strlen(str));
return ret;
}
static ssize_t tfa98xx_dbgfs_dsp_state_set(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct i2c_client *i2c = file->private_data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
enum tfa_error ret;
char buf[32];
const char start_cmd[] = "start";
const char stop_cmd[] = "stop";
const char mon_start_cmd[] = "monitor start";
const char mon_stop_cmd[] = "monitor stop";
int buf_size;
buf_size = min(count, (size_t)(sizeof(buf)-1));
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
buf[buf_size] = 0;
/* Compare strings, excluding the trailing \0 */
if (!strncmp(buf, start_cmd, sizeof(start_cmd) - 1)) {
pr_info("[0x%x] Manual triggering of dsp start...\n",
tfa98xx->i2c->addr);
mutex_lock(&tfa98xx->dsp_lock);
ret = tfa98xx_tfa_start(tfa98xx,
tfa98xx->profile,
tfa98xx->vstep);
mutex_unlock(&tfa98xx->dsp_lock);
pr_debug("[0x%x] tfa_dev_start complete: %d\n",
tfa98xx->i2c->addr, ret);
} else if (!strncmp(buf, stop_cmd, sizeof(stop_cmd) - 1)) {
pr_info("[0x%x] Manual triggering of dsp stop...\n",
tfa98xx->i2c->addr);
mutex_lock(&tfa98xx->dsp_lock);
ret = tfa_dev_stop(tfa98xx->tfa);
mutex_unlock(&tfa98xx->dsp_lock);
pr_debug("[0x%x] tfa_dev_stop complete: %d\n",
tfa98xx->i2c->addr, ret);
} else if (!strncmp(buf, mon_start_cmd, sizeof(mon_start_cmd) - 1)) {
pr_info("[0x%x] Manual start of monitor thread...\n",
tfa98xx->i2c->addr);
queue_delayed_work(tfa98xx->tfa98xx_wq,
&tfa98xx->monitor_work, HZ);
} else if (!strncmp(buf, mon_stop_cmd, sizeof(mon_stop_cmd) - 1)) {
pr_info("[0x%x] Manual stop of monitor thread...\n",
tfa98xx->i2c->addr);
cancel_delayed_work_sync(&tfa98xx->monitor_work);
} else {
return -EINVAL;
}
return count;
}
static ssize_t tfa98xx_dbgfs_fw_state_get(struct file *file,
char __user *user_buf, size_t count,
loff_t *ppos)
{
struct i2c_client *i2c = file->private_data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
char *str;
switch (tfa98xx->dsp_fw_state) {
case TFA98XX_DSP_FW_NONE:
str = "None\n";
break;
case TFA98XX_DSP_FW_PENDING:
str = "Pending\n";
break;
case TFA98XX_DSP_FW_FAIL:
str = "Fail\n";
break;
case TFA98XX_DSP_FW_OK:
str = "Ok\n";
break;
default:
str = "Invalid\n";
}
pr_debug("[0x%x] fw_state : %s", tfa98xx->i2c->addr, str);
return simple_read_from_buffer(user_buf, count, ppos, str, strlen(str));
}
#ifdef TFA_NON_DSP_SOLUTION
#else
int send_tfa_cal_apr(void *buf, int cmd_size, bool bRead)
{
return 0;
}
#endif
static ssize_t tfa98xx_dbgfs_rpc_read(struct file *file,
char __user *user_buf, size_t count,
loff_t *ppos)
{
struct i2c_client *i2c = file->private_data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
int ret = 0;
uint8_t *buffer;
enum Tfa98xx_Error error;
if (tfa98xx->tfa == NULL)
return -ENODEV;
if (count == 0)
return 0;
buffer = kmalloc(count, GFP_KERNEL);
if (buffer == NULL)
return -ENOMEM;
mutex_lock(&tfa98xx->dsp_lock);
if (tfa98xx->tfa->is_probus_device) {
//uint32_t DataLength = 0;
if (tfa98xx->dsp_init == TFA98XX_DSP_INIT_DONE) {
error = Tfa98xx_Error_Ok;
//error = tfa98xx_receive_data_from_dsp(
// buffer, count, &DataLength);
} else {
error = -ENODEV;
pr_info("receive data fail as DSP NOT work\n");
}
} else {
error = dsp_msg_read(tfa98xx->tfa, count, buffer);
}
mutex_unlock(&tfa98xx->dsp_lock);
if (error != Tfa98xx_Error_Ok) {
pr_debug("[0x%x] dsp_msg_read error: %d\n",
tfa98xx->i2c->addr, error);
kfree(buffer);
return -EFAULT;
}
ret = copy_to_user(user_buf, buffer, count);
kfree(buffer);
if (ret)
return -EFAULT;
*ppos += count;
return count;
}
static ssize_t tfa98xx_dbgfs_rpc_send(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct i2c_client *i2c = file->private_data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
struct nxpTfaFileDsc *msg_file;
enum Tfa98xx_Error error;
int err = 0;
if (tfa98xx->tfa == NULL) {
pr_debug("[0x%x] dsp is not available\n", tfa98xx->i2c->addr);
return -ENODEV;
}
if (count == 0)
return 0;
/* msg_file.name is not used */
msg_file = kmalloc(count + sizeof(struct nxpTfaFileDsc), GFP_KERNEL);
if (msg_file == NULL)
return -ENOMEM;
msg_file->size = count;
if (copy_from_user(msg_file->data, user_buf, count))
return -EFAULT;
if (tfa98xx->tfa->is_probus_device) {
mutex_lock(&tfa98xx->dsp_lock);
if (tfa98xx->dsp_init == TFA98XX_DSP_INIT_DONE) {
error = Tfa98xx_Error_Ok;
//error = tfa98xx_send_data_to_dsp(msg_file->data,
// msg_file->size);
} else {
error = -ENODEV;
}
if (error != Tfa98xx_Error_Ok) {
pr_debug("[0x%x] dsp_msg error: %d\n",
tfa98xx->i2c->addr, error);
err = -EIO;
}
mutex_unlock(&tfa98xx->dsp_lock);
usleep_range(2000, 3000);
} else {
mutex_lock(&tfa98xx->dsp_lock);
if ((msg_file->data[0] == 'M') && (msg_file->data[1] == 'G')) {
/* int vstep_idx, int vstep_msg_idx both 0 */
error = tfaContWriteFile(tfa98xx->tfa, msg_file, 0, 0);
if (error != Tfa98xx_Error_Ok) {
pr_debug("[0x%x] tfaContWriteFile error: %d\n",
tfa98xx->i2c->addr, error);
err = -EIO;
}
} else {
error = dsp_msg(tfa98xx->tfa, msg_file->size,
msg_file->data);
if (error != Tfa98xx_Error_Ok) {
pr_debug("[0x%x] dsp_msg error: %d\n",
tfa98xx->i2c->addr, error);
err = -EIO;
}
}
mutex_unlock(&tfa98xx->dsp_lock);
}
kfree(msg_file);
if (err)
return err;
return count;
}
/* -- RPC */
static int tfa98xx_dbgfs_pga_gain_get(void *data, u64 *val)
{
struct i2c_client *i2c = (struct i2c_client *)data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
unsigned int value;
value = tfa_get_pga_gain(tfa98xx->tfa);
if (value < 0)
return -EINVAL;
*val = value;
return 0;
}
static int tfa98xx_dbgfs_pga_gain_set(void *data, u64 val)
{
struct i2c_client *i2c = (struct i2c_client *)data;
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
uint16_t value;
int err;
value = val & 0xffff;
if (value > 7)
return -EINVAL;
err = tfa_set_pga_gain(tfa98xx->tfa, value);
if (err < 0)
return -EINVAL;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(tfa98xx_dbgfs_calib_otc_fops,
tfa98xx_dbgfs_otc_get,
tfa98xx_dbgfs_otc_set,
"%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(tfa98xx_dbgfs_calib_mtpex_fops,
tfa98xx_dbgfs_mtpex_get,
tfa98xx_dbgfs_mtpex_set,
"%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(tfa98xx_dbgfs_calib_temp_fops,
tfa98xx_dbgfs_temp_get,
tfa98xx_dbgfs_temp_set,
"%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(tfa98xx_dbgfs_pga_gain_fops,
tfa98xx_dbgfs_pga_gain_get,
tfa98xx_dbgfs_pga_gain_set,
"%llu\n");
static const struct file_operations tfa98xx_dbgfs_calib_start_fops = {
.open = simple_open,
.write = tfa98xx_dbgfs_start_set,
.llseek = default_llseek,
};
static const struct file_operations tfa98xx_dbgfs_r_fops = {
.open = simple_open,
.read = tfa98xx_dbgfs_r_read,
.llseek = default_llseek,
};
static const struct file_operations tfa98xx_dbgfs_version_fops = {
.open = simple_open,
.read = tfa98xx_dbgfs_version_read,
.llseek = default_llseek,
};
static const struct file_operations tfa98xx_dbgfs_dsp_state_fops = {
.open = simple_open,
.read = tfa98xx_dbgfs_dsp_state_get,
.write = tfa98xx_dbgfs_dsp_state_set,
.llseek = default_llseek,
};
static const struct file_operations tfa98xx_dbgfs_fw_state_fops = {
.open = simple_open,
.read = tfa98xx_dbgfs_fw_state_get,
.llseek = default_llseek,
};
static const struct file_operations tfa98xx_dbgfs_rpc_fops = {
.open = simple_open,
.read = tfa98xx_dbgfs_rpc_read,
.write = tfa98xx_dbgfs_rpc_send,
.llseek = default_llseek,
};
static void tfa98xx_debug_init(struct tfa98xx *tfa98xx, struct i2c_client *i2c)
{
char name[50];
scnprintf(name, MAX_CONTROL_NAME, "%s-%x", i2c->name, i2c->addr);
tfa98xx->dbg_dir = debugfs_create_dir(name, NULL);
debugfs_create_file("OTC", 0664, tfa98xx->dbg_dir,
i2c, &tfa98xx_dbgfs_calib_otc_fops);
debugfs_create_file("MTPEX", 0664, tfa98xx->dbg_dir,
i2c, &tfa98xx_dbgfs_calib_mtpex_fops);
debugfs_create_file("TEMP", 0664, tfa98xx->dbg_dir,
i2c, &tfa98xx_dbgfs_calib_temp_fops);
debugfs_create_file("calibrate", 0664, tfa98xx->dbg_dir,
i2c, &tfa98xx_dbgfs_calib_start_fops);
debugfs_create_file("R", 0444, tfa98xx->dbg_dir,
i2c, &tfa98xx_dbgfs_r_fops);
debugfs_create_file("version", 0444, tfa98xx->dbg_dir,
i2c, &tfa98xx_dbgfs_version_fops);
debugfs_create_file("dsp-state", 0664, tfa98xx->dbg_dir,
i2c, &tfa98xx_dbgfs_dsp_state_fops);
debugfs_create_file("fw-state", 0664, tfa98xx->dbg_dir,
i2c, &tfa98xx_dbgfs_fw_state_fops);
debugfs_create_file("rpc", 0664, tfa98xx->dbg_dir,
i2c, &tfa98xx_dbgfs_rpc_fops);
if (tfa98xx->flags & TFA98XX_FLAG_SAAM_AVAILABLE) {
dev_dbg(tfa98xx->dev, "Adding pga_gain debug interface\n");
debugfs_create_file("pga_gain", 0444, tfa98xx->dbg_dir,
tfa98xx->i2c,
&tfa98xx_dbgfs_pga_gain_fops);
}
}
static void tfa98xx_debug_remove(struct tfa98xx *tfa98xx)
{
debugfs_remove_recursive(tfa98xx->dbg_dir);
}
#endif
/* copies the profile basename (i.e. part until .) into buf */
static void get_profile_basename(char *buf, char *profile)
{
int cp_len = 0, idx = 0;
char *pch;
pch = strchr(profile, '.');
idx = pch - profile;
cp_len = (pch != NULL) ? idx : (int) strlen(profile);
memcpy(buf, profile, cp_len);
buf[cp_len] = 0;
}
/* return the profile name accociated with id from the profile list */
static int get_profile_from_list(char *buf, int id)
{
struct tfa98xx_baseprofile *bprof;
int err = 0;
list_for_each_entry(bprof, &profile_list, list) {
if (bprof->item_id == id) {
strcpy(buf, bprof->basename);
return err;
}
}
err = -1;
return err;
}
/* search for the profile in the profile list */
static int is_profile_in_list(char *profile, int len)
{
struct tfa98xx_baseprofile *bprof;
int err = 0;
list_for_each_entry(bprof, &profile_list, list) {
if ((len == bprof->len) &&
(strncmp(bprof->basename, profile, len) == 0)) {
err = 1;
return err;
}
}
return err;
}
/*
* for the profile with id, look if the requested samplerate is
* supported, if found return the (container)profile for this
* samplerate, on error or if not found return -1
*/
static int get_profile_id_for_sr(int id, unsigned int rate)
{
int idx = 0, err = -1;
struct tfa98xx_baseprofile *bprof;
list_for_each_entry(bprof, &profile_list, list) {
if (id == bprof->item_id) {
idx = tfa98xx_get_fssel(rate);
if (idx < 0) {
/* samplerate not supported */
return err;
}
return bprof->sr_rate_sup[idx];
}
}
/* profile not found */
return err;
}
/* check if this profile is a calibration profile */
static int is_calibration_profile(char *profile)
{
if (strstr(profile, ".cal") != NULL)
return 1;
return 0;
}
/*
* adds the (container)profile index of the samplerate found in
* the (container)profile to a fixed samplerate table in the (mixer)profile
*/
static int add_sr_to_profile(struct tfa98xx *tfa98xx,
char *basename,
int len,
int profile)
{
struct tfa98xx_baseprofile *bprof;
int idx = 0, err = -1;
unsigned int sr = 0;
list_for_each_entry(bprof, &profile_list, list) {
if ((len == bprof->len) &&
(strncmp(bprof->basename, basename, len) == 0)) {
/* add supported samplerate for this profile */
sr = tfa98xx_get_profile_sr(tfa98xx->tfa, profile);
if (!sr) {
pr_err("unable to identify supported sample rate for %s\n",
bprof->basename);
return err;
}
/* get the index for this samplerate */
idx = tfa98xx_get_fssel(sr);
if (idx < 0 || idx >= TFA98XX_NUM_RATES) {
pr_err("invalid index for samplerate %d\n",
idx);
return err;
}
/* enter the (container)profile for this samplerate at
* the corresponding index
*/
bprof->sr_rate_sup[idx] = profile;
pr_debug("added profile:samplerate = [%d:%d] for mixer profile: %s\n",
profile, sr, bprof->basename);
}
}
err = 0;
return err;
}
static int tfa98xx_get_profile(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
mutex_lock(&tfa98xx_mutex);
ucontrol->value.integer.value[0] = tfa98xx_mixer_profile;
mutex_unlock(&tfa98xx_mutex);
return 0;
}
static int tfa98xx_set_profile(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tfa98xx *tfa98xx = snd_soc_component_get_drvdata(codec);
int change = 0;
int new_profile;
int prof_idx;
int profile_count = tfa98xx_mixer_profiles;
int profile = tfa98xx_mixer_profile;
if (tfa98xx_container == NULL) {
pr_err("the firmware hasn't yet been loaded!!\n");
return -EINVAL;
}
if (no_start != 0)
return 0;
new_profile = ucontrol->value.integer.value[0];
if (new_profile == profile)
return 0;
if ((new_profile < 0) || (new_profile >= profile_count)) {
pr_err("not existing profile (%d)\n", new_profile);
return -EINVAL;
}
/* get the container profile for the requested sample rate */
prof_idx = get_profile_id_for_sr(new_profile, tfa98xx->rate);
if (prof_idx < 0) {
pr_err("tfa98xx: sample rate [%d] not supported for this mixer profile [%d].\n",
tfa98xx->rate, new_profile);
return 0;
}
pr_debug("selected container profile [%d]\n", prof_idx);
/* update mixer profile */
tfa98xx_mixer_profile = new_profile;
/* modified by jiangtao.zeng begin. */
/* we are updating profile index only if the device is not in
* operating mode, and will be start in tfa98xx_mute_stream() later.
* if the device in operating mode, we will apply new
* profile now.
*/
mutex_lock(&tfa98xx_mutex);
list_for_each_entry(tfa98xx, &tfa98xx_device_list, list) {
int err;
int ready = 0;
/* update 'real' profile (container profile) */
tfa98xx->profile = prof_idx;
tfa98xx->vstep = tfa98xx->prof_vsteps[prof_idx];
if (!tfa98xx->tfa->is_probus_device) {
/* Don't call tfa_dev_start() if there is no clock. */
mutex_lock(&tfa98xx->dsp_lock);
tfa98xx_dsp_system_stable(tfa98xx->tfa, &ready);
if (ready &&
(tfa_dev_get_state(tfa98xx->tfa) ==
TFA_STATE_OPERATING)
) {
/* Also re-enables the interrupts */
err = tfa98xx_tfa_start(tfa98xx,
prof_idx,
tfa98xx->vstep);
if (err)
pr_info("Write profile error: %d\n",
err);
else {
pr_debug("Changed to profile %d (vstep = %d)\n",
prof_idx, tfa98xx->vstep);
change = 1;
}
}
mutex_unlock(&tfa98xx->dsp_lock);
/* Flag DSP as invalidated as the profile
* change may invalidate the current DSP
* configuration. That way, further stream
* start can trigger a tfa_dev_start.
*/
tfa98xx->dsp_init = TFA98XX_DSP_INIT_INVALIDATED;
}
}
if (change) {
list_for_each_entry(tfa98xx, &tfa98xx_device_list, list) {
mutex_lock(&tfa98xx->dsp_lock);
tfa_dev_set_state(tfa98xx->tfa, TFA_STATE_UNMUTE, 0);
mutex_unlock(&tfa98xx->dsp_lock);
}
}
mutex_unlock(&tfa98xx_mutex);
/* modified by jiangtao.zeng end. */
return change;
}
static int tfa98xx_info_profile(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
char profile_name[MAX_CONTROL_NAME] = {0};
int count = tfa98xx_mixer_profiles, err = -1;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = count;
if (uinfo->value.enumerated.item >= count)
uinfo->value.enumerated.item = count - 1;
err = get_profile_from_list(profile_name, uinfo->value.enumerated.item);
if (err != 0)
return -EINVAL;
strcpy(uinfo->value.enumerated.name, profile_name);
return 0;
}
static int tfa98xx_info_PAmute(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
mutex_lock(&tfa98xx_mutex);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = tfa98xx_device_count;
uinfo->value.integer.min = TFA98XX_DEVICE_MUTE_OFF;
uinfo->value.integer.max = TFA98XX_DEVICE_MUTE_ON;
mutex_unlock(&tfa98xx_mutex);
return 0;
}
static int tfa98xx_get_PAmute(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tfa98xx *tfa98xx = NULL;
mutex_lock(&tfa98xx_mutex);
list_for_each_entry(tfa98xx, &tfa98xx_device_list, list) {
ucontrol->value.integer.value[tfa98xx->tfa->dev_idx] =
tfa98xx->tfa_mute_mode;
}
mutex_unlock(&tfa98xx_mutex);
return 0;
}
static int tfa98xx_set_PAmute(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tfa98xx *tfa98xx = NULL;
mutex_lock(&tfa98xx_mutex);
list_for_each_entry(tfa98xx, &tfa98xx_device_list, list) {
if (ucontrol->value.integer.value[tfa98xx->tfa->dev_idx] !=
TFA98XX_DEVICE_MUTE_OFF)
tfa98xx->tfa_mute_mode = TFA98XX_DEVICE_MUTE_ON;
else
tfa98xx->tfa_mute_mode = TFA98XX_DEVICE_MUTE_OFF;
}
mutex_unlock(&tfa98xx_mutex);
return 1;
}
static int tfa98xx_show_firmware_status(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.integer.value[0] = g_tfa98xx_firmware_status;
pr_info("g_tfa98xx_firmware_status=%d\n", g_tfa98xx_firmware_status);
return 0;
}
static int tfa98xx_load_firmware(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int ret = 0;
/* we don't need load it again once firmware was loaded. */
if (g_tfa98xx_firmware_status > 0) {
pr_info("the firmware was loaded, we don't need load it again!!!\n");
return ret;
}
mutex_lock(&tfa98xx_mutex);
pr_info("g_tfa98xx_firmware_status=%d new=%d\n",
g_tfa98xx_firmware_status,
(uint8_t)ucontrol->value.integer.value[0]);
if (ucontrol->value.integer.value[0] > 0) {
struct tfa98xx *tfa98xx = NULL;
struct tfa98xx_baseprofile *bprofile;
int id = 0;
g_tfa98xx_firmware_status =
(uint8_t)ucontrol->value.integer.value[0];
list_for_each_entry(tfa98xx, &tfa98xx_device_list, list) {
ret = tfa98xx_load_container(tfa98xx);
pr_info("Container loading requested: %d\n", ret);
if (ret == 0) {
uint8_t nprof, index;
nprof = tfa_cnt_get_dev_nprof(tfa98xx->tfa);
for (index = 0; index < nprof; index++) {
/* create an new empty profile */
bprofile = devm_kzalloc(
tfa98xx->codec->dev,
sizeof(*bprofile),
GFP_KERNEL);
if (!bprofile)
return -ENOMEM;
bprofile->len = 0;
bprofile->item_id = -1;
INIT_LIST_HEAD(&bprofile->list);
/* copy profile name into
* basename until the.
*/
get_profile_basename(bprofile->basename,
tfa_cont_profile_name(
tfa98xx,
index));
bprofile->len =
strlen(bprofile->basename);
/*
* search the profile list for a
* profile with basename, if it is
* not found then add it to the
* list and add a new mixer control
* (if it has vsteps) also, if it is a
* calibration profile, do not add it
* to the list
*/
if ((is_profile_in_list(
bprofile->basename,
bprofile->len) == 0)
&& is_calibration_profile(
tfa_cont_profile_name(
tfa98xx, index)
) == 0) {
/* the profile is not present,
* add it to the list
*/
list_add(&bprofile->list,
&profile_list);
bprofile->item_id = id++;
pr_debug("profile added [%d]: %s\n",
bprofile->item_id,
bprofile->basename);
}
/* look for the basename profile
* in the list of mixer profiles and
* add the container profile index
* to the supported samplerates of
* this mixer profile
*/
add_sr_to_profile(tfa98xx,
bprofile->basename,
bprofile->len, index);
}
/* set the number of user
* selectable profiles in the mixer
*/
tfa98xx_mixer_profiles = id;
}
}
}
mutex_unlock(&tfa98xx_mutex);
return 0;
}
static int tfa98xx_info_firmware(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
mutex_lock(&tfa98xx_mutex);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
mutex_unlock(&tfa98xx_mutex);
return 0;
}
static int tfa98xx_create_controls(struct tfa98xx *tfa98xx)
{
int ret = 0;
uint8_t mix_index, nr_controls;
mix_index = 0;
/* By default, we will create mixer item "TFA Profile" and
* "TFA98XX_FIRMWARE_CTRL" on MTK platform.
*/
nr_controls = 2;
/* kcontrol for mute. (XM requirement
* for production line testing)
*/
if (tfa98xx->tfa->tfa_family == 2)
nr_controls += 1;
tfa98xx_controls = devm_kzalloc(tfa98xx->codec->dev,
nr_controls * sizeof(tfa98xx_controls[0]),
GFP_KERNEL);
if (!tfa98xx_controls)
return -ENOMEM;
/* Create a mixer item for selecting the active profile */
tfa98xx_controls[mix_index].name = "TFA98XX Profile";
tfa98xx_controls[mix_index].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
tfa98xx_controls[mix_index].info = tfa98xx_info_profile;
tfa98xx_controls[mix_index].get = tfa98xx_get_profile;
tfa98xx_controls[mix_index].put = tfa98xx_set_profile;
mix_index++;
/* Create a mixer item for firmware loading */
tfa98xx_controls[mix_index].name = "TFA98XX Firmware";
tfa98xx_controls[mix_index].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
tfa98xx_controls[mix_index].info = tfa98xx_info_firmware;
tfa98xx_controls[mix_index].get = tfa98xx_show_firmware_status;
tfa98xx_controls[mix_index].put = tfa98xx_load_firmware;
mix_index++;
/* add new mixer control item 'SmartPA Mute' for MAX2 device. */
if (tfa98xx->tfa->tfa_family == 2) {
tfa98xx_controls[mix_index].name = "TFA98XX Mute";
tfa98xx_controls[mix_index].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
tfa98xx_controls[mix_index].info = tfa98xx_info_PAmute;
tfa98xx_controls[mix_index].get = tfa98xx_get_PAmute;
tfa98xx_controls[mix_index].put = tfa98xx_set_PAmute;
mix_index++;
}
ret = snd_soc_add_component_controls(tfa98xx->codec,
tfa98xx_controls, mix_index);
pr_info("create default mixer control ret=%d", ret);
return ret;
}
static void *tfa98xx_devm_kstrdup(struct device *dev, char *buf)
{
char *str = devm_kzalloc(dev, strlen(buf) + 1, GFP_KERNEL);
if (!str)
return str;
memcpy(str, buf, strlen(buf));
return str;
}
static int tfa98xx_append_i2c_address(struct device *dev,
struct i2c_client *i2c,
struct snd_soc_dapm_widget *widgets,
int num_widgets,
struct snd_soc_dai_driver *dai_drv,
int num_dai)
{
char buf[50];
int i;
int i2cbus = i2c->adapter->nr;
int addr = i2c->addr;
if (dai_drv && num_dai > 0)
for (i = 0; i < num_dai; i++) {
memset(buf, 0x00, sizeof(buf));
snprintf(buf, 50, "%s-%x-%x",
dai_drv[i].name,
i2cbus, addr);
dai_drv[i].name = tfa98xx_devm_kstrdup(dev, buf);
pr_info("dai_drv[%d].name = [%s]\n",
i, dai_drv[i].name);
memset(buf, 0x00, sizeof(buf));
snprintf(buf, 50, "%s-%x-%x",
dai_drv[i].playback.stream_name,
i2cbus, addr);
dai_drv[i].playback.stream_name =
tfa98xx_devm_kstrdup(dev, buf);
pr_info("dai_drv[%d].playback.stream_name = [%s]\n",
i, dai_drv[i].playback.stream_name);
memset(buf, 0x00, sizeof(buf));
snprintf(buf, 50, "%s-%x-%x",
dai_drv[i].capture.stream_name,
i2cbus, addr);
dai_drv[i].capture.stream_name =
tfa98xx_devm_kstrdup(dev, buf);
pr_info("dai_drv[%d].capture.stream_name = [%s]\n",
i, dai_drv[i].capture.stream_name);
}
/* the idea behind this is convert:
* SND_SOC_DAPM_AIF_IN("AIF IN", "AIF Playback",
* 0, SND_SOC_NOPM, 0, 0),
* into:
* SND_SOC_DAPM_AIF_IN("AIF IN", "AIF Playback-2-36",
* 0, SND_SOC_NOPM, 0, 0),
*/
if (widgets && num_widgets > 0)
for (i = 0; i < num_widgets; i++) {
if (!widgets[i].sname)
continue;
if ((widgets[i].id == snd_soc_dapm_aif_in) ||
(widgets[i].id == snd_soc_dapm_aif_out)) {
snprintf(buf, 50, "%s-%x-%x",
widgets[i].sname, i2cbus, addr);
widgets[i].sname =
tfa98xx_devm_kstrdup(dev, buf);
}
}
return 0;
}
static struct snd_soc_dapm_widget tfa98xx_dapm_widgets_common[] = {
/* Stream widgets */
SND_SOC_DAPM_AIF_IN("AIF IN", "AIF Playback",
0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("AIF OUT", "AIF Capture",
0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_OUTPUT("OUTL"),
SND_SOC_DAPM_INPUT("AEC Loopback"),
};
static struct snd_soc_dapm_widget tfa98xx_dapm_widgets_stereo[] = {
SND_SOC_DAPM_OUTPUT("OUTR"),
};
static struct snd_soc_dapm_widget tfa98xx_dapm_widgets_saam[] = {
SND_SOC_DAPM_INPUT("SAAM MIC"),
};
static struct snd_soc_dapm_widget tfa9888_dapm_inputs[] = {
SND_SOC_DAPM_INPUT("DMIC1"),
SND_SOC_DAPM_INPUT("DMIC2"),
SND_SOC_DAPM_INPUT("DMIC3"),
SND_SOC_DAPM_INPUT("DMIC4"),
};
static const struct snd_soc_dapm_route tfa98xx_dapm_routes_common[] = {
{ "OUTL", NULL, "AIF IN" },
{ "AIF OUT", NULL, "AEC Loopback" },
};
static const struct snd_soc_dapm_route tfa98xx_dapm_routes_saam[] = {
{ "AIF OUT", NULL, "SAAM MIC" },
};
static const struct snd_soc_dapm_route tfa98xx_dapm_routes_stereo[] = {
{ "OUTR", NULL, "AIF IN" },
};
static const struct snd_soc_dapm_route tfa9888_input_dapm_routes[] = {
{ "AIF OUT", NULL, "DMIC1" },
{ "AIF OUT", NULL, "DMIC2" },
{ "AIF OUT", NULL, "DMIC3" },
{ "AIF OUT", NULL, "DMIC4" },
};
static void tfa98xx_add_widgets(struct tfa98xx *tfa98xx)
{
struct snd_soc_dapm_context *dapm;
struct snd_soc_dapm_widget *widgets;
unsigned int num_dapm_widgets =
ARRAY_SIZE(tfa98xx_dapm_widgets_common);
dapm = snd_soc_component_get_dapm(tfa98xx->codec);
widgets = devm_kzalloc(&tfa98xx->i2c->dev,
sizeof(struct snd_soc_dapm_widget) *
ARRAY_SIZE(tfa98xx_dapm_widgets_common),
GFP_KERNEL);
if (!widgets)
return;
memcpy(widgets, tfa98xx_dapm_widgets_common,
sizeof(struct snd_soc_dapm_widget) *
ARRAY_SIZE(tfa98xx_dapm_widgets_common));
tfa98xx_append_i2c_address(&tfa98xx->i2c->dev,
tfa98xx->i2c,
widgets,
num_dapm_widgets,
NULL,
0);
snd_soc_dapm_new_controls(dapm, widgets,
ARRAY_SIZE(tfa98xx_dapm_widgets_common));
snd_soc_dapm_add_routes(dapm, tfa98xx_dapm_routes_common,
ARRAY_SIZE(tfa98xx_dapm_routes_common));
if (tfa98xx->flags & TFA98XX_FLAG_STEREO_DEVICE) {
snd_soc_dapm_new_controls(dapm, tfa98xx_dapm_widgets_stereo,
ARRAY_SIZE(tfa98xx_dapm_widgets_stereo));
snd_soc_dapm_add_routes(dapm, tfa98xx_dapm_routes_stereo,
ARRAY_SIZE(tfa98xx_dapm_routes_stereo));
}
if (tfa98xx->flags & TFA98XX_FLAG_MULTI_MIC_INPUTS) {
snd_soc_dapm_new_controls(dapm, tfa9888_dapm_inputs,
ARRAY_SIZE(tfa9888_dapm_inputs));
snd_soc_dapm_add_routes(dapm, tfa9888_input_dapm_routes,
ARRAY_SIZE(tfa9888_input_dapm_routes));
}
if (tfa98xx->flags & TFA98XX_FLAG_SAAM_AVAILABLE) {
snd_soc_dapm_new_controls(dapm, tfa98xx_dapm_widgets_saam,
ARRAY_SIZE(tfa98xx_dapm_widgets_saam));
snd_soc_dapm_add_routes(dapm, tfa98xx_dapm_routes_saam,
ARRAY_SIZE(tfa98xx_dapm_routes_saam));
}
}
/* I2C wrapper functions */
enum Tfa98xx_Error tfa98xx_write_register16(struct tfa_device *tfa,
unsigned char subaddress,
unsigned short value)
{
enum Tfa98xx_Error error = Tfa98xx_Error_Ok;
struct tfa98xx *tfa98xx;
int ret;
int retries = I2C_RETRIES;
if (tfa == NULL) {
pr_err("No device available\n");
return Tfa98xx_Error_Fail;
}
tfa98xx = (struct tfa98xx *)tfa->data;
if (!tfa98xx || !tfa98xx->regmap) {
pr_err("No tfa98xx regmap available\n");
return Tfa98xx_Error_Bad_Parameter;
}
retry:
ret = regmap_write(tfa98xx->regmap, subaddress, value);
if (ret < 0) {
pr_warn("i2c error, retries left: %d\n", retries);
if (retries) {
retries--;
msleep(I2C_RETRY_DELAY);
goto retry;
}
return Tfa98xx_Error_Fail;
}
if (tfa98xx_kmsg_regs)
dev_dbg(&tfa98xx->i2c->dev, " WR reg=0x%02x, val=0x%04x %s\n",
subaddress, value,
ret < 0 ? "Error!!" : "");
if (tfa98xx_ftrace_regs)
tfa98xx_trace_printk("\tWR reg=0x%02x, val=0x%04x %s\n",
subaddress, value,
ret < 0 ? "Error!!" : "");
return error;
}
enum Tfa98xx_Error tfa98xx_read_register16(struct tfa_device *tfa,
unsigned char subaddress,
unsigned short *val)
{
enum Tfa98xx_Error error = Tfa98xx_Error_Ok;
struct tfa98xx *tfa98xx;
unsigned int value;
int retries = I2C_RETRIES;
int ret;
if (tfa == NULL) {
pr_err("No device available\n");
return Tfa98xx_Error_Fail;
}
tfa98xx = (struct tfa98xx *)tfa->data;
if (!tfa98xx || !tfa98xx->regmap) {
pr_err("No tfa98xx regmap available\n");
return Tfa98xx_Error_Bad_Parameter;
}
retry:
ret = regmap_read(tfa98xx->regmap, subaddress, &value);
if (ret < 0) {
pr_warn("i2c error at subaddress 0x%x, retries left: %d\n",
subaddress, retries);
if (retries) {
retries--;
msleep(I2C_RETRY_DELAY);
goto retry;
}
return Tfa98xx_Error_Fail;
}
*val = value & 0xffff;
if (tfa98xx_kmsg_regs)
dev_dbg(&tfa98xx->i2c->dev, "RD reg=0x%02x, val=0x%04x %s\n",
subaddress, *val,
ret < 0 ? "Error!!" : "");
if (tfa98xx_ftrace_regs)
tfa98xx_trace_printk("\tRD reg=0x%02x, val=0x%04x %s\n",
subaddress, *val,
ret < 0 ? "Error!!" : "");
return error;
}
/*
* init external dsp
*/
enum Tfa98xx_Error
tfa98xx_init_dsp(struct tfa_device *tfa)
{
return Tfa98xx_Error_Not_Supported;
}
int tfa98xx_get_dsp_status(struct tfa_device *tfa)
{
return 0;
}
/*
* write external dsp message
*/
enum Tfa98xx_Error tfa98xx_write_dsp(struct tfa_device *tfa,
int num_bytes,
const char *command_buffer)
{
return Tfa98xx_Error_Not_Supported;
}
/*
* read external dsp message
*/
enum Tfa98xx_Error tfa98xx_read_dsp(struct tfa_device *tfa,
int num_bytes,
unsigned char *result_buffer)
{
return Tfa98xx_Error_Not_Supported;
}
/*
* write/read external dsp message
*/
enum Tfa98xx_Error tfa98xx_writeread_dsp(struct tfa_device *tfa,
int command_length, void *command_buffer,
int result_length, void *result_buffer)
{
return Tfa98xx_Error_Not_Supported;
}
enum Tfa98xx_Error tfa98xx_read_data(struct tfa_device *tfa,
unsigned char reg,
int len, unsigned char value[])
{
enum Tfa98xx_Error error = Tfa98xx_Error_Ok;
struct tfa98xx *tfa98xx;
struct i2c_client *tfa98xx_client;
int err;
int tries = 0;
struct i2c_msg msgs[] = {
{
.flags = 0,
.len = 1,
.buf = &reg,
}, {
.flags = I2C_M_RD,
.len = len,
.buf = value,
},
};
if (tfa == NULL) {
pr_err("No device available\n");
return Tfa98xx_Error_Fail;
}
tfa98xx = (struct tfa98xx *)tfa->data;
if (tfa98xx->i2c) {
tfa98xx_client = tfa98xx->i2c;
msgs[0].addr = tfa98xx_client->addr;
msgs[1].addr = tfa98xx_client->addr;
do {
err = i2c_transfer(tfa98xx_client->adapter, msgs,
ARRAY_SIZE(msgs));
if (err != ARRAY_SIZE(msgs))
msleep_interruptible(I2C_RETRY_DELAY);
} while ((err != ARRAY_SIZE(msgs)) && (++tries < I2C_RETRIES));
if (err != ARRAY_SIZE(msgs)) {
dev_err(&tfa98xx_client->dev, "read transfer error %d\n",
err);
error = Tfa98xx_Error_Fail;
}
if (tfa98xx_kmsg_regs)
dev_dbg(&tfa98xx_client->dev, "RD-DAT reg=0x%02x, len=%d\n",
reg, len);
if (tfa98xx_ftrace_regs)
tfa98xx_trace_printk("\t\tRD-DAT reg=0x%02x, len=%d\n",
reg, len);
} else {
pr_err("No device available\n");
error = Tfa98xx_Error_Fail;
}
return error;
}
enum Tfa98xx_Error tfa98xx_write_raw(struct tfa_device *tfa,
int len,
const unsigned char data[])
{
enum Tfa98xx_Error error = Tfa98xx_Error_Ok;
struct tfa98xx *tfa98xx;
int ret;
int retries = I2C_RETRIES;
if (tfa == NULL) {
pr_err("No device available\n");
return Tfa98xx_Error_Fail;
}
tfa98xx = (struct tfa98xx *)tfa->data;
retry:
ret = i2c_master_send(tfa98xx->i2c, data, len);
if (ret < 0) {
pr_warn("i2c error, retries left: %d\n", retries);
if (retries) {
retries--;
msleep(I2C_RETRY_DELAY);
goto retry;
}
}
if (ret == len) {
if (tfa98xx_kmsg_regs)
dev_dbg(&tfa98xx->i2c->dev, " WR-RAW len=%d\n", len);
if (tfa98xx_ftrace_regs)
tfa98xx_trace_printk("\t\tWR-RAW len=%d\n", len);
return Tfa98xx_Error_Ok;
}
pr_err(" WR-RAW (len=%d) Error I2C send size mismatch %d\n", len, ret);
error = Tfa98xx_Error_Fail;
return error;
}
/* Interrupts management */
static void tfa98xx_interrupt_enable_tfa2(struct tfa98xx *tfa98xx, bool enable)
{
/* Only for 0x72 we need to enable NOCLK interrupts */
if (tfa98xx->flags & TFA98XX_FLAG_REMOVE_PLOP_NOISE)
tfa_irq_ena(tfa98xx->tfa, tfa9912_irq_stnoclk, enable);
if (tfa98xx->flags & TFA98XX_FLAG_LP_MODES) {
/*FIXME: IELP0 does not excist for 9912 */
tfa_irq_ena(tfa98xx->tfa, 36, enable);
tfa_irq_ena(tfa98xx->tfa, tfa9912_irq_stclpr, enable);
}
}
/* Check if tap-detection can and shall be enabled.
* Configure SPK interrupt accordingly or setup polling mode
* Tap-detection shall be active if:
* - the service is enabled (tapdet_open), AND
* - the current profile is a tap-detection profile
* On TFA1 familiy of devices, activating tap-detection means enabling the SPK
* interrupt if available.
* We also update the tapdet_enabled and tapdet_poll variables.
*/
static void tfa98xx_tapdet_check_update(struct tfa98xx *tfa98xx)
{
unsigned int enable = false;
/* Support tap-detection on TFA1 family of devices */
if ((tfa98xx->flags & TFA98XX_FLAG_TAPDET_AVAILABLE) == 0)
return;
if (tfa98xx->tapdet_open &&
(tfa98xx->tapdet_profiles & (1 << tfa98xx->profile)))
enable = true;
if (!gpio_is_valid(tfa98xx->irq_gpio)) {
/* interrupt not available, setup polling mode */
tfa98xx->tapdet_poll = true;
if (enable)
queue_delayed_work(tfa98xx->tfa98xx_wq,
&tfa98xx->tapdet_work, HZ/10);
else
cancel_delayed_work_sync(&tfa98xx->tapdet_work);
dev_dbg(tfa98xx->codec->dev,
"Polling for tap-detection: %s (%d;0x%x, %d)\n",
enable ? "enabled":"disabled",
tfa98xx->tapdet_open, tfa98xx->tapdet_profiles,
tfa98xx->profile);
} else {
dev_dbg(tfa98xx->codec->dev,
"Interrupt for tap-detection: %s (%d;0x%x, %d)\n",
enable ? "enabled":"disabled",
tfa98xx->tapdet_open, tfa98xx->tapdet_profiles,
tfa98xx->profile);
/* enabled interrupt */
tfa_irq_ena(tfa98xx->tfa, tfa9912_irq_sttapdet, enable);
}
/* check disabled => enabled transition to clear pending events */
if (!tfa98xx->tapdet_enabled && enable) {
/* clear pending event if any */
tfa_irq_clear(tfa98xx->tfa, tfa9912_irq_sttapdet);
}
if (!tfa98xx->tapdet_poll)
/* enable again */
tfa_irq_ena(tfa98xx->tfa, tfa9912_irq_sttapdet, 1);
}
/* global enable / disable interrupts */
static void tfa98xx_interrupt_enable(struct tfa98xx *tfa98xx, bool enable)
{
if (tfa98xx->flags & TFA98XX_FLAG_SKIP_INTERRUPTS)
return;
if (tfa98xx->tfa->tfa_family == 2)
tfa98xx_interrupt_enable_tfa2(tfa98xx, enable);
}
/* Firmware management */
static void tfa98xx_container_loaded(const struct firmware *cont, void *context)
{
struct nxpTfaContainer *container;
struct tfa98xx *tfa98xx = context;
enum tfa_error tfa_err;
int container_size;
int ret;
tfa98xx->dsp_fw_state = TFA98XX_DSP_FW_FAIL;
if (!cont) {
pr_err("Failed to read %s\n", fw_name);
return;
}
pr_debug("loaded %s - size: %zu\n", fw_name, cont->size);
if (tfa98xx_container == NULL) {
container = kzalloc(cont->size, GFP_KERNEL);
if (container == NULL)
return;
container_size = cont->size;
memcpy(container, cont->data, container_size);
pr_debug("%.2s%.2s\n",
container->version, container->subversion);
pr_debug("%.8s\n", container->customer);
pr_debug("%.8s\n", container->application);
pr_debug("%.8s\n", container->type);
pr_debug("%d ndev\n", container->ndev);
pr_debug("%d nprof\n", container->nprof);
tfa_err = tfa_load_cnt(container, container_size);
if (tfa_err != tfa_error_ok) {
kfree(container);
dev_err(tfa98xx->dev, "Cannot load container file, aborting\n");
return;
}
tfa98xx_container = container;
} else {
pr_debug("container file already loaded...\n");
container = tfa98xx_container;
}
tfa98xx->tfa->cnt = container;
/* i2c transaction limited to 64k
* (Documentation/i2c/writing-clients)
*/
tfa98xx->tfa->buffer_size = 65536;
if (tfa_dev_probe(tfa98xx->i2c->addr, tfa98xx->tfa) != 0) {
dev_err(tfa98xx->dev, "Failed to probe TFA98xx @ 0x%.2x\n",
tfa98xx->i2c->addr);
return;
}
/* once the device without internal DSP,
* we should be using DSP HAL to send msg to host DSP.
*/
if (tfa98xx->tfa->is_probus_device == 1)
tfa98xx->tfa->has_msg = 1;
else
tfa98xx->tfa->has_msg = 0;
tfa98xx->tfa->dev_idx = tfa_cont_get_idx(tfa98xx->tfa);
if (tfa98xx->tfa->dev_idx < 0) {
dev_err(tfa98xx->dev,
"Failed to find TFA98xx @ 0x%.2x in container file\n",
tfa98xx->i2c->addr);
return;
}
/* Enable debug traces */
tfa98xx->tfa->verbose = trace_level & 1;
/* prefix is the application name from the cnt */
tfa_cnt_get_app_name(tfa98xx->tfa, tfa98xx->fw.name);
/* set default profile/vstep */
tfa98xx->profile = 0;
tfa98xx->vstep = 0;
/* Override default profile if requested */
if (strcmp(dflt_prof_name, "")) {
unsigned int i;
int nprof = tfa_cnt_get_dev_nprof(tfa98xx->tfa);
for (i = 0; i < nprof; i++) {
if (strcmp(tfa_cont_profile_name(tfa98xx, i),
dflt_prof_name) == 0) {
tfa98xx->profile = i;
dev_info(tfa98xx->dev,
"changing default profile to %s (%d)\n",
dflt_prof_name, tfa98xx->profile);
break;
}
}
if (i >= nprof)
dev_info(tfa98xx->dev,
"Default profile override failed (%s profile not found)\n",
dflt_prof_name);
}
tfa98xx->dsp_fw_state = TFA98XX_DSP_FW_OK;
pr_debug("Firmware init complete\n");
if (no_start != 0)
return;
tfa98xx_inputdev_check_register(tfa98xx);
if (tfa_is_cold(tfa98xx->tfa) == 0) {
pr_debug("device 0x%.2x is still warm\n", tfa98xx->i2c->addr);
tfa_reset(tfa98xx->tfa);
}
/* Preload settings using internal clock on TFA2 */
if ((tfa98xx->tfa->tfa_family == 2) &&
(tfa98xx->tfa->is_probus_device == 0)) {
mutex_lock(&tfa98xx->dsp_lock);
pr_info("will be using internal clock to preload MAX2 TFA settings.\n");
ret = tfa98xx_tfa_start(tfa98xx,
tfa98xx->profile,
tfa98xx->vstep);
if (ret == Tfa98xx_Error_Not_Supported)
tfa98xx->dsp_fw_state = TFA98XX_DSP_FW_FAIL;
/* we should be power-down device when parameter is loaded. */
tfa_dev_stop(tfa98xx->tfa);
ret = tfa98xx->dsp_init = TFA98XX_DSP_INIT_STOPPED;
mutex_unlock(&tfa98xx->dsp_lock);
}
tfa98xx_interrupt_enable(tfa98xx, true);
}
static int tfa98xx_load_container(struct tfa98xx *tfa98xx)
{
const struct firmware *pFirmware;
int rc = -1;
tfa98xx->dsp_fw_state = TFA98XX_DSP_FW_PENDING;
rc = request_firmware(&pFirmware, fw_name, tfa98xx->dev);
pr_err("request_firmware rc=%d\n", rc);
if (rc < 0) {
pr_err("request firmware failed!!!!\n");
goto exit;
}
tfa98xx_container_loaded(pFirmware, tfa98xx);
release_firmware(pFirmware);
exit:
return rc;
}
static void tfa98xx_tapdet(struct tfa98xx *tfa98xx)
{
unsigned int tap_pattern;
int btn;
/* check tap pattern (BTN_0 is "error" wrong tap indication */
tap_pattern = tfa_get_tap_pattern(tfa98xx->tfa);
switch (tap_pattern) {
case 0xffffffff:
pr_info("More than 4 taps detected! (flagTapPattern = -1)\n");
btn = BTN_0;
break;
case 0xfffffffe:
case 0xfe:
pr_info("Illegal tap detected!\n");
btn = BTN_0;
break;
case 0:
pr_info("Unrecognized pattern! (flagTapPattern = 0)\n");
btn = BTN_0;
break;
default:
pr_info("Detected pattern: %d\n", tap_pattern);
btn = BTN_0 + tap_pattern;
break;
}
input_report_key(tfa98xx->input, btn, 1);
input_report_key(tfa98xx->input, btn, 0);
input_sync(tfa98xx->input);
/* acknowledge event done by clearing interrupt */
}
static void tfa98xx_tapdet_work(struct work_struct *work)
{
struct tfa98xx *tfa98xx;
/*TODO check is this is still needed for tap polling*/
tfa98xx = container_of(work, struct tfa98xx, tapdet_work.work);
if (tfa_irq_get(tfa98xx->tfa, tfa9912_irq_sttapdet))
tfa98xx_tapdet(tfa98xx);
queue_delayed_work(tfa98xx->tfa98xx_wq, &tfa98xx->tapdet_work, HZ/10);
}
static void tfa98xx_monitor(struct work_struct *work)
{
#if 0
struct tfa98xx *tfa98xx;
enum Tfa98xx_Error error = Tfa98xx_Error_Ok;
tfa98xx = container_of(work, struct tfa98xx, monitor_work.work);
/* Check for tap-detection - bypass monitor if it is active */
if (!tfa98xx->input) {
mutex_lock(&tfa98xx->dsp_lock);
error = tfa_status(tfa98xx->tfa);
mutex_unlock(&tfa98xx->dsp_lock);
if (error == Tfa98xx_Error_DSP_not_running) {
if (tfa98xx->dsp_init == TFA98XX_DSP_INIT_DONE) {
tfa98xx->dsp_init = TFA98XX_DSP_INIT_RECOVER;
queue_delayed_work(tfa98xx->tfa98xx_wq,
&tfa98xx->init_work, 0);
}
}
}
/* reschedule */
queue_delayed_work(tfa98xx->tfa98xx_wq, &tfa98xx->monitor_work, 5*HZ);
#endif
}
static void tfa98xx_dsp_init(struct tfa98xx *tfa98xx)
{
int ret;
bool failed = false;
bool reschedule = false;
bool sync = false;
if (tfa98xx->dsp_fw_state != TFA98XX_DSP_FW_OK) {
pr_debug("Skipping tfa_dev_start (no FW: %d)\n",
tfa98xx->dsp_fw_state);
return;
}
if (tfa98xx->dsp_init == TFA98XX_DSP_INIT_DONE) {
pr_debug("Stream already started, skipping DSP power-on\n");
return;
}
mutex_lock(&tfa98xx->dsp_lock);
tfa98xx->dsp_init = TFA98XX_DSP_INIT_PENDING;
//pr_debug("init_count=%d\n", tfa98xx->init_count);
if (tfa98xx->init_count < TF98XX_MAX_DSP_START_TRY_COUNT) {
/* directly try to start DSP */
ret = tfa98xx_tfa_start(tfa98xx,
tfa98xx->profile,
tfa98xx->vstep);
if (ret == Tfa98xx_Error_Not_Supported) {
tfa98xx->dsp_fw_state = TFA98XX_DSP_FW_FAIL;
dev_err(&tfa98xx->i2c->dev, "Failed starting device\n");
failed = true;
} else if (ret != Tfa98xx_Error_Ok) {
/* It may fail as we may not have a valid clock at that
* time, so re-schedule and re-try later.
*/
dev_err(&tfa98xx->i2c->dev,
"tfa_dev_start failed! (err %d) - %d\n",
ret, tfa98xx->init_count);
reschedule = true;
} else {
sync = true;
/* Subsystem ready, tfa init complete */
tfa98xx->dsp_init = TFA98XX_DSP_INIT_DONE;
dev_dbg(&tfa98xx->i2c->dev,
"tfa_dev_start success (%d)\n",
tfa98xx->init_count);
/* cancel other pending init works */
cancel_delayed_work(&tfa98xx->init_work);
tfa98xx->init_count = 0;
}
} else {
/* exceeded max number ot start tentatives, cancel start */
dev_err(&tfa98xx->i2c->dev,
"Failed starting device (%d)\n",
tfa98xx->init_count);
failed = true;
}
if (reschedule) {
/* reschedule this init work for later */
queue_delayed_work(tfa98xx->tfa98xx_wq,
&tfa98xx->init_work,
msecs_to_jiffies(5));
tfa98xx->init_count++;
}
if (failed) {
tfa98xx->dsp_init = TFA98XX_DSP_INIT_FAIL;
/* cancel other pending init works */
cancel_delayed_work(&tfa98xx->init_work);
tfa98xx->init_count = 0;
}
mutex_unlock(&tfa98xx->dsp_lock);
if (sync) {
/* check if all devices have started */
bool do_sync;
mutex_lock(&tfa98xx_mutex);
if (tfa98xx_sync_count < tfa98xx_device_count)
tfa98xx_sync_count++;
do_sync = (tfa98xx_sync_count >= tfa98xx_device_count);
mutex_unlock(&tfa98xx_mutex);
/* when all devices have started then unmute */
if (do_sync) {
tfa98xx_sync_count = 0;
list_for_each_entry(tfa98xx,
&tfa98xx_device_list, list) {
mutex_lock(&tfa98xx->dsp_lock);
tfa_dev_set_state(tfa98xx->tfa,
TFA_STATE_UNMUTE, 0);
/*
* start monitor thread to check IC status bit
* periodically, and re-init IC to recover if
* needed.
*/
if (tfa98xx->tfa->tfa_family == 1)
queue_delayed_work(tfa98xx->tfa98xx_wq,
&tfa98xx->monitor_work,
1*HZ);
mutex_unlock(&tfa98xx->dsp_lock);
}
}
}
}
static void tfa98xx_dsp_init_work(struct work_struct *work)
{
struct tfa98xx *tfa98xx =
container_of(work, struct tfa98xx, init_work.work);
tfa98xx_dsp_init(tfa98xx);
}
static void tfa98xx_interrupt(struct work_struct *work)
{
struct tfa98xx *tfa98xx =
container_of(work, struct tfa98xx, interrupt_work.work);
if (tfa98xx->flags & TFA98XX_FLAG_TAPDET_AVAILABLE) {
/* check for tap interrupt */
if (tfa_irq_get(tfa98xx->tfa, tfa9912_irq_sttapdet)) {
tfa98xx_tapdet(tfa98xx);
/* clear interrupt */
tfa_irq_clear(tfa98xx->tfa, tfa9912_irq_sttapdet);
}
} /* TFA98XX_FLAG_TAPDET_AVAILABLE */
if (tfa98xx->flags & TFA98XX_FLAG_REMOVE_PLOP_NOISE) {
int start_triggered;
mutex_lock(&tfa98xx->dsp_lock);
start_triggered = tfa_plop_noise_interrupt(
tfa98xx->tfa,
tfa98xx->profile,
tfa98xx->vstep);
/* Only enable when the return value is 1,
* otherwise the interrupt is triggered twice
*/
if (start_triggered)
tfa98xx_interrupt_enable(tfa98xx, true);
mutex_unlock(&tfa98xx->dsp_lock);
} /* TFA98XX_FLAG_REMOVE_PLOP_NOISE */
if (tfa98xx->flags & TFA98XX_FLAG_LP_MODES)
tfa_lp_mode_interrupt(tfa98xx->tfa);
/* unmask interrupts masked in IRQ handler */
tfa_irq_unmask(tfa98xx->tfa);
}
static int tfa98xx_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *codec = dai->component;
struct tfa98xx *tfa98xx = snd_soc_component_get_drvdata(codec);
unsigned int sr;
int len, prof, nprof, idx = 0;
char *basename;
//pr_info("entry\n");
/*
* Support CODEC to CODEC links,
* these are called with a NULL runtime pointer.
*/
if (!substream->runtime) {
pr_info("%s(), return 0 - !substream->runtime\n", __func__);
return 0;
}
if (pcm_no_constraint != 0) {
pr_info("%s(), return 0 - pcm_no_constraint != 0\n", __func__);
return 0;
}
if (no_start != 0) {
pr_info("%s(), return 0 - no_start != 0\n", __func__);
return 0;
}
if (tfa98xx->dsp_fw_state != TFA98XX_DSP_FW_OK) {
pr_info("%s(), Container file not loaded\n", __func__);
return -EINVAL;
}
basename = kzalloc(MAX_CONTROL_NAME, GFP_KERNEL);
if (!basename)
return -ENOMEM;
/* copy profile name into basename until the . */
get_profile_basename(basename,
tfa_cont_profile_name(tfa98xx, tfa98xx->profile));
len = strlen(basename);
/* loop over all profiles and get the supported samples rate(s) from
* the profiles with the same basename
*/
nprof = tfa_cnt_get_dev_nprof(tfa98xx->tfa);
tfa98xx->rate_constraint.list = &tfa98xx->rate_constraint_list[0];
tfa98xx->rate_constraint.count = 0;
for (prof = 0; prof < nprof; prof++) {
if (strncmp(basename,
tfa_cont_profile_name(tfa98xx, prof),
len) == 0) {
/* Check which sample rate is supported
* with current profile, and enforce this.
*/
sr = tfa98xx_get_profile_sr(tfa98xx->tfa, prof);
if (!sr)
dev_info(codec->dev, "Unable to identify supported sample rate\n");
if (tfa98xx->rate_constraint.count >= TFA98XX_NUM_RATES)
dev_err(codec->dev, "too many sample rates\n");
else {
tfa98xx->rate_constraint_list[idx++] = sr;
tfa98xx->rate_constraint.count += 1;
}
}
}
kfree(basename);
pr_info("tfa startup return OK\n");
return 0;
}
static int tfa98xx_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct tfa98xx *tfa98xx = snd_soc_component_get_drvdata(codec_dai->component);
tfa98xx->sysclk = freq;
return 0;
}
static int tfa98xx_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int slot_width)
{
pr_debug("\n");
return 0;
}
static int tfa98xx_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct tfa98xx *tfa98xx = snd_soc_component_get_drvdata(dai->component);
struct snd_soc_component *codec = dai->component;
pr_info("fmt=0x%x\n", fmt);
/* Supported mode: regular I2S, slave, or PDM */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
if ((fmt & SND_SOC_DAIFMT_MASTER_MASK)
!= SND_SOC_DAIFMT_CBS_CFS) {
dev_err(codec->dev, "Invalid Codec master mode\n");
pr_err("Invalid Codec master mode\n");
return -EINVAL;
}
break;
case SND_SOC_DAIFMT_PDM:
break;
default:
dev_err(codec->dev, "Unsupported DAI format %d\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
pr_err("Unsupported DAI format %d\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
tfa98xx->audio_mode = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
return 0;
}
static int tfa98xx_get_fssel(unsigned int rate)
{
int i;
for (i = 0; i < ARRAY_SIZE(rate_to_fssel); i++) {
if (rate_to_fssel[i].rate == rate)
return rate_to_fssel[i].fssel;
}
return -EINVAL;
}
static int tfa98xx_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *codec = dai->component;
struct tfa98xx *tfa98xx = snd_soc_component_get_drvdata(codec);
unsigned int rate;
int prof_idx;
/* Supported */
rate = params_rate(params);
pr_debug("Requested rate: %d, sample size: %d, physical size: %d\n",
rate, snd_pcm_format_width(params_format(params)),
snd_pcm_format_physical_width(params_format(params)));
if (no_start != 0)
return 0;
/* check if samplerate is supported for this mixer profile */
prof_idx = get_profile_id_for_sr(tfa98xx_mixer_profile, rate);
if (prof_idx < 0) {
pr_err("tfa98xx: invalid sample rate %d.\n", rate);
return -EINVAL;
}
pr_debug("mixer profile:container profile = [%d:%d]\n",
tfa98xx_mixer_profile, prof_idx);
/* update 'real' profile (container profile) */
tfa98xx->profile = prof_idx;
/* update to new rate */
tfa98xx->rate = rate;
return 0;
}
#ifdef TFA_NON_DSP_SOLUTION
static uint8_t bytes[3*3+1] = {0};
enum Tfa98xx_Error tfa98xx_adsp_send_calib_values(void)
{
struct tfa98xx *tfa98xx;
int ret = 0;
int value = 0, nr, dsp_cal_value = 0;
/* if the calibration value was sent to host DSP,
* we clear flag only (stereo case).
*/
if ((tfa98xx_device_count > 1) && (tfa98xx_device_count == bytes[0])) {
pr_info("The calibration value was sent to host DSP.\n");
bytes[0] = 0;
return Tfa98xx_Error_Ok;
}
nr = 4;
/* read calibrated impendance from all devices. */
list_for_each_entry(tfa98xx, &tfa98xx_device_list, list) {
struct tfa_device *tfa = tfa98xx->tfa;
if (TFA_GET_BF(tfa, MTPEX) == 1) {
value = tfa_dev_mtp_get(tfa, TFA_MTP_RE25);
dsp_cal_value = (value * 65536) / 1000;
pr_info("Device 0x%x cal value is 0x%x\n",
tfa98xx->i2c->addr, dsp_cal_value);
bytes[nr++] = (uint8_t)((dsp_cal_value >> 16) & 0xff);
bytes[nr++] = (uint8_t)((dsp_cal_value >> 8) & 0xff);
bytes[nr++] = (uint8_t)(dsp_cal_value & 0xff);
bytes[0] += 1;
}
}
/* for mono case, we will copy primary channel
* data to secondary channel.
*/
if (tfa98xx_device_count == 1)
memcpy(&bytes[7], &bytes[4], sizeof(char)*3);
pr_info("tfa98xx_device_count=%d bytes[0]=%d\n",
tfa98xx_device_count, bytes[0]);
/* we will send it to host DSP algorithm once calibraion
* value loaded from all device.
*/
if (tfa98xx_device_count == bytes[0]) {
bytes[1] = 0x00;
bytes[2] = 0x81;
bytes[3] = 0x05;
if (tfa98xx->dsp_init == TFA98XX_DSP_INIT_DONE)
ret = Tfa98xx_Error_Ok;
//ret = tfa98xx_send_data_to_dsp(&bytes[1],
// sizeof(bytes) - 1);
else {
ret = -1;
pr_info(" send data fail as DSP NOT work\n");
}
usleep_range(10000, 10500);
/* for mono case, we should clear flag here. */
if (tfa98xx_device_count == 1)
bytes[0] = 0;
} else {
pr_err("load calibration data from device failed.\n");
ret = Tfa98xx_Error_Bad_Parameter;
}
return ret;
}
static int tfa98xx_send_mute_cmd(void)
{
//uint8_t cmd[9] = {0x04, 0x81, 0x04, 0x00, 0x00, 0xff, 0x00, 0x00, 0xff};
//pr_info("send mute command to host DSP.\n");
//return tfa98xx_send_data_to_dsp(&cmd[0], sizeof(cmd));
return 0;
}
#endif
static int tfa98xx_mute_stream(struct snd_soc_dai *dai, int mute, int direction)
{
struct snd_soc_component *codec = dai->component;
struct tfa98xx *tfa98xx = snd_soc_component_get_drvdata(codec);
pr_info("%s :%d, dsp_init:%d\n", __func__, mute, tfa98xx->dsp_init);
if (tfa98xx_container == NULL) {
pr_err("The firmware have not yet loaded!!!\n");
return 0;
}
if (no_start) {
pr_info("no_start parameter set no tfa_dev_start or tfa_dev_stop, returning\n");
return 0;
}
if (tfa98xx->tfa_mute_mode == TFA98XX_DEVICE_MUTE_ON) {
pr_info("if Mute mode is enalbed, we don't need to power-on device.\n");
return 0;
}
if (mute) {
/* stop DSP only when both playback and capture streams
* are deactivated
*/
mutex_lock(&tfa98xx_mutex);
tfa98xx_sync_count = 0;
mutex_unlock(&tfa98xx_mutex);
cancel_delayed_work_sync(&tfa98xx->monitor_work);
cancel_delayed_work_sync(&tfa98xx->init_work);
if (tfa98xx->dsp_fw_state != TFA98XX_DSP_FW_OK)
return 0;
mutex_lock(&tfa98xx->dsp_lock);
#ifdef TFA_NON_DSP_SOLUTION
if (tfa98xx->dsp_init == TFA98XX_DSP_INIT_DONE) {
tfa98xx_send_mute_cmd();
msleep(60);
} else {
pr_info(" Mute Fail as DSP NOT work\n");
}
#endif
//pr_info("will execute tfa_dev_stop()\n");
tfa_dev_stop(tfa98xx->tfa);
tfa98xx->dsp_init = TFA98XX_DSP_INIT_STOPPED;
mutex_unlock(&tfa98xx->dsp_lock);
} else {
#ifdef TFA_NON_DSP_SOLUTION
if (tfa98xx->tfa->is_probus_device)
tfa98xx_adsp_send_calib_values();
#endif
/* Start DSP with sync mode.*/
//pr_info("dsp_init=%d\n", tfa98xx->dsp_init);
if (tfa98xx->dsp_init != TFA98XX_DSP_INIT_PENDING)
tfa98xx_dsp_init(tfa98xx);
}
return 0;
}
static const struct snd_soc_dai_ops tfa98xx_dai_ops = {
.startup = tfa98xx_startup,
.set_fmt = tfa98xx_set_fmt,
.set_sysclk = tfa98xx_set_dai_sysclk,
.set_tdm_slot = tfa98xx_set_tdm_slot,
.hw_params = tfa98xx_hw_params,
.mute_stream = tfa98xx_mute_stream,
};
static struct snd_soc_dai_driver tfa98xx_dai[] = {
{
.name = "tfa98xx-aif",
.id = 1,
.playback = {
.stream_name = "AIF Playback",
.channels_min = 1,
.channels_max = 4,
.rates = TFA98XX_RATES,
.formats = TFA98XX_FORMATS,
},
.capture = {
.stream_name = "AIF Capture",
.channels_min = 1,
.channels_max = 4,
.rates = TFA98XX_RATES,
.formats = TFA98XX_FORMATS,
},
.ops = &tfa98xx_dai_ops,
/*.symmetric_rates = 1,*/
/*.symmetric_channels = 1,*/
/*.symmetric_samplebits = 1,*/
},
};
static int tfa98xx_probe(struct snd_soc_component *codec)
{
struct tfa98xx *tfa98xx = snd_soc_component_get_drvdata(codec);
int ret;
pr_info("entry\n");
snd_soc_component_init_regmap(codec, tfa98xx->regmap);
/* setup work queue, will be used to initial DSP on first boot up */
tfa98xx->tfa98xx_wq = create_singlethread_workqueue("tfa98xx");
if (!tfa98xx->tfa98xx_wq)
return -ENOMEM;
INIT_DELAYED_WORK(&tfa98xx->init_work, tfa98xx_dsp_init_work);
INIT_DELAYED_WORK(&tfa98xx->monitor_work, tfa98xx_monitor);
INIT_DELAYED_WORK(&tfa98xx->interrupt_work, tfa98xx_interrupt);
INIT_DELAYED_WORK(&tfa98xx->tapdet_work, tfa98xx_tapdet_work);
tfa98xx->codec = codec;
ret = tfa98xx_create_controls(tfa98xx);
pr_info("We created mixer control in probe ret=%d\n", ret);
tfa98xx_add_widgets(tfa98xx);
dev_info(codec->dev, "tfa98xx codec registered (%s)",
tfa98xx->fw.name);
return ret;
}
static void tfa98xx_remove(struct snd_soc_component *codec)
{
struct tfa98xx *tfa98xx = snd_soc_component_get_drvdata(codec);
pr_debug("\n");
tfa98xx_interrupt_enable(tfa98xx, false);
tfa98xx_inputdev_unregister(tfa98xx);
cancel_delayed_work_sync(&tfa98xx->interrupt_work);
cancel_delayed_work_sync(&tfa98xx->monitor_work);
cancel_delayed_work_sync(&tfa98xx->init_work);
cancel_delayed_work_sync(&tfa98xx->tapdet_work);
if (tfa98xx->tfa98xx_wq)
destroy_workqueue(tfa98xx->tfa98xx_wq);
return;
}
static struct snd_soc_component_driver soc_codec_dev_tfa98xx = {
.probe = tfa98xx_probe,
.remove = tfa98xx_remove,
};
static bool tfa98xx_writeable_register(struct device *dev, unsigned int reg)
{
/* enable read access for all registers */
return 1;
}
static bool tfa98xx_readable_register(struct device *dev, unsigned int reg)
{
/* enable read access for all registers */
return 1;
}
static bool tfa98xx_volatile_register(struct device *dev, unsigned int reg)
{
/* enable read access for all registers */
return 1;
}
static const struct regmap_config tfa98xx_regmap = {
.reg_bits = 8,
.val_bits = 16,
.max_register = TFA98XX_MAX_REGISTER,
.writeable_reg = tfa98xx_writeable_register,
.readable_reg = tfa98xx_readable_register,
.volatile_reg = tfa98xx_volatile_register,
.cache_type = REGCACHE_NONE,
};
static int tfa98xx_ext_reset(struct tfa98xx *tfa98xx)
{
if (tfa98xx && gpio_is_valid(tfa98xx->reset_gpio)) {
gpio_direction_output(tfa98xx->reset_gpio, 1);
usleep_range(10000, 10500);
gpio_direction_output(tfa98xx->reset_gpio, 0);
usleep_range(10000, 10500);
}
return 0;
}
static int tfa98xx_parse_dt(struct device *dev,
struct tfa98xx *tfa98xx,
struct device_node *np)
{
tfa98xx->reset_gpio = of_get_named_gpio(np, "reset-gpio", 0);
if (tfa98xx->reset_gpio < 0)
pr_debug("[NXP] No reset GPIO provided, will not HW reset device\n");
tfa98xx->irq_gpio = of_get_named_gpio(np, "irq-gpio", 0);
if (tfa98xx->irq_gpio < 0)
pr_debug("[NXP] No IRQ GPIO provided.\n");
return 0;
}
static ssize_t tfa98xx_reg_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct tfa98xx *tfa98xx = dev_get_drvdata(dev);
if (count != 1) {
pr_debug("invalid register address");
return -EINVAL;
}
tfa98xx->reg = buf[0];
return 1;
}
static ssize_t tfa98xx_rw_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct tfa98xx *tfa98xx = dev_get_drvdata(dev);
u8 *data;
int ret;
int retries = I2C_RETRIES;
data = kmalloc(count+1, GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
data[0] = tfa98xx->reg;
memcpy(&data[1], buf, count);
retry:
ret = i2c_master_send(tfa98xx->i2c, data, count+1);
if (ret < 0) {
pr_warn("i2c error, retries left: %d\n", retries);
if (retries) {
retries--;
msleep(I2C_RETRY_DELAY);
goto retry;
}
}
kfree(data);
/* the number of data bytes written without the register address */
return ((ret > 1) ? count : -EIO);
}
static ssize_t tfa98xx_rw_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct tfa98xx *tfa98xx = dev_get_drvdata(dev);
struct i2c_msg msgs[] = {
{
.addr = tfa98xx->i2c->addr,
.flags = 0,
.len = 1,
.buf = &tfa98xx->reg,
},
{
.addr = tfa98xx->i2c->addr,
.flags = I2C_M_RD,
.len = count,
.buf = buf,
},
};
int ret;
int retries = I2C_RETRIES;
retry:
ret = i2c_transfer(tfa98xx->i2c->adapter, msgs, ARRAY_SIZE(msgs));
if (ret < 0) {
pr_warn("i2c error, retries left: %d\n", retries);
if (retries) {
retries--;
msleep(I2C_RETRY_DELAY);
goto retry;
}
return ret;
}
/* ret contains the number of i2c transaction */
/* return the number of bytes read */
return ((ret > 1) ? count : -EIO);
}
static struct bin_attribute dev_attr_rw = {
.attr = {
.name = "rw",
.mode = 0600,
},
.size = 0,
.read = tfa98xx_rw_read,
.write = tfa98xx_rw_write,
};
static struct bin_attribute dev_attr_reg = {
.attr = {
.name = "reg",
.mode = 0200,
},
.size = 0,
.read = NULL,
.write = tfa98xx_reg_write,
};
inline void tfa98xx_initialize_staic_variant(void)
{
tfa98xx_cache = NULL;
tfa98xx_device_count = 0;
tfa98xx_sync_count = 0;
tfa98xx_mixer_profiles = 0;
tfa98xx_mixer_profile = 0;
tfa98xx_container = NULL;
tfa98xx_kmsg_regs = 0;
tfa98xx_ftrace_regs = 0;
trace_level = 0;
no_start = 0;
no_reset = 0;
pcm_no_constraint = 1;
g_tfa98xx_firmware_status = 0;
}
int tfa98xx_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct snd_soc_dai_driver *dai;
struct tfa98xx *tfa98xx;
struct device_node *np = i2c->dev.of_node;
unsigned int reg;
int ret;
pr_info("entry addr=0x%x\n", i2c->addr);
tfa98xx_initialize_staic_variant();
if (!i2c_check_functionality(i2c->adapter, I2C_FUNC_I2C)) {
pr_err("[NXP] %s: check_functionality failed\n", __func__);
return -EIO;
}
tfa98xx = devm_kzalloc(&i2c->dev,
sizeof(struct tfa98xx),
GFP_KERNEL);
if (tfa98xx == NULL) {
pr_err("devm_kzalloc failed!!\n");
return -ENOMEM;
}
tfa98xx->dev = &i2c->dev;
tfa98xx->i2c = i2c;
tfa98xx->dsp_init = TFA98XX_DSP_INIT_STOPPED;
tfa98xx->rate = 48000;/* init to the default sample rate (48kHz) */
tfa98xx->tfa = NULL;
/* the mute mode is disabled by default. */
tfa98xx->tfa_mute_mode = TFA98XX_DEVICE_MUTE_OFF;
tfa98xx->regmap = devm_regmap_init_i2c(i2c, &tfa98xx_regmap);
if (IS_ERR(tfa98xx->regmap)) {
ret = PTR_ERR(tfa98xx->regmap);
pr_err("Failed to allocate register map: %d\n", ret);
return ret;
}
i2c_set_clientdata(i2c, tfa98xx);
mutex_init(&tfa98xx->dsp_lock);
init_waitqueue_head(&tfa98xx->wq);
if (np) {
ret = tfa98xx_parse_dt(&i2c->dev, tfa98xx, np);
if (ret) {
pr_err("Failed to parse DT node ret=%d\n", ret);
return ret;
}
if (no_start)
tfa98xx->irq_gpio = -1;
if (no_reset)
tfa98xx->reset_gpio = -1;
} else {
tfa98xx->reset_gpio = -1;
tfa98xx->irq_gpio = -1;
}
if (gpio_is_valid(tfa98xx->reset_gpio)) {
ret = gpio_request(tfa98xx->reset_gpio, "TFA98XX_RST");
if (ret) {
pr_debug("gpio_request TFA98XX_RST ret=%d\n", ret);
return ret;
}
pr_debug("gpio_request TFA98XX_RST succeeded!!\n");
}
if (gpio_is_valid(tfa98xx->irq_gpio)) {
ret = gpio_request(tfa98xx->irq_gpio, "TFA98XX_INT");
if (ret) {
pr_debug("gpio_request TFA98XX_INT ret=%d\n", ret);
return ret;
}
pr_debug("gpio_request TFA98XX_INT succeeded!!\n");
}
/* Power up! */
tfa98xx_ext_reset(tfa98xx);
pr_info("no_start=%d no_reset=%d\n", no_start, no_reset);
if ((no_start == 0) && (no_reset == 0)) {
ret = regmap_read(tfa98xx->regmap, 0x03, &reg);
if (ret < 0) {
pr_err("Failed to read Revision register: %d\n", ret);
return -EIO;
}
switch (reg & 0xff) {
case 0x72: /* tfa9872 */
pr_info("TFA9872 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_MULTI_MIC_INPUTS;
tfa98xx->flags |= TFA98XX_FLAG_CALIBRATION_CTL;
tfa98xx->flags |= TFA98XX_FLAG_REMOVE_PLOP_NOISE;
/* tfa98xx->flags |= TFA98XX_FLAG_LP_MODES;*/
tfa98xx->flags |= TFA98XX_FLAG_TDM_DEVICE;
break;
case 0x74: /* tfa9874 */
pr_info("TFA9874 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_MULTI_MIC_INPUTS;
tfa98xx->flags |= TFA98XX_FLAG_CALIBRATION_CTL;
tfa98xx->flags |= TFA98XX_FLAG_TDM_DEVICE;
break;
case 0x88: /* tfa9888 */
pr_info("TFA9888 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_STEREO_DEVICE;
tfa98xx->flags |= TFA98XX_FLAG_MULTI_MIC_INPUTS;
tfa98xx->flags |= TFA98XX_FLAG_TDM_DEVICE;
break;
case 0x13: /* tfa9912 */
pr_info("TFA9912 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_MULTI_MIC_INPUTS;
tfa98xx->flags |= TFA98XX_FLAG_TDM_DEVICE;
/* tfa98xx->flags |= TFA98XX_FLAG_TAPDET_AVAILABLE;*/
break;
case 0x94: /* tfa9894 */
pr_info("TFA9894 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_MULTI_MIC_INPUTS;
tfa98xx->flags |= TFA98XX_FLAG_TDM_DEVICE;
tfa98xx->flags |= TFA98XX_FLAG_SKIP_INTERRUPTS;
break;
case 0x80: /* tfa9890 */
case 0x81: /* tfa9890 */
pr_info("TFA9890 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_SKIP_INTERRUPTS;
break;
case 0x92: /* tfa9891 */
pr_info("TFA9891 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_SAAM_AVAILABLE;
tfa98xx->flags |= TFA98XX_FLAG_SKIP_INTERRUPTS;
break;
case 0x12: /* tfa9895 */
pr_info("TFA9895 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_SKIP_INTERRUPTS;
break;
case 0x97:
pr_info("TFA9897 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_SKIP_INTERRUPTS;
tfa98xx->flags |= TFA98XX_FLAG_TDM_DEVICE;
break;
case 0x96:
pr_info("TFA9896 detected\n");
tfa98xx->flags |= TFA98XX_FLAG_SKIP_INTERRUPTS;
tfa98xx->flags |= TFA98XX_FLAG_TDM_DEVICE;
break;
default:
pr_info("Unsupported device revision (0x%x)\n",
reg & 0xff);
return -EINVAL;
}
}
tfa98xx->tfa = devm_kzalloc(&i2c->dev,
sizeof(struct tfa_device), GFP_KERNEL);
if (tfa98xx->tfa == NULL)
return -ENOMEM;
/* Initialize kmem_cache */
tfa98xx_cache = kmem_cache_create(
"tfa98xx_cache", /* Cache name /proc/slabinfo */
PAGE_SIZE, /* Structure size, we should fit in single page */
0, /* Structure alignment */
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
SLAB_MEM_SPREAD), /* Cache property */
NULL);/* Object constructor */
pr_info("tfa create cache.......%p\n", tfa98xx_cache);
if (tfa98xx_cache == NULL) {
pr_err("tfa98xx can't create memory pool\n");
ret = -ENOMEM;
}
tfa98xx->tfa->data = (void *)tfa98xx;
tfa98xx->tfa->cachep = tfa98xx_cache;
/* Modify the stream names, by appending the i2c device address.
* This is used with multicodec, in order to discriminate the devices.
* Stream names appear in the dai definition and in the stream.
* We create copies of original structures because each device will
* have its own instance of this structure, with its own address.
*/
dai = devm_kzalloc(&i2c->dev, sizeof(tfa98xx_dai), GFP_KERNEL);
if (!dai)
return -ENOMEM;
memcpy(dai, tfa98xx_dai, sizeof(tfa98xx_dai));
#if 0
tfa98xx_append_i2c_address(&i2c->dev,
i2c,
NULL,
0,
dai,
ARRAY_SIZE(tfa98xx_dai));
#endif
ret = dev_set_name(&i2c->dev, "tfa98xx");
if (ret < 0) {
dev_err(&i2c->dev, "dev_set_name ret=: %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(&i2c->dev,
&soc_codec_dev_tfa98xx, dai,
ARRAY_SIZE(tfa98xx_dai));
if (ret < 0) {
pr_err("Failed to register TFA98xx ret=%d\n", ret);
return ret;
}
#ifdef CONFIG_DEBUG_FS
if (no_start == 0)
tfa98xx_debug_init(tfa98xx, i2c);
#endif
/* Register the sysfs files for climax backdoor access */
ret = device_create_bin_file(&i2c->dev, &dev_attr_rw);
if (ret)
dev_info(&i2c->dev, "error creating sysfs files\n");
ret = device_create_bin_file(&i2c->dev, &dev_attr_reg);
if (ret)
dev_info(&i2c->dev, "error creating sysfs files\n");
pr_info("Probe completed successfully!\n");
INIT_LIST_HEAD(&tfa98xx->list);
mutex_lock(&tfa98xx_mutex);
tfa98xx_device_count++;
list_add(&tfa98xx->list, &tfa98xx_device_list);
mutex_unlock(&tfa98xx_mutex);
return 0;
}
int tfa98xx_i2c_remove(struct i2c_client *i2c)
{
struct tfa98xx *tfa98xx = i2c_get_clientdata(i2c);
pr_debug("addr=0x%x\n", i2c->addr);
tfa98xx_interrupt_enable(tfa98xx, false);
cancel_delayed_work_sync(&tfa98xx->interrupt_work);
cancel_delayed_work_sync(&tfa98xx->monitor_work);
cancel_delayed_work_sync(&tfa98xx->init_work);
cancel_delayed_work_sync(&tfa98xx->tapdet_work);
device_remove_bin_file(&i2c->dev, &dev_attr_reg);
device_remove_bin_file(&i2c->dev, &dev_attr_rw);
#ifdef CONFIG_DEBUG_FS
tfa98xx_debug_remove(tfa98xx);
#endif
snd_soc_unregister_component(&i2c->dev);
if (gpio_is_valid(tfa98xx->irq_gpio))
devm_gpio_free(&i2c->dev, tfa98xx->irq_gpio);
if (gpio_is_valid(tfa98xx->reset_gpio))
devm_gpio_free(&i2c->dev, tfa98xx->reset_gpio);
mutex_lock(&tfa98xx_mutex);
list_del(&tfa98xx->list);
tfa98xx_device_count--;
if (tfa98xx_device_count == 0) {
kfree(tfa98xx_container);
tfa98xx_container = NULL;
}
mutex_unlock(&tfa98xx_mutex);
return 0;
}
static const struct of_device_id __maybe_unused tfa98xx_of_id[] = {
{ .compatible = "goodix,tfa9874",},
{},
};
MODULE_DEVICE_TABLE(of, tfa98xx_of_id);
static const struct i2c_device_id tfa98xx_i2c_id[] = {
{"tfa9874", 0 },
{},
};
MODULE_DEVICE_TABLE(i2c, tfa98xx_i2c_id);
static struct i2c_driver tfa98xx_i2c_driver = {
.driver = {
.name = "tfa98xx",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(tfa98xx_of_id),
},
.probe = tfa98xx_i2c_probe,
.remove = tfa98xx_i2c_remove,
.id_table = tfa98xx_i2c_id,
};
module_i2c_driver(tfa98xx_i2c_driver);
/* Module information */
MODULE_DESCRIPTION("Goodix Speaker Amp Codec Driver");
MODULE_AUTHOR("Pengliang Xiao <xiaopengliang@goodix.com>");
MODULE_LICENSE("GPL v2");