blob: 076994e07df264c7d458070186c8a78b676f26ea [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2021 MediaTek Inc.
*/
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/iio.h>
#include <linux/kernel.h>
#include <linux/mfd/mt6363/registers.h>
#include <linux/mfd/mt6368/registers.h>
#include <linux/mfd/mt6373/registers.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/syscore_ops.h>
#include <dt-bindings/iio/mt635x-auxadc.h>
#define AUXADC_RDY_BIT BIT(15)
#define AUXADC_DEF_R_RATIO 1
#define AUXADC_DEF_AVG_NUM 32
#define AUXADC_AVG_TIME_US 10
#define AUXADC_POLL_DELAY_US 100
#define AUXADC_TIMEOUT_US 32000
#define VOLT_FULL 1840
#define IMP_VOLT_FULL 18400
#define IMIX_R_MIN_MOHM 100
#define IMIX_R_CALI_CNT 2
#define EXT_THR_PURES_SHIFT 3
#define EXT_THR_SEL_MASK 0x1F
#define DT_CHANNEL_CONVERT(val) ((val) & 0xFF)
#define DT_PURES_CONVERT(val) (((val) & 0xFF00) >> 8)
struct pmic_adc_device {
struct device *dev;
struct regmap *regmap;
struct mutex lock;
struct iio_chan_spec *iio_chans;
unsigned int nchannels;
const struct auxadc_info *info;
struct regulator *isink_load;
int imix_r;
int imp_curr;
int pre_uisoc;
};
static struct pmic_adc_device *imix_r_dev;
/*
* @ch_name: HW channel name
* @res: ADC resolution
* @r_ratio: resistance ratio, represented by r_ratio[0] / r_ratio[1]
* @avg_num: sampling times of AUXADC measurments then average it
* @regs: request and data output registers for this channel
*/
struct auxadc_channels {
enum iio_chan_type type;
long info_mask;
/* AUXADC channel attribute */
const char *ch_name;
unsigned char res;
unsigned char r_ratio[2];
unsigned short avg_num;
const struct auxadc_regs *regs;
};
#define AUXADC_CHANNEL(_ch_name, _res) \
[AUXADC_##_ch_name] = { \
.type = IIO_VOLTAGE, \
.info_mask = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_PROCESSED), \
.ch_name = __stringify(_ch_name), \
.res = _res, \
}
/*
* The array represents all possible AUXADC channels found
* in the supported PMICs.
*/
static struct auxadc_channels auxadc_chans[] = {
AUXADC_CHANNEL(BATADC, 15),
AUXADC_CHANNEL(BAT_TEMP, 12),
AUXADC_CHANNEL(CHIP_TEMP, 12),
AUXADC_CHANNEL(VCORE_TEMP, 12),
AUXADC_CHANNEL(VPROC_TEMP, 12),
AUXADC_CHANNEL(VGPU_TEMP, 12),
AUXADC_CHANNEL(ACCDET, 12),
AUXADC_CHANNEL(HPOFS_CAL, 15),
AUXADC_CHANNEL(VTREF, 12),
AUXADC_CHANNEL(IMP, 15),
[AUXADC_IMIX_R] = {
.type = IIO_RESISTANCE,
.info_mask = BIT(IIO_CHAN_INFO_RAW),
.ch_name = "IMIX_R",
},
AUXADC_CHANNEL(VSYSSNS, 15),
AUXADC_CHANNEL(VIN1, 15),
AUXADC_CHANNEL(VIN2, 15),
AUXADC_CHANNEL(VIN3, 15),
AUXADC_CHANNEL(VIN4, 15),
AUXADC_CHANNEL(VIN5, 15),
AUXADC_CHANNEL(VIN6, 15),
AUXADC_CHANNEL(VIN7, 15),
};
struct auxadc_regs {
unsigned int enable_reg;
unsigned int enable_mask;
unsigned int ready_reg;
unsigned int ready_mask;
unsigned int value_reg;
unsigned int ext_thr_sel;
u8 src_sel;
};
#define AUXADC_REG(_ch_name, _chip, _enable_reg, _enable_mask, _value_reg) \
[AUXADC_##_ch_name] = { \
.enable_reg = _chip##_##_enable_reg, \
.enable_mask = _enable_mask, \
.ready_reg = _chip##_##_value_reg, \
.ready_mask = AUXADC_RDY_BIT, \
.value_reg = _chip##_##_value_reg, \
} \
#define TIA_ADC_REG(_src_sel, _chip) \
[AUXADC_VIN##_src_sel] = { \
.enable_reg = _chip##_AUXADC_RQST1, \
.enable_mask = BIT(4), \
.ready_reg = _chip##_AUXADC_ADC_CH12_L, \
.ready_mask = AUXADC_RDY_BIT, \
.value_reg = _chip##_AUXADC_ADC_CH12_L, \
.ext_thr_sel = _chip##_SDMADC_CON0, \
.src_sel = _src_sel, \
} \
static const struct auxadc_regs mt6363_auxadc_regs_tbl[] = {
AUXADC_REG(BATADC, MT6363, AUXADC_RQST0, BIT(0), AUXADC_ADC0_L),
AUXADC_REG(BAT_TEMP, MT6363, AUXADC_RQST0, BIT(3), AUXADC_ADC3_L),
AUXADC_REG(CHIP_TEMP, MT6363, AUXADC_RQST0, BIT(4), AUXADC_ADC4_L),
AUXADC_REG(VCORE_TEMP, MT6363, AUXADC_RQST3, BIT(0), AUXADC_ADC38_L),
AUXADC_REG(VPROC_TEMP, MT6363, AUXADC_RQST3, BIT(1), AUXADC_ADC39_L),
AUXADC_REG(VGPU_TEMP, MT6363, AUXADC_RQST3, BIT(2), AUXADC_ADC40_L),
AUXADC_REG(VTREF, MT6363, AUXADC_RQST1, BIT(3), AUXADC_ADC11_L),
[AUXADC_IMP] = {
.enable_reg = MT6363_AUXADC_IMP0,
.enable_mask = BIT(0),
.ready_reg = MT6363_AUXADC_IMP1,
.ready_mask = BIT(7),
.value_reg = MT6363_AUXADC_ADC42_L,
},
AUXADC_REG(VSYSSNS, MT6363, AUXADC_RQST1, BIT(6), AUXADC_ADC_CH14_L),
TIA_ADC_REG(1, MT6363),
TIA_ADC_REG(2, MT6363),
TIA_ADC_REG(3, MT6363),
TIA_ADC_REG(4, MT6363),
TIA_ADC_REG(5, MT6363),
TIA_ADC_REG(6, MT6363),
TIA_ADC_REG(7, MT6363),
};
static const struct auxadc_regs mt6368_auxadc_regs_tbl[] = {
AUXADC_REG(CHIP_TEMP, MT6368, AUXADC_RQST0, BIT(4), AUXADC_ADC4_L),
AUXADC_REG(VCORE_TEMP, MT6368, AUXADC_RQST3, BIT(0), AUXADC_ADC38_L),
AUXADC_REG(VPROC_TEMP, MT6368, AUXADC_RQST3, BIT(1), AUXADC_ADC39_L),
AUXADC_REG(VGPU_TEMP, MT6368, AUXADC_RQST3, BIT(2), AUXADC_ADC40_L),
AUXADC_REG(ACCDET, MT6368, AUXADC_RQST0, BIT(5), AUXADC_ADC5_L),
AUXADC_REG(HPOFS_CAL, MT6368, AUXADC_RQST1, BIT(1), AUXADC_ADC9_L),
TIA_ADC_REG(1, MT6368),
TIA_ADC_REG(2, MT6368),
};
static const struct auxadc_regs mt6373_auxadc_regs_tbl[] = {
AUXADC_REG(CHIP_TEMP, MT6373, AUXADC_RQST0, BIT(4), AUXADC_ADC4_L),
AUXADC_REG(VCORE_TEMP, MT6373, AUXADC_RQST3, BIT(0), AUXADC_ADC38_L),
AUXADC_REG(VPROC_TEMP, MT6373, AUXADC_RQST3, BIT(1), AUXADC_ADC39_L),
AUXADC_REG(VGPU_TEMP, MT6373, AUXADC_RQST3, BIT(2), AUXADC_ADC40_L),
TIA_ADC_REG(1, MT6373),
TIA_ADC_REG(2, MT6373),
TIA_ADC_REG(3, MT6373),
TIA_ADC_REG(4, MT6373),
TIA_ADC_REG(5, MT6373),
};
struct auxadc_info {
const struct auxadc_regs *regs_tbl;
};
static const struct auxadc_info mt6363_info = {
.regs_tbl = mt6363_auxadc_regs_tbl,
};
static const struct auxadc_info mt6368_info = {
.regs_tbl = mt6368_auxadc_regs_tbl,
};
static const struct auxadc_info mt6373_info = {
.regs_tbl = mt6373_auxadc_regs_tbl,
};
#define regmap_bulk_read_poll_timeout(map, addr, val, val_count, cond, sleep_us, timeout_us) \
({ \
u64 __timeout_us = (timeout_us); \
unsigned long __sleep_us = (sleep_us); \
ktime_t __timeout = ktime_add_us(ktime_get(), __timeout_us); \
int __ret; \
might_sleep_if(__sleep_us); \
for (;;) { \
__ret = regmap_bulk_read((map), (addr), (u8 *) &(val), val_count); \
if (__ret) \
break; \
if (cond) \
break; \
if ((__timeout_us) && \
ktime_compare(ktime_get(), __timeout) > 0) { \
__ret = regmap_bulk_read((map), (addr), (u8 *) &(val), val_count); \
break; \
} \
if (__sleep_us) \
usleep_range((__sleep_us >> 2) + 1, __sleep_us); \
} \
__ret ?: ((cond) ? 0 : -ETIMEDOUT); \
})
/*
* @adc_dev: pointer to the struct pmic_adc_device
* @auxadc_chan: pointer to the struct auxadc_channels, it represents specific
auxadc channel
* @val: pointer to output value
*/
static int get_auxadc_out(struct pmic_adc_device *adc_dev,
int channel, int channel2, int *val)
{
int ret;
u16 buf = 0;
const struct auxadc_channels *auxadc_chan = &auxadc_chans[channel];
if (!auxadc_chan->regs)
return -EINVAL;
if (auxadc_chan->regs->ext_thr_sel) {
buf = (channel2 << EXT_THR_PURES_SHIFT)
| auxadc_chan->regs->src_sel;
ret = regmap_update_bits(adc_dev->regmap,
auxadc_chan->regs->ext_thr_sel,
EXT_THR_SEL_MASK, buf);
}
regmap_write(adc_dev->regmap,
auxadc_chan->regs->enable_reg,
auxadc_chan->regs->enable_mask);
usleep_range(auxadc_chan->avg_num * AUXADC_AVG_TIME_US,
(auxadc_chan->avg_num + 1) * AUXADC_AVG_TIME_US);
ret = regmap_bulk_read_poll_timeout(adc_dev->regmap,
auxadc_chan->regs->value_reg,
buf, 2,
(buf & AUXADC_RDY_BIT),
AUXADC_POLL_DELAY_US,
AUXADC_TIMEOUT_US);
*val = buf & (BIT(auxadc_chan->res) - 1);
if (ret == -ETIMEDOUT)
dev_err(adc_dev->dev, "%s Time out!\n", auxadc_chan->ch_name);
/* set PURES to OPEN after measuring done */
if (auxadc_chan->regs->ext_thr_sel) {
buf = (ADC_PURES_OPEN << EXT_THR_PURES_SHIFT)
| auxadc_chan->regs->src_sel;
ret = regmap_update_bits(adc_dev->regmap,
auxadc_chan->regs->ext_thr_sel,
EXT_THR_SEL_MASK, buf);
}
return ret;
}
static int gauge_get_imp_ibat(void)
{
struct power_supply *psy;
union power_supply_propval prop;
int ret;
psy = power_supply_get_by_name("mtk-gauge");
if (!psy)
return 0;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CURRENT_NOW, &prop);
if (ret)
return ret;
power_supply_put(psy);
return prop.intval;
}
static int get_imp_out(struct pmic_adc_device *adc_dev, int *val)
{
int ret, cnt = 0;
int max_cnt = AUXADC_TIMEOUT_US / AUXADC_POLL_DELAY_US;
unsigned int buf = 0;
const struct auxadc_channels *auxadc_chan = &auxadc_chans[AUXADC_IMP];
if (!auxadc_chan->regs)
return -EINVAL;
regmap_write(adc_dev->regmap,
auxadc_chan->regs->enable_reg,
auxadc_chan->regs->enable_mask);
for (;;) {
ret = regmap_read(adc_dev->regmap, auxadc_chan->regs->ready_reg, &buf);
if (ret)
break;
if (buf & auxadc_chan->regs->ready_mask)
break;
if ((cnt)++ > max_cnt) {
dev_err(adc_dev->dev, "IMP Time out over %d times\n", cnt);
return -ETIMEDOUT;
}
udelay(AUXADC_POLL_DELAY_US);
}
ret = regmap_bulk_read(adc_dev->regmap, auxadc_chan->regs->value_reg, (u8 *) &buf, 2);
if (ret)
return ret;
*val = buf & (BIT(auxadc_chan->res) - 1);
adc_dev->imp_curr = gauge_get_imp_ibat();
return 0;
}
static int pmic_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct pmic_adc_device *adc_dev = iio_priv(indio_dev);
const struct auxadc_channels *auxadc_chan;
int auxadc_out = 0;
int ret = 0;
mutex_lock(&adc_dev->lock);
switch (chan->channel) {
case AUXADC_IMP:
ret = get_imp_out(adc_dev, &auxadc_out);
break;
case AUXADC_IMIX_R:
auxadc_out = adc_dev->imix_r;
break;
default:
ret = get_auxadc_out(adc_dev,
chan->channel, chan->channel2,
&auxadc_out);
break;
}
mutex_unlock(&adc_dev->lock);
if (ret != -ETIMEDOUT && ret < 0)
goto err;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
auxadc_chan = &auxadc_chans[chan->channel];
*val = auxadc_out * auxadc_chan->r_ratio[0] * VOLT_FULL;
*val = (*val / auxadc_chan->r_ratio[1]) >> auxadc_chan->res;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_RAW:
*val = auxadc_out;
ret = IIO_VAL_INT;
break;
default:
return -EINVAL;
}
if (chan->channel == AUXADC_IMP) {
*val2 = adc_dev->imp_curr;
ret = IIO_VAL_INT_MULTIPLE;
}
err:
return ret;
}
static int pmic_adc_of_xlate(struct iio_dev *indio_dev,
const struct of_phandle_args *iiospec)
{
int i;
int channel = DT_CHANNEL_CONVERT(iiospec->args[0]);
int channel2 = DT_PURES_CONVERT(iiospec->args[0]);
for (i = 0; i < indio_dev->num_channels; i++) {
if (indio_dev->channels[i].channel == channel &&
indio_dev->channels[i].channel2 == channel2)
return i;
}
return -EINVAL;
}
static const struct iio_info pmic_adc_info = {
.read_raw = &pmic_adc_read_raw,
.of_xlate = &pmic_adc_of_xlate,
};
static int auxadc_get_uisoc(void)
{
struct power_supply *psy;
union power_supply_propval prop;
int ret;
psy = power_supply_get_by_name("battery");
if (!psy)
return -ENODEV;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CAPACITY, &prop);
if (ret || prop.intval < 0)
return -EINVAL;
power_supply_put(psy);
return prop.intval;
}
/* vbat unit is 0.1mV; ibat unit is 0.1mA */
static int auxadc_get_imp_vbat_ibat(struct pmic_adc_device *adc_dev,
int *vbat, int *ibat)
{
const struct auxadc_channels *imp_chan = &auxadc_chans[AUXADC_IMP];
int auxadc_out;
int ret;
mutex_lock(&adc_dev->lock);
ret = get_imp_out(adc_dev, &auxadc_out);
mutex_unlock(&adc_dev->lock);
if (ret)
return ret;
*vbat = auxadc_out * imp_chan->r_ratio[0] * IMP_VOLT_FULL;
*vbat = (*vbat / imp_chan->r_ratio[1]) >> imp_chan->res;
*ibat = adc_dev->imp_curr;
return 0;
}
static int auxadc_get_rac(struct pmic_adc_device *adc_dev)
{
int vbat_1 = 0, vbat_2 = 0;
int ibat_1 = 0, ibat_2 = 0;
int rac = 0;
int ret, retry_count = 0;
if (!adc_dev->isink_load)
return -EINVAL;
do {
ret = auxadc_get_imp_vbat_ibat(adc_dev, &vbat_1, &ibat_1);
if (ret)
break;
/* enable dummy_load */
ret = regulator_enable(adc_dev->isink_load);
if (ret)
return ret;
mdelay(50);
ret = auxadc_get_imp_vbat_ibat(adc_dev, &vbat_2, &ibat_2);
if (ret)
break;
/* disable dummy_load */
ret = regulator_disable(adc_dev->isink_load);
if (ret)
return ret;
/* Cal.Rac: 70mA <= c_diff <= 120mA, 4mV <= v_diff <= 200mV */
if ((ibat_2 - ibat_1) >= 700 && (ibat_2 - ibat_1) <= 1200 &&
(vbat_1 - vbat_2) >= 40 && (vbat_1 - vbat_2) <= 2000) {
/*m-ohm */
rac = ((vbat_1 - vbat_2) * 1000) / (ibat_2 - ibat_1);
if (rac < 0)
rac = -rac;
if (rac < 50) {
ret = -EAGAIN;
dev_info(adc_dev->dev, "bypass due to Rac=%d too small\n", rac);
}
} else {
ret = -EAGAIN;
dev_info(adc_dev->dev,
"bypass due to c_diff or v_diff not in range\n");
}
dev_info(adc_dev->dev,
"v1=%d,v2=%d,c1=%d,c2=%d,v_diff=%d,c_diff=%d\n",
vbat_1, vbat_2, ibat_1, ibat_2,
(vbat_1 - vbat_2), (ibat_2 - ibat_1));
dev_info(adc_dev->dev, "rac=%d,ret=%d,retry=%d\n",
rac, ret, retry_count);
if (++retry_count >= 3)
break;
} while (ret == -EAGAIN);
return ret < 0 ? ret : rac;
}
static int auxadc_init_imix_r(struct pmic_adc_device *adc_dev,
struct device_node *imix_r_node)
{
unsigned int val = 0;
int ret;
if (!adc_dev)
return -EINVAL;
adc_dev->isink_load = devm_regulator_get_exclusive(adc_dev->dev, "isink_load");
if (IS_ERR(adc_dev->isink_load)) {
dev_err(adc_dev->dev, "Failed to get isink_load regulator, ret=%d\n",
PTR_ERR(adc_dev->isink_load));
return PTR_ERR(adc_dev->isink_load);
}
imix_r_dev = adc_dev;
if (imix_r_dev->imix_r)
return 0;
ret = of_property_read_u32(imix_r_node, "val", &val);
if (ret)
dev_notice(imix_r_dev->dev, "no imix_r, ret=%d\n", ret);
imix_r_dev->imix_r = (int)val;
imix_r_dev->pre_uisoc = 101;
return 0;
}
static int auxadc_cali_imix_r(void)
{
struct power_supply *psy;
int cur_uisoc = auxadc_get_uisoc();
int i, imix_r_avg = 0;
int rac_val[IMIX_R_CALI_CNT];
if (!imix_r_dev)
return -EINVAL;
psy = power_supply_get_by_name("mtk-gauge");
if (!psy) {
dev_info(imix_r_dev->dev, "gauge disabled, skip\n");
return -ENODEV;
}
power_supply_put(psy);
if (cur_uisoc < 0 || cur_uisoc == imix_r_dev->pre_uisoc) {
dev_info(imix_r_dev->dev, "pre_SOC=%d SOC=%d, skip\n",
imix_r_dev->pre_uisoc, cur_uisoc);
return 0;
}
imix_r_dev->pre_uisoc = cur_uisoc;
for (i = 0; i < IMIX_R_CALI_CNT; i++) {
rac_val[i] = auxadc_get_rac(imix_r_dev);
if (rac_val[i] < 0) {
dev_info(imix_r_dev->dev,
"get_rac error,ret=%d\n", rac_val[i]);
return -EINVAL;
}
imix_r_avg += rac_val[i];
}
imix_r_avg = imix_r_avg / IMIX_R_CALI_CNT;
if (imix_r_avg > IMIX_R_MIN_MOHM)
imix_r_dev->imix_r = imix_r_avg;
dev_info(imix_r_dev->dev, "%d, %d, imix_r_avg:%d\n",
rac_val[0], rac_val[1], imix_r_avg);
return 0;
}
static int auxadc_suspend_enter(void)
{
auxadc_cali_imix_r();
return 0;
}
static struct syscore_ops auxadc_syscore_ops = {
.suspend = auxadc_suspend_enter,
};
static int auxadc_get_data_from_dt(struct pmic_adc_device *adc_dev,
struct iio_chan_spec *iio_chan,
struct device_node *node)
{
struct auxadc_channels *auxadc_chan;
unsigned int channel = 0;
unsigned int value = 0;
unsigned int val_arr[2] = {0};
int ret;
ret = of_property_read_u32(node, "channel", &channel);
if (ret) {
dev_notice(adc_dev->dev, "invalid channel in node:%s\n",
node->name);
return ret;
}
if (channel > AUXADC_CHAN_MAX) {
dev_notice(adc_dev->dev, "invalid channel number %d in node:%s\n",
channel, node->name);
return -EINVAL;
}
if (channel >= ARRAY_SIZE(auxadc_chans)) {
dev_notice(adc_dev->dev, "channel number %d in node:%s not exists\n",
channel, node->name);
return -EINVAL;
}
iio_chan->channel = channel;
iio_chan->datasheet_name = auxadc_chans[channel].ch_name;
iio_chan->info_mask_separate = auxadc_chans[channel].info_mask;
iio_chan->type = auxadc_chans[channel].type;
iio_chan->extend_name = node->name;
ret = of_property_read_u32(node, "pures", &value);
if (!ret)
iio_chan->channel2 = value;
if (channel == AUXADC_IMIX_R)
return auxadc_init_imix_r(adc_dev, node);
auxadc_chan = &auxadc_chans[channel];
auxadc_chan->regs = &adc_dev->info->regs_tbl[channel];
ret = of_property_read_u32_array(node, "resistance-ratio", val_arr, 2);
if (!ret) {
auxadc_chan->r_ratio[0] = val_arr[0];
auxadc_chan->r_ratio[1] = val_arr[1];
} else {
auxadc_chan->r_ratio[0] = AUXADC_DEF_R_RATIO;
auxadc_chan->r_ratio[1] = 1;
}
ret = of_property_read_u32(node, "avg-num", &value);
if (!ret)
auxadc_chan->avg_num = value;
else
auxadc_chan->avg_num = AUXADC_DEF_AVG_NUM;
return 0;
}
static int auxadc_parse_dt(struct pmic_adc_device *adc_dev,
struct device_node *node)
{
struct iio_chan_spec *iio_chan;
struct device_node *child;
unsigned int index = 0;
int ret;
adc_dev->nchannels = of_get_available_child_count(node);
if (!adc_dev->nchannels)
return -EINVAL;
adc_dev->iio_chans = devm_kcalloc(adc_dev->dev, adc_dev->nchannels,
sizeof(*adc_dev->iio_chans), GFP_KERNEL);
if (!adc_dev->iio_chans)
return -ENOMEM;
iio_chan = adc_dev->iio_chans;
for_each_available_child_of_node(node, child) {
ret = auxadc_get_data_from_dt(adc_dev, iio_chan, child);
if (ret < 0) {
of_node_put(child);
return ret;
}
iio_chan->indexed = 1;
iio_chan->address = index++;
iio_chan++;
}
return 0;
}
static int pmic_adc_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct pmic_adc_device *adc_dev;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc_dev));
if (!indio_dev)
return -ENOMEM;
adc_dev = iio_priv(indio_dev);
adc_dev->dev = &pdev->dev;
adc_dev->regmap = dev_get_regmap(pdev->dev.parent, NULL);
mutex_init(&adc_dev->lock);
adc_dev->info = of_device_get_match_data(&pdev->dev);
ret = auxadc_parse_dt(adc_dev, node);
if (ret) {
dev_notice(&pdev->dev, "auxadc_parse_dt fail, ret=%d\n", ret);
return ret;
}
indio_dev->dev.parent = &pdev->dev;
indio_dev->name = dev_name(&pdev->dev);
indio_dev->info = &pmic_adc_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = adc_dev->iio_chans;
indio_dev->num_channels = adc_dev->nchannels;
ret = devm_iio_device_register(&pdev->dev, indio_dev);
if (ret < 0) {
dev_notice(&pdev->dev, "failed to register iio device!\n");
return ret;
}
if (adc_dev->imix_r)
register_syscore_ops(&auxadc_syscore_ops);
dev_info(&pdev->dev, "probe done\n");
return 0;
}
static const struct of_device_id pmic_adc_of_match[] = {
{ .compatible = "mediatek,mt6363-auxadc", .data = &mt6363_info, },
{ .compatible = "mediatek,mt6368-auxadc", .data = &mt6368_info, },
{ .compatible = "mediatek,mt6373-auxadc", .data = &mt6373_info, },
{ }
};
MODULE_DEVICE_TABLE(of, pmic_adc_of_match);
static struct platform_driver pmic_adc_driver = {
.driver = {
.name = "mtk-spmi-pmic-adc",
.of_match_table = pmic_adc_of_match,
},
.probe = pmic_adc_probe,
};
module_platform_driver(pmic_adc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Jeter Chen <Jeter.Chen@mediatek.com>");
MODULE_DESCRIPTION("MediaTek SPMI PMIC ADC Driver");