blob: a465c4c721012edcbe5c459ce9f1be7535b5c096 [file] [log] [blame]
/*
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2014 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "lib.h"
#include "metadata.h"
#include "locking.h"
#include "pv_map.h"
#include "lvm-string.h"
#include "toolcontext.h"
#include "lv_alloc.h"
#include "pv_alloc.h"
#include "display.h"
#include "segtype.h"
#include "archiver.h"
#include "activate.h"
#include "str_list.h"
#include "defaults.h"
#include "lvm-exec.h"
#include "memlock.h"
#include "lvmlockd.h"
typedef enum {
PREFERRED,
USE_AREA,
NEXT_PV,
NEXT_AREA
} area_use_t;
/* FIXME: remove RAID_METADATA_AREA_LEN macro after defining 'raid_log_extents'*/
#define RAID_METADATA_AREA_LEN 1
/* FIXME These ended up getting used differently from first intended. Refactor. */
/* Only one of A_CONTIGUOUS_TO_LVSEG, A_CLING_TO_LVSEG, A_CLING_TO_ALLOCED may be set */
#define A_CONTIGUOUS_TO_LVSEG 0x01 /* Must be contiguous to an existing segment */
#define A_CLING_TO_LVSEG 0x02 /* Must use same disks as existing LV segment */
#define A_CLING_TO_ALLOCED 0x04 /* Must use same disks as already-allocated segment */
#define A_CLING_BY_TAGS 0x08 /* Must match tags against existing segment */
#define A_CAN_SPLIT 0x10
#define A_AREA_COUNT_MATCHES 0x20 /* Existing lvseg has same number of areas as new segment */
#define A_POSITIONAL_FILL 0x40 /* Slots are positional and filled using PREFERRED */
#define A_PARTITION_BY_TAGS 0x80 /* No allocated area may share any tag with any other */
/*
* Constant parameters during a single allocation attempt.
*/
struct alloc_parms {
alloc_policy_t alloc;
unsigned flags; /* Holds A_* */
struct lv_segment *prev_lvseg;
uint32_t extents_still_needed;
};
/*
* Holds varying state of each allocation attempt.
*/
struct alloc_state {
const struct alloc_parms *alloc_parms;
struct pv_area_used *areas;
uint32_t areas_size;
uint32_t log_area_count_still_needed; /* Number of areas still needing to be allocated for the log */
uint32_t allocated; /* Total number of extents allocated so far */
uint32_t num_positional_areas; /* Number of parallel allocations that must be contiguous/cling */
};
struct lv_names {
const char *old;
const char *new;
};
enum {
LV_TYPE_UNKNOWN,
LV_TYPE_NONE,
LV_TYPE_PUBLIC,
LV_TYPE_PRIVATE,
LV_TYPE_HISTORY,
LV_TYPE_LINEAR,
LV_TYPE_STRIPED,
LV_TYPE_MIRROR,
LV_TYPE_RAID,
LV_TYPE_THIN,
LV_TYPE_CACHE,
LV_TYPE_SPARSE,
LV_TYPE_ORIGIN,
LV_TYPE_THINORIGIN,
LV_TYPE_MULTITHINORIGIN,
LV_TYPE_THICKORIGIN,
LV_TYPE_MULTITHICKORIGIN,
LV_TYPE_CACHEORIGIN,
LV_TYPE_EXTTHINORIGIN,
LV_TYPE_MULTIEXTTHINORIGIN,
LV_TYPE_SNAPSHOT,
LV_TYPE_THINSNAPSHOT,
LV_TYPE_THICKSNAPSHOT,
LV_TYPE_PVMOVE,
LV_TYPE_IMAGE,
LV_TYPE_LOG,
LV_TYPE_METADATA,
LV_TYPE_POOL,
LV_TYPE_DATA,
LV_TYPE_SPARE,
LV_TYPE_VIRTUAL,
LV_TYPE_RAID0,
LV_TYPE_RAID0_META,
LV_TYPE_RAID1,
LV_TYPE_RAID10,
LV_TYPE_RAID4,
LV_TYPE_RAID5,
LV_TYPE_RAID5_LA,
LV_TYPE_RAID5_RA,
LV_TYPE_RAID5_LS,
LV_TYPE_RAID5_RS,
LV_TYPE_RAID6,
LV_TYPE_RAID6_ZR,
LV_TYPE_RAID6_NR,
LV_TYPE_RAID6_NC,
LV_TYPE_LOCKD,
LV_TYPE_SANLOCK
};
static const char *_lv_type_names[] = {
[LV_TYPE_UNKNOWN] = "unknown",
[LV_TYPE_NONE] = "none",
[LV_TYPE_PUBLIC] = "public",
[LV_TYPE_PRIVATE] = "private",
[LV_TYPE_HISTORY] = "history",
[LV_TYPE_LINEAR] = "linear",
[LV_TYPE_STRIPED] = "striped",
[LV_TYPE_MIRROR] = "mirror",
[LV_TYPE_RAID] = "raid",
[LV_TYPE_THIN] = "thin",
[LV_TYPE_CACHE] = "cache",
[LV_TYPE_SPARSE] = "sparse",
[LV_TYPE_ORIGIN] = "origin",
[LV_TYPE_THINORIGIN] = "thinorigin",
[LV_TYPE_MULTITHINORIGIN] = "multithinorigin",
[LV_TYPE_THICKORIGIN] = "thickorigin",
[LV_TYPE_MULTITHICKORIGIN] = "multithickorigin",
[LV_TYPE_CACHEORIGIN] = "cacheorigin",
[LV_TYPE_EXTTHINORIGIN] = "extthinorigin",
[LV_TYPE_MULTIEXTTHINORIGIN] = "multiextthinorigin",
[LV_TYPE_SNAPSHOT] = "snapshot",
[LV_TYPE_THINSNAPSHOT] = "thinsnapshot",
[LV_TYPE_THICKSNAPSHOT] = "thicksnapshot",
[LV_TYPE_PVMOVE] = "pvmove",
[LV_TYPE_IMAGE] = "image",
[LV_TYPE_LOG] = "log",
[LV_TYPE_METADATA] = "metadata",
[LV_TYPE_POOL] = "pool",
[LV_TYPE_DATA] = "data",
[LV_TYPE_SPARE] = "spare",
[LV_TYPE_VIRTUAL] = "virtual",
[LV_TYPE_RAID0] = SEG_TYPE_NAME_RAID0,
[LV_TYPE_RAID0_META] = SEG_TYPE_NAME_RAID0_META,
[LV_TYPE_RAID1] = SEG_TYPE_NAME_RAID1,
[LV_TYPE_RAID10] = SEG_TYPE_NAME_RAID10,
[LV_TYPE_RAID4] = SEG_TYPE_NAME_RAID4,
[LV_TYPE_RAID5] = SEG_TYPE_NAME_RAID5,
[LV_TYPE_RAID5_LA] = SEG_TYPE_NAME_RAID5_LA,
[LV_TYPE_RAID5_RA] = SEG_TYPE_NAME_RAID5_RA,
[LV_TYPE_RAID5_LS] = SEG_TYPE_NAME_RAID5_LS,
[LV_TYPE_RAID5_RS] = SEG_TYPE_NAME_RAID5_RS,
[LV_TYPE_RAID6] = SEG_TYPE_NAME_RAID6,
[LV_TYPE_RAID6_ZR] = SEG_TYPE_NAME_RAID6_ZR,
[LV_TYPE_RAID6_NR] = SEG_TYPE_NAME_RAID6_NR,
[LV_TYPE_RAID6_NC] = SEG_TYPE_NAME_RAID6_NC,
[LV_TYPE_LOCKD] = "lockd",
[LV_TYPE_SANLOCK] = "sanlock",
};
static int _lv_layout_and_role_mirror(struct dm_pool *mem,
const struct logical_volume *lv,
struct dm_list *layout,
struct dm_list *role,
int *public_lv)
{
int top_level = 0;
/* non-top-level LVs */
if (lv_is_mirror_image(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_MIRROR]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_IMAGE]))
goto_bad;
} else if (lv_is_mirror_log(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_MIRROR]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_LOG]))
goto_bad;
if (lv_is_mirrored(lv) &&
!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_MIRROR]))
goto_bad;
} else if (lv_is_pvmove(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_PVMOVE]) ||
!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_MIRROR]))
goto_bad;
} else
top_level = 1;
if (!top_level) {
*public_lv = 0;
return 1;
}
/* top-level LVs */
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_MIRROR]))
goto_bad;
return 1;
bad:
return 0;
}
static int _lv_layout_and_role_raid(struct dm_pool *mem,
const struct logical_volume *lv,
struct dm_list *layout,
struct dm_list *role,
int *public_lv)
{
int top_level = 0;
const struct segment_type *segtype;
/* non-top-level LVs */
if (lv_is_raid_image(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_RAID]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_IMAGE]))
goto_bad;
} else if (lv_is_raid_metadata(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_RAID]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_METADATA]))
goto_bad;
} else if (lv_is_pvmove(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_PVMOVE]) ||
!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID]))
goto_bad;
} else
top_level = 1;
if (!top_level) {
*public_lv = 0;
return 1;
}
/* top-level LVs */
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID]))
goto_bad;
segtype = first_seg(lv)->segtype;
if (segtype_is_raid0(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID0]))
goto_bad;
} else if (segtype_is_raid1(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID1]))
goto_bad;
} else if (segtype_is_raid10(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID10]))
goto_bad;
} else if (segtype_is_raid4(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID4]))
goto_bad;
} else if (segtype_is_any_raid5(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID5]))
goto_bad;
if (segtype_is_raid5_la(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID5_LA]))
goto_bad;
} else if (segtype_is_raid5_ra(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID5_RA]))
goto_bad;
} else if (segtype_is_raid5_ls(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID5_LS]))
goto_bad;
} else if (segtype_is_raid5_rs(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID5_RS]))
goto_bad;
}
} else if (segtype_is_any_raid6(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID6]))
goto_bad;
if (segtype_is_raid6_zr(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID6_ZR]))
goto_bad;
} else if (segtype_is_raid6_nr(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID6_NR]))
goto_bad;
} else if (segtype_is_raid6_nc(segtype)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_RAID6_NC]))
goto_bad;
}
}
return 1;
bad:
return 0;
}
static int _lv_layout_and_role_thin(struct dm_pool *mem,
const struct logical_volume *lv,
struct dm_list *layout,
struct dm_list *role,
int *public_lv)
{
int top_level = 0;
unsigned snap_count;
struct lv_segment *seg;
/* non-top-level LVs */
if (lv_is_thin_pool_metadata(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_THIN]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_POOL]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_METADATA]))
goto_bad;
} else if (lv_is_thin_pool_data(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_THIN]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_POOL]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_DATA]))
goto_bad;
} else
top_level = 1;
if (!top_level) {
*public_lv = 0;
return 1;
}
/* top-level LVs */
if (lv_is_thin_volume(lv)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_THIN]) ||
!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_SPARSE]))
goto_bad;
if (lv_is_thin_origin(lv, &snap_count)) {
if (!str_list_add(mem, role, _lv_type_names[LV_TYPE_ORIGIN]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_THINORIGIN]))
goto_bad;
if (snap_count > 1 &&
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_MULTITHINORIGIN]))
goto_bad;
}
if ((seg = first_seg(lv)) && (seg->origin || seg->external_lv))
if (!str_list_add(mem, role, _lv_type_names[LV_TYPE_SNAPSHOT]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_THINSNAPSHOT]))
goto_bad;
} else if (lv_is_thin_pool(lv)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_THIN]) ||
!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_POOL]))
goto_bad;
*public_lv = 0;
}
if (lv_is_external_origin(lv)) {
if (!str_list_add(mem, role, _lv_type_names[LV_TYPE_ORIGIN]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_EXTTHINORIGIN]))
goto_bad;
if (lv->external_count > 1 &&
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_MULTIEXTTHINORIGIN]))
goto_bad;
}
return 1;
bad:
return 0;
}
static int _lv_layout_and_role_cache(struct dm_pool *mem,
const struct logical_volume *lv,
struct dm_list *layout,
struct dm_list *role,
int *public_lv)
{
int top_level = 0;
/* non-top-level LVs */
if (lv_is_cache_pool_metadata(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_CACHE]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_POOL]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_METADATA]))
goto_bad;
} else if (lv_is_cache_pool_data(lv)) {
if (!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_CACHE]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_POOL]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_DATA]))
goto_bad;
if (lv_is_cache(lv) &&
!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_CACHE]))
goto_bad;
} else if (lv_is_cache_origin(lv)) {
if (!str_list_add(mem, role, _lv_type_names[LV_TYPE_CACHE]) ||
!str_list_add(mem, role, _lv_type_names[LV_TYPE_ORIGIN]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_CACHEORIGIN]))
goto_bad;
if (lv_is_cache(lv) &&
!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_CACHE]))
goto_bad;
} else
top_level = 1;
if (!top_level) {
*public_lv = 0;
return 1;
}
/* top-level LVs */
if (lv_is_cache(lv) &&
!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_CACHE]))
goto_bad;
else if (lv_is_cache_pool(lv)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_CACHE]) ||
!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_POOL]))
goto_bad;
*public_lv = 0;
}
return 1;
bad:
return 0;
}
static int _lv_layout_and_role_thick_origin_snapshot(struct dm_pool *mem,
const struct logical_volume *lv,
struct dm_list *layout,
struct dm_list *role,
int *public_lv)
{
if (lv_is_origin(lv)) {
if (!str_list_add(mem, role, _lv_type_names[LV_TYPE_ORIGIN]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_THICKORIGIN]))
goto_bad;
/*
* Thin volumes are also marked with virtual flag, but we don't show "virtual"
* layout for thin LVs as they have their own keyword for layout - "thin"!
* So rule thin LVs out here!
*/
if (lv_is_virtual(lv) && !lv_is_thin_volume(lv)) {
if (!str_list_add_no_dup_check(mem, layout, _lv_type_names[LV_TYPE_VIRTUAL]))
goto_bad;
*public_lv = 0;
}
if (lv->origin_count > 1 &&
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_MULTITHICKORIGIN]))
goto_bad;
} else if (lv_is_cow(lv)) {
if (!str_list_add(mem, role, _lv_type_names[LV_TYPE_SNAPSHOT]) ||
!str_list_add_no_dup_check(mem, role, _lv_type_names[LV_TYPE_THICKSNAPSHOT]))
goto_bad;
}
return 1;
bad:
return 0;
}
int lv_layout_and_role(struct dm_pool *mem, const struct logical_volume *lv,
struct dm_list **layout, struct dm_list **role) {
int linear, striped;
struct lv_segment *seg;
int public_lv = 1;
*layout = *role = NULL;
if (!(*layout = str_list_create(mem))) {
log_error("LV layout list allocation failed");
return 0;
}
if (!(*role = str_list_create(mem))) {
log_error("LV role list allocation failed");
goto bad;
}
if (lv_is_historical(lv)) {
if (!str_list_add_no_dup_check(mem, *layout, _lv_type_names[LV_TYPE_NONE]) ||
!str_list_add_no_dup_check(mem, *role, _lv_type_names[LV_TYPE_HISTORY]))
goto_bad;
}
/* Mirrors and related */
if ((lv_is_mirror_type(lv) || lv_is_pvmove(lv)) &&
!_lv_layout_and_role_mirror(mem, lv, *layout, *role, &public_lv))
goto_bad;
/* RAIDs and related */
if (lv_is_raid_type(lv) &&
!_lv_layout_and_role_raid(mem, lv, *layout, *role, &public_lv))
goto_bad;
/* Thins and related */
if ((lv_is_thin_type(lv) || lv_is_external_origin(lv)) &&
!_lv_layout_and_role_thin(mem, lv, *layout, *role, &public_lv))
goto_bad;
/* Caches and related */
if ((lv_is_cache_type(lv) || lv_is_cache_origin(lv)) &&
!_lv_layout_and_role_cache(mem, lv, *layout, *role, &public_lv))
goto_bad;
/* Pool-specific */
if (lv_is_pool_metadata_spare(lv)) {
if (!str_list_add_no_dup_check(mem, *role, _lv_type_names[LV_TYPE_POOL]) ||
!str_list_add_no_dup_check(mem, *role, _lv_type_names[LV_TYPE_SPARE]))
goto_bad;
public_lv = 0;
}
/* Old-style origins/snapshots, virtual origins */
if (!_lv_layout_and_role_thick_origin_snapshot(mem, lv, *layout, *role, &public_lv))
goto_bad;
if (lv_is_lockd_sanlock_lv(lv)) {
if (!str_list_add_no_dup_check(mem, *role, _lv_type_names[LV_TYPE_LOCKD]) ||
!str_list_add_no_dup_check(mem, *role, _lv_type_names[LV_TYPE_SANLOCK]))
goto_bad;
public_lv = 0;
}
/*
* If layout not yet determined, it must be either
* linear or striped or mixture of these two.
*/
if (dm_list_empty(*layout)) {
linear = striped = 0;
dm_list_iterate_items(seg, &lv->segments) {
if (seg_is_linear(seg))
linear = 1;
else if (seg_is_striped(seg))
striped = 1;
else {
/*
* This should not happen but if it does
* we'll see that there's "unknown" layout
* present. This means we forgot to detect
* the role above and we need add proper
* detection for such role!
*/
log_warn(INTERNAL_ERROR "WARNING: Failed to properly detect "
"layout and role for LV %s/%s.",
lv->vg->name, lv->name);
}
}
if (linear &&
!str_list_add_no_dup_check(mem, *layout, _lv_type_names[LV_TYPE_LINEAR]))
goto_bad;
if (striped &&
!str_list_add_no_dup_check(mem, *layout, _lv_type_names[LV_TYPE_STRIPED]))
goto_bad;
if (!linear && !striped &&
!str_list_add_no_dup_check(mem, *layout, _lv_type_names[LV_TYPE_UNKNOWN]))
goto_bad;
}
/* finally, add either 'public' or 'private' role to the LV */
if (public_lv) {
if (!str_list_add_h_no_dup_check(mem, *role, _lv_type_names[LV_TYPE_PUBLIC]))
goto_bad;
} else {
if (!str_list_add_h_no_dup_check(mem, *role, _lv_type_names[LV_TYPE_PRIVATE]))
goto_bad;
}
return 1;
bad:
dm_pool_free(mem, *layout);
return 0;
}
struct dm_list_and_mempool {
struct dm_list *list;
struct dm_pool *mem;
};
static int _get_pv_list_for_lv(struct logical_volume *lv, void *data)
{
int dup_found;
uint32_t s;
struct pv_list *pvl;
struct lv_segment *seg;
struct dm_list *pvs = ((struct dm_list_and_mempool *)data)->list;
struct dm_pool *mem = ((struct dm_list_and_mempool *)data)->mem;
dm_list_iterate_items(seg, &lv->segments) {
for (s = 0; s < seg->area_count; s++) {
dup_found = 0;
if (seg_type(seg, s) != AREA_PV)
continue;
/* do not add duplicates */
dm_list_iterate_items(pvl, pvs)
if (pvl->pv == seg_pv(seg, s))
dup_found = 1;
if (dup_found)
continue;
if (!(pvl = dm_pool_zalloc(mem, sizeof(*pvl)))) {
log_error("Failed to allocate memory");
return 0;
}
pvl->pv = seg_pv(seg, s);
log_debug_metadata(" %s/%s uses %s", lv->vg->name,
lv->name, pv_dev_name(pvl->pv));
dm_list_add(pvs, &pvl->list);
}
}
return 1;
}
/*
* get_pv_list_for_lv
* @mem - mempool to allocate the list from.
* @lv
* @pvs - The list to add pv_list items to.
*
* 'pvs' is filled with 'pv_list' items for PVs that compose the LV.
* If the 'pvs' list already has items in it, duplicates will not be
* added. So, it is safe to repeatedly call this function for different
* LVs and build up a list of PVs for them all.
*
* Memory to create the list is obtained from the mempool provided.
*
* Returns: 1 on success, 0 on error
*/
int get_pv_list_for_lv(struct dm_pool *mem,
struct logical_volume *lv, struct dm_list *pvs)
{
struct dm_list_and_mempool context = { pvs, mem };
log_debug_metadata("Generating list of PVs that %s/%s uses:",
lv->vg->name, lv->name);
if (!_get_pv_list_for_lv(lv, &context))
return_0;
return for_each_sub_lv(lv, &_get_pv_list_for_lv, &context);
}
/*
* get_default_region_size
* @cmd
*
* 'mirror_region_size' and 'raid_region_size' are effectively the same thing.
* However, "raid" is more inclusive than "mirror", so the name has been
* changed. This function checks for the old setting and warns the user if
* it is being overridden by the new setting (i.e. warn if both settings are
* present).
*
* Note that the config files give defaults in kiB terms, but we
* return the value in terms of sectors.
*
* Returns: default region_size in sectors
*/
static int _get_default_region_size(struct cmd_context *cmd)
{
int mrs, rrs;
/*
* 'mirror_region_size' is the old setting. It is overridden
* by the new setting, 'raid_region_size'.
*/
mrs = 2 * find_config_tree_int(cmd, activation_mirror_region_size_CFG, NULL);
rrs = 2 * find_config_tree_int(cmd, activation_raid_region_size_CFG, NULL);
if (!mrs && !rrs)
return DEFAULT_RAID_REGION_SIZE * 2;
if (!mrs)
return rrs;
if (!rrs)
return mrs;
if (mrs != rrs)
log_verbose("Overriding default 'mirror_region_size' setting"
" with 'raid_region_size' setting of %u kiB",
rrs / 2);
return rrs;
}
static int _round_down_pow2(int r)
{
/* Set all bits to the right of the leftmost set bit */
r |= (r >> 1);
r |= (r >> 2);
r |= (r >> 4);
r |= (r >> 8);
r |= (r >> 16);
/* Pull out the leftmost set bit */
return r & ~(r >> 1);
}
int get_default_region_size(struct cmd_context *cmd)
{
int region_size = _get_default_region_size(cmd);
if (!is_power_of_2(region_size)) {
region_size = _round_down_pow2(region_size);
log_verbose("Reducing region size to %u kiB (power of 2).",
region_size / 2);
}
return region_size;
}
int add_seg_to_segs_using_this_lv(struct logical_volume *lv,
struct lv_segment *seg)
{
struct seg_list *sl;
dm_list_iterate_items(sl, &lv->segs_using_this_lv) {
if (sl->seg == seg) {
sl->count++;
return 1;
}
}
log_very_verbose("Adding %s:%" PRIu32 " as an user of %s",
seg->lv->name, seg->le, lv->name);
if (!(sl = dm_pool_zalloc(lv->vg->vgmem, sizeof(*sl)))) {
log_error("Failed to allocate segment list");
return 0;
}
sl->count = 1;
sl->seg = seg;
dm_list_add(&lv->segs_using_this_lv, &sl->list);
return 1;
}
int remove_seg_from_segs_using_this_lv(struct logical_volume *lv,
struct lv_segment *seg)
{
struct seg_list *sl;
dm_list_iterate_items(sl, &lv->segs_using_this_lv) {
if (sl->seg != seg)
continue;
if (sl->count > 1)
sl->count--;
else {
log_very_verbose("%s:%" PRIu32 " is no longer a user "
"of %s", seg->lv->name, seg->le,
lv->name);
dm_list_del(&sl->list);
}
return 1;
}
log_error(INTERNAL_ERROR "Segment %s:%u is not a user of %s.",
seg->lv->name, seg->le, lv->name);
return 0;
}
/*
* This is a function specialized for the common case where there is
* only one segment which uses the LV.
* e.g. the LV is a layer inserted by insert_layer_for_lv().
*
* In general, walk through lv->segs_using_this_lv.
*/
struct lv_segment *get_only_segment_using_this_lv(const struct logical_volume *lv)
{
struct seg_list *sl;
if (!lv) {
log_error(INTERNAL_ERROR "get_only_segment_using_this_lv() called with NULL LV.");
return NULL;
}
dm_list_iterate_items(sl, &lv->segs_using_this_lv) {
/* Needs to be he only item in list */
if (!dm_list_end(&lv->segs_using_this_lv, &sl->list))
break;
if (sl->count != 1) {
log_error("%s is expected to have only one segment using it, "
"while %s:%" PRIu32 " uses it %d times.",
display_lvname(lv), sl->seg->lv->name, sl->seg->le, sl->count);
return NULL;
}
return sl->seg;
}
log_error("%s is expected to have only one segment using it, while it has %d.",
display_lvname(lv), dm_list_size(&lv->segs_using_this_lv));
return NULL;
}
/*
* PVs used by a segment of an LV
*/
struct seg_pvs {
struct dm_list list;
struct dm_list pvs; /* struct pv_list */
uint32_t le;
uint32_t len;
};
static struct seg_pvs *_find_seg_pvs_by_le(struct dm_list *list, uint32_t le)
{
struct seg_pvs *spvs;
dm_list_iterate_items(spvs, list)
if (le >= spvs->le && le < spvs->le + spvs->len)
return spvs;
return NULL;
}
/*
* Find first unused LV number.
*/
uint32_t find_free_lvnum(struct logical_volume *lv)
{
int lvnum_used[MAX_RESTRICTED_LVS + 1] = { 0 };
uint32_t i = 0;
struct lv_list *lvl;
int lvnum;
dm_list_iterate_items(lvl, &lv->vg->lvs) {
lvnum = lvnum_from_lvid(&lvl->lv->lvid);
if (lvnum <= MAX_RESTRICTED_LVS)
lvnum_used[lvnum] = 1;
}
while (lvnum_used[i])
i++;
/* FIXME What if none are free? */
return i;
}
dm_percent_t copy_percent(const struct logical_volume *lv)
{
uint32_t numerator = 0u, denominator = 0u;
struct lv_segment *seg;
dm_list_iterate_items(seg, &lv->segments) {
denominator += seg->area_len;
/* FIXME Generalise name of 'extents_copied' field */
if (((seg_is_raid(seg) && !seg_is_any_raid0(seg)) || seg_is_mirrored(seg)) &&
(seg->area_count > 1))
numerator += seg->extents_copied;
else
numerator += seg->area_len;
}
return denominator ? dm_make_percent(numerator, denominator) : DM_PERCENT_100;
}
/* Round up extents to next stripe boundary for number of stripes */
static uint32_t _round_to_stripe_boundary(struct volume_group *vg, uint32_t extents,
uint32_t stripes, int extend)
{
uint32_t size_rest, new_extents = extents;
if (!stripes)
return extents;
/* Round up extents to stripe divisible amount */
if ((size_rest = extents % stripes)) {
new_extents += extend ? stripes - size_rest : -size_rest;
log_print_unless_silent("Rounding size %s (%d extents) up to stripe boundary size %s (%d extents).",
display_size(vg->cmd, (uint64_t) extents * vg->extent_size), extents,
display_size(vg->cmd, (uint64_t) new_extents * vg->extent_size), new_extents);
}
return new_extents;
}
/*
* All lv_segments get created here.
*/
struct lv_segment *alloc_lv_segment(const struct segment_type *segtype,
struct logical_volume *lv,
uint32_t le, uint32_t len,
uint64_t status,
uint32_t stripe_size,
struct logical_volume *log_lv,
uint32_t area_count,
uint32_t area_len,
uint32_t chunk_size,
uint32_t region_size,
uint32_t extents_copied,
struct lv_segment *pvmove_source_seg)
{
struct lv_segment *seg;
struct dm_pool *mem = lv->vg->vgmem;
uint32_t areas_sz = area_count * sizeof(*seg->areas);
if (!segtype) {
log_error(INTERNAL_ERROR "alloc_lv_segment: Missing segtype.");
return NULL;
}
if (!(seg = dm_pool_zalloc(mem, sizeof(*seg))))
return_NULL;
if (!(seg->areas = dm_pool_zalloc(mem, areas_sz))) {
dm_pool_free(mem, seg);
return_NULL;
}
if (segtype_is_raid(segtype) &&
!segtype_is_raid0(segtype) &&
!(seg->meta_areas = dm_pool_zalloc(mem, areas_sz))) {
dm_pool_free(mem, seg); /* frees everything alloced since seg */
return_NULL;
}
seg->segtype = segtype;
seg->lv = lv;
seg->le = le;
seg->len = len;
seg->status = status;
seg->stripe_size = stripe_size;
seg->area_count = area_count;
seg->area_len = area_len;
seg->chunk_size = chunk_size;
seg->region_size = region_size;
seg->extents_copied = extents_copied;
seg->pvmove_source_seg = pvmove_source_seg;
dm_list_init(&seg->tags);
dm_list_init(&seg->origin_list);
dm_list_init(&seg->thin_messages);
if (log_lv && !attach_mirror_log(seg, log_lv))
return_NULL;
if (segtype_is_mirror(segtype))
lv->status |= MIRROR;
if (segtype_is_mirrored(segtype))
lv->status |= MIRRORED;
return seg;
}
static int _release_and_discard_lv_segment_area(struct lv_segment *seg, uint32_t s,
uint32_t area_reduction, int with_discard)
{
struct lv_segment *cache_seg;
struct logical_volume *lv = seg_lv(seg, s);
if (seg_type(seg, s) == AREA_UNASSIGNED)
return 1;
if (seg_type(seg, s) == AREA_PV) {
if (with_discard && !discard_pv_segment(seg_pvseg(seg, s), area_reduction))
return_0;
if (!release_pv_segment(seg_pvseg(seg, s), area_reduction))
return_0;
if (seg->area_len == area_reduction)
seg_type(seg, s) = AREA_UNASSIGNED;
return 1;
}
if (lv_is_mirror_image(lv) ||
lv_is_thin_pool_data(lv) ||
lv_is_cache_pool_data(lv)) {
if (!lv_reduce(lv, area_reduction))
return_0; /* FIXME: any upper level reporting */
return 1;
}
if (seg_is_cache_pool(seg) &&
!dm_list_empty(&seg->lv->segs_using_this_lv)) {
if (!(cache_seg = get_only_segment_using_this_lv(seg->lv)))
return_0;
if (!lv_cache_remove(cache_seg->lv))
return_0;
}
if (lv_is_raid_image(lv)) {
/*
* FIXME: Use lv_reduce not lv_remove
* We use lv_remove for now, because I haven't figured out
* why lv_reduce won't remove the LV.
lv_reduce(lv, area_reduction);
*/
if (area_reduction != seg->area_len) {
log_error("Unable to reduce RAID LV - operation not implemented.");
return_0;
} else {
if (!lv_remove(lv)) {
log_error("Failed to remove RAID image %s",
lv->name);
return 0;
}
}
/* Remove metadata area if image has been removed */
if (seg->meta_areas && seg_metalv(seg, s) && (area_reduction == seg->area_len)) {
if (!lv_reduce(seg_metalv(seg, s),
seg_metalv(seg, s)->le_count)) {
log_error("Failed to remove RAID meta-device %s",
seg_metalv(seg, s)->name);
return 0;
}
}
return 1;
}
if (area_reduction == seg->area_len) {
log_very_verbose("Remove %s:%" PRIu32 "[%" PRIu32 "] from "
"the top of LV %s:%" PRIu32,
seg->lv->name, seg->le, s,
lv->name, seg_le(seg, s));
if (!remove_seg_from_segs_using_this_lv(lv, seg))
return_0;
seg_lv(seg, s) = NULL;
seg_le(seg, s) = 0;
seg_type(seg, s) = AREA_UNASSIGNED;
}
return 1;
}
int release_and_discard_lv_segment_area(struct lv_segment *seg, uint32_t s, uint32_t area_reduction)
{
return _release_and_discard_lv_segment_area(seg, s, area_reduction, 1);
}
int release_lv_segment_area(struct lv_segment *seg, uint32_t s, uint32_t area_reduction)
{
return _release_and_discard_lv_segment_area(seg, s, area_reduction, 0);
}
/*
* Move a segment area from one segment to another
*/
int move_lv_segment_area(struct lv_segment *seg_to, uint32_t area_to,
struct lv_segment *seg_from, uint32_t area_from)
{
struct physical_volume *pv;
struct logical_volume *lv;
uint32_t pe, le;
switch (seg_type(seg_from, area_from)) {
case AREA_PV:
pv = seg_pv(seg_from, area_from);
pe = seg_pe(seg_from, area_from);
if (!release_lv_segment_area(seg_from, area_from, seg_from->area_len))
return_0;
if (!release_lv_segment_area(seg_to, area_to, seg_to->area_len))
return_0;
if (!set_lv_segment_area_pv(seg_to, area_to, pv, pe))
return_0;
break;
case AREA_LV:
lv = seg_lv(seg_from, area_from);
le = seg_le(seg_from, area_from);
if (!release_lv_segment_area(seg_from, area_from, seg_from->area_len))
return_0;
if (!release_lv_segment_area(seg_to, area_to, seg_to->area_len))
return_0;
if (!set_lv_segment_area_lv(seg_to, area_to, lv, le, 0))
return_0;
break;
case AREA_UNASSIGNED:
if (!release_lv_segment_area(seg_to, area_to, seg_to->area_len))
return_0;
}
return 1;
}
/*
* Link part of a PV to an LV segment.
*/
int set_lv_segment_area_pv(struct lv_segment *seg, uint32_t area_num,
struct physical_volume *pv, uint32_t pe)
{
seg->areas[area_num].type = AREA_PV;
if (!(seg_pvseg(seg, area_num) =
assign_peg_to_lvseg(pv, pe, seg->area_len, seg, area_num)))
return_0;
return 1;
}
/*
* Link one LV segment to another. Assumes sizes already match.
*/
int set_lv_segment_area_lv(struct lv_segment *seg, uint32_t area_num,
struct logical_volume *lv, uint32_t le,
uint64_t status)
{
log_very_verbose("Stack %s:%" PRIu32 "[%" PRIu32 "] on LV %s:%" PRIu32,
seg->lv->name, seg->le, area_num, lv->name, le);
if (status & RAID_META) {
seg->meta_areas[area_num].type = AREA_LV;
seg_metalv(seg, area_num) = lv;
if (le) {
log_error(INTERNAL_ERROR "Meta le != 0");
return 0;
}
seg_metale(seg, area_num) = 0;
} else {
seg->areas[area_num].type = AREA_LV;
seg_lv(seg, area_num) = lv;
seg_le(seg, area_num) = le;
}
lv->status |= status;
if (!add_seg_to_segs_using_this_lv(lv, seg))
return_0;
return 1;
}
/*
* Prepare for adding parallel areas to an existing segment.
*/
static int _lv_segment_add_areas(struct logical_volume *lv,
struct lv_segment *seg,
uint32_t new_area_count)
{
struct lv_segment_area *newareas;
uint32_t areas_sz = new_area_count * sizeof(*newareas);
if (!(newareas = dm_pool_zalloc(lv->vg->cmd->mem, areas_sz)))
return_0;
memcpy(newareas, seg->areas, seg->area_count * sizeof(*seg->areas));
seg->areas = newareas;
seg->area_count = new_area_count;
return 1;
}
static uint32_t _calc_area_multiple(const struct segment_type *segtype,
const uint32_t area_count,
const uint32_t stripes)
{
if (!area_count)
return 1;
/* Striped */
if (segtype_is_striped(segtype))
return area_count;
/* Parity RAID (e.g. RAID 4/5/6) */
if (segtype_is_raid(segtype) && segtype->parity_devs) {
/*
* As articulated in _alloc_init, we can tell by
* the area_count whether a replacement drive is
* being allocated; and if this is the case, then
* there is no area_multiple that should be used.
*/
if (area_count <= segtype->parity_devs)
return 1;
return area_count - segtype->parity_devs;
}
/*
* RAID10 - only has 2-way mirror right now.
* If we are to move beyond 2-way RAID10, then
* the 'stripes' argument will always need to
* be given.
*/
if (!strcmp(segtype->name, _lv_type_names[LV_TYPE_RAID10])) {
if (!stripes)
return area_count / 2;
return stripes;
}
/* Mirrored stripes */
if (stripes)
return stripes;
/* Mirrored */
return 1;
}
/*
* Reduce the size of an lv_segment. New size can be zero.
*/
static int _lv_segment_reduce(struct lv_segment *seg, uint32_t reduction)
{
uint32_t area_reduction, s;
/* Caller must ensure exact divisibility */
if (seg_is_striped(seg)) {
if (reduction % seg->area_count) {
log_error("Segment extent reduction %" PRIu32
" not divisible by #stripes %" PRIu32,
reduction, seg->area_count);
return 0;
}
area_reduction = (reduction / seg->area_count);
} else
area_reduction = reduction;
for (s = 0; s < seg->area_count; s++)
if (!release_and_discard_lv_segment_area(seg, s, area_reduction))
return_0;
seg->len -= reduction;
seg->area_len -= area_reduction;
return 1;
}
/*
* Entry point for all LV reductions in size.
*/
static int _lv_reduce(struct logical_volume *lv, uint32_t extents, int delete)
{
struct lv_segment *seg;
uint32_t count = extents;
uint32_t reduction;
struct logical_volume *pool_lv;
if (lv_is_merging_origin(lv)) {
log_debug_metadata("Dropping snapshot merge of %s to removed origin %s.",
find_snapshot(lv)->lv->name, lv->name);
clear_snapshot_merge(lv);
}
dm_list_iterate_back_items(seg, &lv->segments) {
if (!count)
break;
if (seg->len <= count) {
if (seg->merge_lv) {
log_debug_metadata("Dropping snapshot merge of removed %s to origin %s.",
seg->lv->name, seg->merge_lv->name);
clear_snapshot_merge(seg->merge_lv);
}
/* remove this segment completely */
/* FIXME Check this is safe */
if (seg->log_lv && !lv_remove(seg->log_lv))
return_0;
if (seg->metadata_lv && !lv_remove(seg->metadata_lv))
return_0;
/* Remove cache origin only when removing (not on lv_empty()) */
if (delete && seg_is_cache(seg)) {
if (lv_is_pending_delete(seg->lv)) {
/* Just dropping reference on origin when pending delete */
if (!remove_seg_from_segs_using_this_lv(seg_lv(seg, 0), seg))
return_0;
seg_lv(seg, 0) = NULL;
seg_le(seg, 0) = 0;
seg_type(seg, 0) = AREA_UNASSIGNED;
if (seg->pool_lv && !detach_pool_lv(seg))
return_0;
} else if (!lv_remove(seg_lv(seg, 0)))
return_0;
}
if ((pool_lv = seg->pool_lv)) {
if (!detach_pool_lv(seg))
return_0;
/* When removing cached LV, remove pool as well */
if (seg_is_cache(seg) && !lv_remove(pool_lv))
return_0;
}
dm_list_del(&seg->list);
reduction = seg->len;
} else
reduction = count;
if (!_lv_segment_reduce(seg, reduction))
return_0;
count -= reduction;
}
lv->le_count -= extents;
lv->size = (uint64_t) lv->le_count * lv->vg->extent_size;
if (!delete)
return 1;
if (lv == lv->vg->pool_metadata_spare_lv) {
lv->status &= ~POOL_METADATA_SPARE;
lv->vg->pool_metadata_spare_lv = NULL;
}
/* Remove the LV if it is now empty */
if (!lv->le_count && !unlink_lv_from_vg(lv))
return_0;
else if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv))
return_0;
return 1;
}
/*
* Empty an LV.
*/
int lv_empty(struct logical_volume *lv)
{
return _lv_reduce(lv, lv->le_count, 0);
}
/*
* Empty an LV and add error segment.
*/
int replace_lv_with_error_segment(struct logical_volume *lv)
{
uint32_t len = lv->le_count;
if (len && !lv_empty(lv))
return_0;
/* Minimum size required for a table. */
if (!len)
len = 1;
/*
* Since we are replacing the whatever-was-there with
* an error segment, we should also clear any flags
* that suggest it is anything other than "error".
*/
/* FIXME Check for other flags that need removing */
lv->status &= ~(MIRROR|MIRRORED|PVMOVE|LOCKED);
/* FIXME Check for any attached LVs that will become orphans e.g. mirror logs */
if (!lv_add_virtual_segment(lv, 0, len, get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_ERROR)))
return_0;
return 1;
}
int lv_refresh_suspend_resume(const struct logical_volume *lv)
{
struct cmd_context *cmd = lv->vg->cmd;
int r = 1;
if (!cmd->partial_activation && lv_is_partial(lv)) {
log_error("Refusing refresh of partial LV %s."
" Use '--activationmode partial' to override.",
display_lvname(lv));
return 0;
}
if (!suspend_lv(cmd, lv)) {
log_error("Failed to suspend %s.", display_lvname(lv));
r = 0;
}
if (!resume_lv(cmd, lv)) {
log_error("Failed to reactivate %s.", display_lvname(lv));
r = 0;
}
return r;
}
/*
* Remove given number of extents from LV.
*/
int lv_reduce(struct logical_volume *lv, uint32_t extents)
{
return _lv_reduce(lv, extents, 1);
}
int historical_glv_remove(struct generic_logical_volume *glv)
{
struct generic_logical_volume *origin_glv;
struct glv_list *glvl, *user_glvl;
struct historical_logical_volume *hlv;
int reconnected;
if (!glv || !glv->is_historical)
return_0;
hlv = glv->historical;
if (!(glv = find_historical_glv(hlv->vg, hlv->name, 0, &glvl))) {
if (!(find_historical_glv(hlv->vg, hlv->name, 1, NULL))) {
log_error(INTERNAL_ERROR "historical_glv_remove: historical LV %s/-%s not found ",
hlv->vg->name, hlv->name);
return 0;
} else {
log_verbose("Historical LV %s/-%s already on removed list ",
hlv->vg->name, hlv->name);
return 1;
}
}
if ((origin_glv = hlv->indirect_origin) &&
!remove_glv_from_indirect_glvs(origin_glv, glv))
return_0;
dm_list_iterate_items(user_glvl, &hlv->indirect_glvs) {
reconnected = 0;
if ((origin_glv && !origin_glv->is_historical) && !user_glvl->glv->is_historical)
log_verbose("Removing historical connection between %s and %s.",
origin_glv->live->name, user_glvl->glv->live->name);
else if (hlv->vg->cmd->record_historical_lvs) {
if (!add_glv_to_indirect_glvs(hlv->vg->vgmem, origin_glv, user_glvl->glv))
return_0;
reconnected = 1;
}
if (!reconnected) {
/*
* Break ancestry chain if we're removing historical LV and tracking
* historical LVs is switched off either via:
* - "metadata/record_lvs_history=0" config
* - "--nohistory" cmd line option
*
* Also, break the chain if we're unable to store such connection at all
* because we're removing the very last historical LV that was in between
* live LVs - pure live LVs can't store any indirect origin relation in
* metadata - we need at least one historical LV to do that!
*/
if (user_glvl->glv->is_historical)
user_glvl->glv->historical->indirect_origin = NULL;
else
first_seg(user_glvl->glv->live)->indirect_origin = NULL;
}
}
dm_list_move(&hlv->vg->removed_historical_lvs, &glvl->list);
return 1;
}
/*
* Completely remove an LV.
*/
int lv_remove(struct logical_volume *lv)
{
if (lv_is_historical(lv))
return historical_glv_remove(lv->this_glv);
if (!lv_reduce(lv, lv->le_count))
return_0;
return 1;
}
/*
* A set of contiguous physical extents allocated
*/
struct alloced_area {
struct dm_list list;
struct physical_volume *pv;
uint32_t pe;
uint32_t len;
};
/*
* Details of an allocation attempt
*/
struct alloc_handle {
struct cmd_context *cmd;
struct dm_pool *mem;
alloc_policy_t alloc; /* Overall policy */
int approx_alloc; /* get as much as possible up to new_extents */
uint32_t new_extents; /* Number of new extents required */
uint32_t area_count; /* Number of parallel areas */
uint32_t parity_count; /* Adds to area_count, but not area_multiple */
uint32_t area_multiple; /* seg->len = area_len * area_multiple */
uint32_t log_area_count; /* Number of parallel logs */
uint32_t metadata_area_count; /* Number of parallel metadata areas */
uint32_t log_len; /* Length of log/metadata_area */
uint32_t region_size; /* Mirror region size */
uint32_t total_area_len; /* Total number of parallel extents */
unsigned maximise_cling;
unsigned mirror_logs_separate; /* Force mirror logs on separate PVs? */
/*
* RAID devices require a metadata area that accompanies each
* device. During initial creation, it is best to look for space
* that is new_extents + log_len and then split that between two
* allocated areas when found. 'alloc_and_split_meta' indicates
* that this is the desired dynamic.
*
* This same idea is used by cache LVs to get the metadata device
* and data device allocated together.
*/
unsigned alloc_and_split_meta;
unsigned split_metadata_is_allocated; /* Metadata has been allocated */
const struct dm_config_node *cling_tag_list_cn;
struct dm_list *parallel_areas; /* PVs to avoid */
/*
* Contains area_count lists of areas allocated to data stripes
* followed by log_area_count lists of areas allocated to log stripes.
*/
struct dm_list alloced_areas[0];
};
/*
* Returns log device size in extents, algorithm from kernel code
*/
#define BYTE_SHIFT 3
static uint32_t _mirror_log_extents(uint32_t region_size, uint32_t pe_size, uint32_t area_len)
{
size_t area_size, bitset_size, log_size, region_count;
area_size = (size_t)area_len * pe_size;
region_count = dm_div_up(area_size, region_size);
/* Work out how many "unsigned long"s we need to hold the bitset. */
bitset_size = dm_round_up(region_count, sizeof(uint32_t) << BYTE_SHIFT);
bitset_size >>= BYTE_SHIFT;
/* Log device holds both header and bitset. */
log_size = dm_round_up((MIRROR_LOG_OFFSET << SECTOR_SHIFT) + bitset_size, 1 << SECTOR_SHIFT);
log_size >>= SECTOR_SHIFT;
log_size = dm_div_up(log_size, pe_size);
/*
* Kernel requires a mirror to be at least 1 region large. So,
* if our mirror log is itself a mirror, it must be at least
* 1 region large. This restriction may not be necessary for
* non-mirrored logs, but we apply the rule anyway.
*
* (The other option is to make the region size of the log
* mirror smaller than the mirror it is acting as a log for,
* but that really complicates things. It's much easier to
* keep the region_size the same for both.)
*/
return (log_size > (region_size / pe_size)) ? log_size :
(region_size / pe_size);
}
/* Is there enough total space or should we give up immediately? */
static int _sufficient_pes_free(struct alloc_handle *ah, struct dm_list *pvms,
uint32_t allocated, uint32_t extents_still_needed)
{
uint32_t area_extents_needed = (extents_still_needed - allocated) * ah->area_count / ah->area_multiple;
uint32_t parity_extents_needed = (extents_still_needed - allocated) * ah->parity_count / ah->area_multiple;
uint32_t metadata_extents_needed = ah->alloc_and_split_meta ? 0 : ah->metadata_area_count * RAID_METADATA_AREA_LEN; /* One each */
uint32_t total_extents_needed = area_extents_needed + parity_extents_needed + metadata_extents_needed;
uint32_t free_pes = pv_maps_size(pvms);
if (total_extents_needed > free_pes) {
log_error("Insufficient free space: %" PRIu32 " extents needed,"
" but only %" PRIu32 " available",
total_extents_needed, free_pes);
return 0;
}
return 1;
}
/* For striped mirrors, all the areas are counted, through the mirror layer */
static uint32_t _stripes_per_mimage(struct lv_segment *seg)
{
struct lv_segment *last_lvseg;
if (seg_is_mirrored(seg) && seg->area_count && seg_type(seg, 0) == AREA_LV) {
last_lvseg = dm_list_item(dm_list_last(&seg_lv(seg, 0)->segments), struct lv_segment);
if (seg_is_striped(last_lvseg))
return last_lvseg->area_count;
}
return 1;
}
static void _init_alloc_parms(struct alloc_handle *ah,
struct alloc_parms *alloc_parms,
alloc_policy_t alloc,
struct lv_segment *prev_lvseg, unsigned can_split,
uint32_t allocated, uint32_t extents_still_needed)
{
alloc_parms->alloc = alloc;
alloc_parms->prev_lvseg = prev_lvseg;
alloc_parms->flags = 0;
alloc_parms->extents_still_needed = extents_still_needed;
/*
* Only attempt contiguous/cling allocation to previous segment
* areas if the number of areas matches.
*/
if (alloc_parms->prev_lvseg &&
((ah->area_count + ah->parity_count) == prev_lvseg->area_count)) {
alloc_parms->flags |= A_AREA_COUNT_MATCHES;
/* Are there any preceding segments we must follow on from? */
if (alloc_parms->alloc == ALLOC_CONTIGUOUS) {
alloc_parms->flags |= A_CONTIGUOUS_TO_LVSEG;
alloc_parms->flags |= A_POSITIONAL_FILL;
} else if ((alloc_parms->alloc == ALLOC_CLING) ||
(alloc_parms->alloc == ALLOC_CLING_BY_TAGS)) {
alloc_parms->flags |= A_CLING_TO_LVSEG;
alloc_parms->flags |= A_POSITIONAL_FILL;
}
} else
/*
* A cling allocation that follows a successful contiguous
* allocation must use the same PVs (or else fail).
*/
if ((alloc_parms->alloc == ALLOC_CLING) ||
(alloc_parms->alloc == ALLOC_CLING_BY_TAGS)) {
alloc_parms->flags |= A_CLING_TO_ALLOCED;
alloc_parms->flags |= A_POSITIONAL_FILL;
}
if (alloc_parms->alloc == ALLOC_CLING_BY_TAGS)
alloc_parms->flags |= A_CLING_BY_TAGS;
if (!(alloc_parms->alloc & A_POSITIONAL_FILL) &&
(alloc_parms->alloc == ALLOC_CONTIGUOUS) &&
ah->cling_tag_list_cn)
alloc_parms->flags |= A_PARTITION_BY_TAGS;
/*
* For normal allocations, if any extents have already been found
* for allocation, prefer to place further extents on the same disks as
* have already been used.
*/
if (ah->maximise_cling &&
(alloc_parms->alloc == ALLOC_NORMAL) &&
(allocated != alloc_parms->extents_still_needed))
alloc_parms->flags |= A_CLING_TO_ALLOCED;
if (can_split)
alloc_parms->flags |= A_CAN_SPLIT;
}
static int _log_parallel_areas(struct dm_pool *mem, struct dm_list *parallel_areas)
{
struct seg_pvs *spvs;
struct pv_list *pvl;
char *pvnames;
if (!parallel_areas)
return 1;
dm_list_iterate_items(spvs, parallel_areas) {
if (!dm_pool_begin_object(mem, 256)) {
log_error("dm_pool_begin_object failed");
return 0;
}
dm_list_iterate_items(pvl, &spvs->pvs) {
if (!dm_pool_grow_object(mem, pv_dev_name(pvl->pv), strlen(pv_dev_name(pvl->pv)))) {
log_error("dm_pool_grow_object failed");
dm_pool_abandon_object(mem);
return 0;
}
if (!dm_pool_grow_object(mem, " ", 1)) {
log_error("dm_pool_grow_object failed");
dm_pool_abandon_object(mem);
return 0;
}
}
if (!dm_pool_grow_object(mem, "\0", 1)) {
log_error("dm_pool_grow_object failed");
dm_pool_abandon_object(mem);
return 0;
}
pvnames = dm_pool_end_object(mem);
log_debug_alloc("Parallel PVs at LE %" PRIu32 " length %" PRIu32 ": %s",
spvs->le, spvs->len, pvnames);
dm_pool_free(mem, pvnames);
}
return 1;
}
/* Handles also stacking */
static int _setup_lv_size(struct logical_volume *lv, uint32_t extents)
{
struct lv_segment *thin_pool_seg;
lv->le_count = extents;
lv->size = (uint64_t) extents * lv->vg->extent_size;
if (lv_is_thin_pool_data(lv)) {
if (!(thin_pool_seg = get_only_segment_using_this_lv(lv)))
return_0;
/* Update thin pool segment from the layered LV */
thin_pool_seg->lv->le_count =
thin_pool_seg->len =
thin_pool_seg->area_len = lv->le_count;
thin_pool_seg->lv->size = lv->size;
}
return 1;
}
static int _setup_alloced_segment(struct logical_volume *lv, uint64_t status,
uint32_t area_count,
uint32_t stripe_size,
const struct segment_type *segtype,
struct alloced_area *aa,
uint32_t region_size)
{
uint32_t s, extents, area_multiple;
struct lv_segment *seg;
area_multiple = _calc_area_multiple(segtype, area_count, 0);
extents = aa[0].len * area_multiple;
if (!(seg = alloc_lv_segment(segtype, lv, lv->le_count, extents,
status, stripe_size, NULL,
area_count,
aa[0].len, 0u, region_size, 0u, NULL))) {
log_error("Couldn't allocate new LV segment.");
return 0;
}
for (s = 0; s < area_count; s++)
if (!set_lv_segment_area_pv(seg, s, aa[s].pv, aa[s].pe))
return_0;
dm_list_add(&lv->segments, &seg->list);
extents = aa[0].len * area_multiple;
if (!_setup_lv_size(lv, lv->le_count + extents))
return_0;
return 1;
}
static int _setup_alloced_segments(struct logical_volume *lv,
struct dm_list *alloced_areas,
uint32_t area_count,
uint64_t status,
uint32_t stripe_size,
const struct segment_type *segtype,
uint32_t region_size)
{
struct alloced_area *aa;
dm_list_iterate_items(aa, &alloced_areas[0]) {
if (!_setup_alloced_segment(lv, status, area_count,
stripe_size, segtype, aa,
region_size))
return_0;
}
return 1;
}
/*
* This function takes a list of pv_areas and adds them to allocated_areas.
* If the complete area is not needed then it gets split.
* The part used is removed from the pv_map so it can't be allocated twice.
*/
static int _alloc_parallel_area(struct alloc_handle *ah, uint32_t max_to_allocate,
struct alloc_state *alloc_state, uint32_t ix_log_offset)
{
uint32_t area_len, len;
uint32_t s, smeta;
uint32_t ix_log_skip = 0; /* How many areas to skip in middle of array to reach log areas */
uint32_t total_area_count;
struct alloced_area *aa;
struct pv_area *pva;
total_area_count = ah->area_count + ah->parity_count + alloc_state->log_area_count_still_needed;
if (!total_area_count) {
log_warn(INTERNAL_ERROR "_alloc_parallel_area called without any allocation to do.");
return 1;
}
area_len = max_to_allocate / ah->area_multiple;
/* Reduce area_len to the smallest of the areas */
for (s = 0; s < ah->area_count + ah->parity_count; s++)
if (area_len > alloc_state->areas[s].used)
area_len = alloc_state->areas[s].used;
len = (ah->alloc_and_split_meta && !ah->split_metadata_is_allocated) ? total_area_count * 2 : total_area_count;
len *= sizeof(*aa);
if (!(aa = dm_pool_alloc(ah->mem, len))) {
log_error("alloced_area allocation failed");
return 0;
}
/*
* Areas consists of area_count areas for data stripes, then
* ix_log_skip areas to skip, then log_area_count areas to use for the
* log, then some areas too small for the log.
*/
len = area_len;
for (s = 0; s < total_area_count; s++) {
if (s == (ah->area_count + ah->parity_count)) {
ix_log_skip = ix_log_offset - ah->area_count;
len = ah->log_len;
}
pva = alloc_state->areas[s + ix_log_skip].pva;
if (ah->alloc_and_split_meta && !ah->split_metadata_is_allocated) {
/*
* The metadata area goes at the front of the allocated
* space for now, but could easily go at the end (or
* middle!).
*
* Even though we split these two from the same
* allocation, we store the images at the beginning
* of the areas array and the metadata at the end.
*/
smeta = s + ah->area_count + ah->parity_count;
aa[smeta].pv = pva->map->pv;
aa[smeta].pe = pva->start;
aa[smeta].len = ah->log_len;
log_debug_alloc("Allocating parallel metadata area %" PRIu32
" on %s start PE %" PRIu32
" length %" PRIu32 ".",
(smeta - (ah->area_count + ah->parity_count)),
pv_dev_name(aa[smeta].pv), aa[smeta].pe,
ah->log_len);
consume_pv_area(pva, ah->log_len);
dm_list_add(&ah->alloced_areas[smeta], &aa[smeta].list);
}
aa[s].len = (ah->alloc_and_split_meta && !ah->split_metadata_is_allocated) ? len - ah->log_len : len;
/* Skip empty allocations */
if (!aa[s].len)
continue;
aa[s].pv = pva->map->pv;
aa[s].pe = pva->start;
log_debug_alloc("Allocating parallel area %" PRIu32
" on %s start PE %" PRIu32 " length %" PRIu32 ".",
s, pv_dev_name(aa[s].pv), aa[s].pe, aa[s].len);
consume_pv_area(pva, aa[s].len);
dm_list_add(&ah->alloced_areas[s], &aa[s].list);
}
/* Only need to alloc metadata from the first batch */
if (ah->alloc_and_split_meta)
ah->split_metadata_is_allocated = 1;
ah->total_area_len += area_len;
alloc_state->allocated += area_len * ah->area_multiple;
return 1;
}
/*
* Call fn for each AREA_PV used by the LV segment at lv:le of length *max_seg_len.
* If any constituent area contains more than one segment, max_seg_len is
* reduced to cover only the first.
* fn should return 0 on error, 1 to continue scanning or >1 to terminate without error.
* In the last case, this function passes on the return code.
* FIXME I think some callers are expecting this to check all PV segments used by an LV.
*/
static int _for_each_pv(struct cmd_context *cmd, struct logical_volume *lv,
uint32_t le, uint32_t len, struct lv_segment *seg,
uint32_t *max_seg_len,
uint32_t first_area, uint32_t max_areas,
int top_level_area_index,
int only_single_area_segments,
int (*fn)(struct cmd_context *cmd,
struct pv_segment *peg, uint32_t s,
void *data),
void *data)
{
uint32_t s;
uint32_t remaining_seg_len, area_len, area_multiple;
uint32_t stripes_per_mimage = 1;
int r = 1;
if (!seg && !(seg = find_seg_by_le(lv, le))) {
log_error("Failed to find segment for %s extent %" PRIu32,
lv->name, le);
return 0;
}
/* Remaining logical length of segment */
remaining_seg_len = seg->len - (le - seg->le);
if (remaining_seg_len > len)
remaining_seg_len = len;
if (max_seg_len && *max_seg_len > remaining_seg_len)
*max_seg_len = remaining_seg_len;
area_multiple = _calc_area_multiple(seg->segtype, seg->area_count, 0);
area_len = (remaining_seg_len / area_multiple) ? : 1;
/* For striped mirrors, all the areas are counted, through the mirror layer */
if (top_level_area_index == -1)
stripes_per_mimage = _stripes_per_mimage(seg);
for (s = first_area;
s < seg->area_count && (!max_areas || s <= max_areas);
s++) {
if (seg_type(seg, s) == AREA_LV) {
if (!(r = _for_each_pv(cmd, seg_lv(seg, s),
seg_le(seg, s) +
(le - seg->le) / area_multiple,
area_len, NULL, max_seg_len, 0,
(stripes_per_mimage == 1) && only_single_area_segments ? 1U : 0U,
(top_level_area_index != -1) ? top_level_area_index : (int) (s * stripes_per_mimage),
only_single_area_segments, fn,
data)))
stack;
} else if (seg_type(seg, s) == AREA_PV)
if (!(r = fn(cmd, seg_pvseg(seg, s), top_level_area_index != -1 ? (uint32_t) top_level_area_index + s : s, data)))
stack;
if (r != 1)
return r;
}
/* FIXME only_single_area_segments used as workaround to skip log LV - needs new param? */
if (!only_single_area_segments && seg_is_mirrored(seg) && seg->log_lv) {
if (!(r = _for_each_pv(cmd, seg->log_lv, 0, seg->log_lv->le_count, NULL,
NULL, 0, 0, 0, only_single_area_segments,
fn, data)))
stack;
if (r != 1)
return r;
}
/* FIXME Add snapshot cow, thin meta etc. */
/*
if (!only_single_area_segments && !max_areas && seg_is_raid(seg)) {
for (s = first_area; s < seg->area_count; s++) {
if (seg_metalv(seg, s))
if (!(r = _for_each_pv(cmd, seg_metalv(seg, s), 0, seg_metalv(seg, s)->le_count, NULL,
NULL, 0, 0, 0, 0, fn, data)))
stack;
if (r != 1)
return r;
}
}
*/
return 1;
}
static int _comp_area(const void *l, const void *r)
{
const struct pv_area_used *lhs = (const struct pv_area_used *) l;
const struct pv_area_used *rhs = (const struct pv_area_used *) r;
if (lhs->used < rhs->used)
return 1;
else if (lhs->used > rhs->used)
return -1;
return 0;
}
/*
* Search for pvseg that matches condition
*/
struct pv_match {
int (*condition)(struct pv_match *pvmatch, struct pv_segment *pvseg, struct pv_area *pva);
struct alloc_handle *ah;
struct alloc_state *alloc_state;
struct pv_area *pva;
const struct dm_config_node *cling_tag_list_cn;
int s; /* Area index of match */
};
/*
* Is PV area on the same PV?
*/
static int _is_same_pv(struct pv_match *pvmatch __attribute((unused)), struct pv_segment *pvseg, struct pv_area *pva)
{
if (pvseg->pv != pva->map->pv)
return 0;
return 1;
}
/*
* Does PV area have a tag listed in allocation/cling_tag_list that
* matches EITHER a tag of the PV of the existing segment OR a tag in pv_tags?
* If tags_list_str is set, then instead we generate a list of matching tags for printing.
*/
static int _match_pv_tags(const struct dm_config_node *cling_tag_list_cn,
struct physical_volume *pv1, uint32_t pv1_start_pe, uint32_t area_num,
struct physical_volume *pv2, struct dm_list *pv_tags, unsigned validate_only,
struct dm_pool *mem, const char **tags_list_str)
{
const struct dm_config_value *cv;
const char *str;
const char *tag_matched;
struct dm_list *tags_to_match = tags_list_str ? NULL : pv_tags ? : &pv2->tags;
struct dm_str_list *sl;
unsigned first_tag = 1;
if (tags_list_str && !dm_pool_begin_object(mem, 256)) {
log_error("PV tags string allocation failed");
return 0;
}
for (cv = cling_tag_list_cn->v; cv; cv = cv->next) {
if (cv->type != DM_CFG_STRING) {
if (validate_only)
log_warn("WARNING: Ignoring invalid string in config file entry "
"allocation/cling_tag_list");
continue;
}
str = cv->v.str;
if (!*str) {
if (validate_only)
log_warn("WARNING: Ignoring empty string in config file entry "
"allocation/cling_tag_list");
continue;
}
if (*str != '@') {
if (validate_only)
log_warn("WARNING: Ignoring string not starting with @ in config file entry "
"allocation/cling_tag_list: %s", str);
continue;
}
str++;
if (!*str) {
if (validate_only)
log_warn("WARNING: Ignoring empty tag in config file entry "
"allocation/cling_tag_list");
continue;
}
if (validate_only)
continue;
/* Wildcard matches any tag against any tag. */
if (!strcmp(str, "*")) {
if (tags_list_str) {
dm_list_iterate_items(sl, &pv1->tags) {
if (!first_tag && !dm_pool_grow_object(mem, ",", 0)) {
dm_pool_abandon_object(mem);
log_error("PV tags string extension failed.");
return 0;
}
first_tag = 0;
if (!dm_pool_grow_object(mem, sl->str, 0)) {
dm_pool_abandon_object(mem);
log_error("PV tags string extension failed.");
return 0;
}
}
continue;
}
if (!str_list_match_list(&pv1->tags, tags_to_match, &tag_matched))
continue;
else {
if (!pv_tags)
log_debug_alloc("Matched allocation PV tag %s on existing %s with free space on %s.",
tag_matched, pv_dev_name(pv1), pv2 ? pv_dev_name(pv2) : "-");
else
log_debug_alloc("Eliminating allocation area %" PRIu32 " at PV %s start PE %" PRIu32
" from consideration: PV tag %s already used.",
area_num, pv_dev_name(pv1), pv1_start_pe, tag_matched);
return 1;
}
}
if (!str_list_match_item(&pv1->tags, str) ||
(tags_to_match && !str_list_match_item(tags_to_match, str)))
continue;
else {
if (tags_list_str) {
if (!first_tag && !dm_pool_grow_object(mem, ",", 0)) {
dm_pool_abandon_object(mem);
log_error("PV tags string extension failed.");
return 0;
}
first_tag = 0;
if (!dm_pool_grow_object(mem, str, 0)) {
dm_pool_abandon_object(mem);
log_error("PV tags string extension failed.");
return 0;
}
continue;
}
if (!pv_tags)
log_debug_alloc("Matched allocation PV tag %s on existing %s with free space on %s.",
str, pv_dev_name(pv1), pv2 ? pv_dev_name(pv2) : "-");
else
log_debug_alloc("Eliminating allocation area %" PRIu32 " at PV %s start PE %" PRIu32
" from consideration: PV tag %s already used.",
area_num, pv_dev_name(pv1), pv1_start_pe, str);
return 1;
}
}
if (tags_list_str) {
if (!dm_pool_grow_object(mem, "\0", 1)) {
dm_pool_abandon_object(mem);
log_error("PV tags string extension failed.");
return 0;
}
*tags_list_str = dm_pool_end_object(mem);
return 1;
}
return 0;
}
static int _validate_tag_list(const struct dm_config_node *cling_tag_list_cn)
{
return _match_pv_tags(cling_tag_list_cn, NULL, 0, 0, NULL, NULL, 1, NULL, NULL);
}
static const char *_tags_list_str(struct alloc_handle *ah, struct physical_volume *pv1)
{
const char *tags_list_str;
if (!_match_pv_tags(ah->cling_tag_list_cn, pv1, 0, 0, NULL, NULL, 0, ah->mem, &tags_list_str))
return_NULL;
return tags_list_str;
}
/*
* Does PV area have a tag listed in allocation/cling_tag_list that
* matches a tag in the pv_tags list?
*/
static int _pv_has_matching_tag(const struct dm_config_node *cling_tag_list_cn,
struct physical_volume *pv1, uint32_t pv1_start_pe, uint32_t area_num,
struct dm_list *pv_tags)
{
return _match_pv_tags(cling_tag_list_cn, pv1, pv1_start_pe, area_num, NULL, pv_tags, 0, NULL, NULL);
}
/*
* Does PV area have a tag listed in allocation/cling_tag_list that
* matches a tag of the PV of the existing segment?
*/
static int _pvs_have_matching_tag(const struct dm_config_node *cling_tag_list_cn,
struct physical_volume *pv1, struct physical_volume *pv2)
{
return _match_pv_tags(cling_tag_list_cn, pv1, 0, 0, pv2, NULL, 0, NULL, NULL);
}
static int _has_matching_pv_tag(struct pv_match *pvmatch, struct pv_segment *pvseg, struct pv_area *pva)
{
return _pvs_have_matching_tag(pvmatch->cling_tag_list_cn, pvseg->pv, pva->map->pv);
}
/*
* Is PV area contiguous to PV segment?
*/
static int _is_contiguous(struct pv_match *pvmatch __attribute((unused)), struct pv_segment *pvseg, struct pv_area *pva)
{
if (pvseg->pv != pva->map->pv)
return 0;
if (pvseg->pe + pvseg->len != pva->start)
return 0;
return 1;
}
static void _reserve_area(struct alloc_handle *ah, struct alloc_state *alloc_state, struct pv_area *pva,
uint32_t required, uint32_t ix_pva, uint32_t unreserved)
{
struct pv_area_used *area_used = &alloc_state->areas[ix_pva];
const char *pv_tag_list = NULL;
if (ah->cling_tag_list_cn)
pv_tag_list = _tags_list_str(ah, pva->map->pv);
log_debug_alloc("%s allocation area %" PRIu32 " %s %s start PE %" PRIu32
" length %" PRIu32 " leaving %" PRIu32 "%s%s.",
area_used->pva ? "Changing " : "Considering",
ix_pva, area_used->pva ? "to" : "as",
dev_name(pva->map->pv->dev), pva->start, required, unreserved,
pv_tag_list ? " with PV tags: " : "",
pv_tag_list ? : "");
if (pv_tag_list)
dm_pool_free(ah->mem, (void *)pv_tag_list);
area_used->pva = pva;
area_used->used = required;
}
static int _reserve_required_area(struct alloc_handle *ah, struct alloc_state *alloc_state, struct pv_area *pva,
uint32_t required, uint32_t ix_pva, uint32_t unreserved)
{
uint32_t s;
/* Expand areas array if needed after an area was split. */
if (ix_pva >= alloc_state->areas_size) {
alloc_state->areas_size *= 2;
if (!(alloc_state->areas = dm_realloc(alloc_state->areas, sizeof(*alloc_state->areas) * (alloc_state->areas_size)))) {
log_error("Memory reallocation for parallel areas failed.");
return 0;
}
for (s = alloc_state->areas_size / 2; s < alloc_state->areas_size; s++)
alloc_state->areas[s].pva = NULL;
}
_reserve_area(ah, alloc_state, pva, required, ix_pva, unreserved);
return 1;
}
static int _is_condition(struct cmd_context *cmd __attribute__((unused)),
struct pv_segment *pvseg, uint32_t s,
void *data)
{
struct pv_match *pvmatch = data;
int positional = pvmatch->alloc_state->alloc_parms->flags & A_POSITIONAL_FILL;
if (positional && pvmatch->alloc_state->areas[s].pva)
return 1; /* Area already assigned */
if (!pvmatch->condition(pvmatch, pvseg, pvmatch->pva))
return 1; /* Continue */
if (positional && (s >= pvmatch->alloc_state->num_positional_areas))
return 1;
/* FIXME The previous test should make this one redundant. */
if (positional && (s >= pvmatch->alloc_state->areas_size))
return 1;
/*
* Only used for cling and contiguous policies (which only make one allocation per PV)
* so it's safe to say all the available space is used.
*/
if (positional)
_reserve_required_area(pvmatch->ah, pvmatch->alloc_state, pvmatch->pva, pvmatch->pva->count, s, 0);
return 2; /* Finished */
}
/*
* Is pva on same PV as any existing areas?
*/
static int _check_cling(struct alloc_handle *ah,
const struct dm_config_node *cling_tag_list_cn,
struct lv_segment *prev_lvseg, struct pv_area *pva,
struct alloc_state *alloc_state)
{
struct pv_match pvmatch;
int r;
uint32_t le, len;
pvmatch.ah = ah;
pvmatch.condition = cling_tag_list_cn ? _has_matching_pv_tag : _is_same_pv;
pvmatch.alloc_state = alloc_state;
pvmatch.pva = pva;
pvmatch.cling_tag_list_cn = cling_tag_list_cn;
if (ah->maximise_cling) {
/* Check entire LV */
le = 0;
len = prev_lvseg->le + prev_lvseg->len;
} else {
/* Only check 1 LE at end of previous LV segment */
le = prev_lvseg->le + prev_lvseg->len - 1;
len = 1;
}
/* FIXME Cope with stacks by flattening */
if (!(r = _for_each_pv(ah->cmd, prev_lvseg->lv, le, len, NULL, NULL,
0, 0, -1, 1,
_is_condition, &pvmatch)))
stack;
if (r != 2)
return 0;
return 1;
}
/*
* Is pva contiguous to any existing areas or on the same PV?
*/
static int _check_contiguous(struct alloc_handle *ah,
struct lv_segment *prev_lvseg, struct pv_area *pva,
struct alloc_state *alloc_state)
{
struct pv_match pvmatch;
int r;
pvmatch.ah = ah;
pvmatch.condition = _is_contiguous;
pvmatch.alloc_state = alloc_state;
pvmatch.pva = pva;
pvmatch.cling_tag_list_cn = NULL;
/* FIXME Cope with stacks by flattening */
if (!(r = _for_each_pv(ah->cmd, prev_lvseg->lv,
prev_lvseg->le + prev_lvseg->len - 1, 1, NULL, NULL,
0, 0, -1, 1,
_is_condition, &pvmatch)))
stack;
if (r != 2)
return 0;
return 1;
}
/*
* Is pva on same PV as any areas already used in this allocation attempt?
*/
static int _check_cling_to_alloced(struct alloc_handle *ah, const struct dm_config_node *cling_tag_list_cn,
struct pv_area *pva, struct alloc_state *alloc_state)
{
unsigned s;
struct alloced_area *aa;
int positional = alloc_state->alloc_parms->flags & A_POSITIONAL_FILL;
/*
* Ignore log areas. They are always allocated whole as part of the
* first allocation. If they aren't yet set, we know we've nothing to do.
*/
if (alloc_state->log_area_count_still_needed)
return 0;
for (s = 0; s < ah->area_count; s++) {
if (positional && alloc_state->areas[s].pva)
continue; /* Area already assigned */
dm_list_iterate_items(aa, &ah->alloced_areas[s]) {
if ((!cling_tag_list_cn && (pva->map->pv == aa[0].pv)) ||
(cling_tag_list_cn && _pvs_have_matching_tag(cling_tag_list_cn, pva->map->pv, aa[0].pv))) {
if (positional)
_reserve_required_area(ah, alloc_state, pva, pva->count, s, 0);
return 1;
}
}
}
return 0;
}
static int _pv_is_parallel(struct physical_volume *pv, struct dm_list *parallel_pvs)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, parallel_pvs)
if (pv == pvl->pv)
return 1;
return 0;
}
/*
* Decide whether or not to try allocation from supplied area pva.
* alloc_state->areas may get modified.
*/
static area_use_t _check_pva(struct alloc_handle *ah, struct pv_area *pva, uint32_t still_needed,
struct alloc_state *alloc_state,
unsigned already_found_one, unsigned iteration_count, unsigned log_iteration_count)
{
const struct alloc_parms *alloc_parms = alloc_state->alloc_parms;
unsigned s;
/* Skip fully-reserved areas (which are not currently removed from the list). */
if (!pva->unreserved)
return NEXT_AREA;
/* FIXME Should this test be removed? */
if (iteration_count)
/*
* Don't use an area twice.
*/
for (s = 0; s < alloc_state->areas_size; s++)
if (alloc_state->areas[s].pva == pva)
return NEXT_AREA;
/* If maximise_cling is set, perform several checks, otherwise perform exactly one. */
if (!iteration_count && !log_iteration_count && alloc_parms->flags & (A_CONTIGUOUS_TO_LVSEG | A_CLING_TO_LVSEG | A_CLING_TO_ALLOCED)) {
/* Contiguous? */
if (((alloc_parms->flags & A_CONTIGUOUS_TO_LVSEG) ||
(ah->maximise_cling && (alloc_parms->flags & A_AREA_COUNT_MATCHES))) &&
_check_contiguous(ah, alloc_parms->prev_lvseg, pva, alloc_state))
goto found;
/* Try next area on same PV if looking for contiguous space */
if (alloc_parms->flags & A_CONTIGUOUS_TO_LVSEG)
return NEXT_AREA;
/* Cling to prev_lvseg? */
if (((alloc_parms->flags & A_CLING_TO_LVSEG) ||
(ah->maximise_cling && (alloc_parms->flags & A_AREA_COUNT_MATCHES))) &&
_check_cling(ah, NULL, alloc_parms->prev_lvseg, pva, alloc_state))
/* If this PV is suitable, use this first area */
goto found;
/* Cling_to_alloced? */
if ((alloc_parms->flags & A_CLING_TO_ALLOCED) &&
_check_cling_to_alloced(ah, NULL, pva, alloc_state))
goto found;
/* Cling_by_tags? */
if (!(alloc_parms->flags & A_CLING_BY_TAGS) || !ah->cling_tag_list_cn)
return NEXT_PV;
if ((alloc_parms->flags & A_AREA_COUNT_MATCHES)) {
if (_check_cling(ah, ah->cling_tag_list_cn, alloc_parms->prev_lvseg, pva, alloc_state))
goto found;
} else if (_check_cling_to_alloced(ah, ah->cling_tag_list_cn, pva, alloc_state))
goto found;
/* All areas on this PV give same result so pointless checking more */
return NEXT_PV;
}
/* Normal/Anywhere */
/* Is it big enough on its own? */
if (pva->unreserved * ah->area_multiple < still_needed &&
((!(alloc_parms->flags & A_CAN_SPLIT) && !ah->log_area_count) ||
(already_found_one && alloc_parms->alloc != ALLOC_ANYWHERE)))
return NEXT_PV;
found:
if (alloc_parms->flags & A_POSITIONAL_FILL)
return PREFERRED;
return USE_AREA;
}
/*
* Decide how many extents we're trying to obtain from a given area.
* Removes the extents from further consideration.
*/
static uint32_t _calc_required_extents(struct alloc_handle *ah, struct pv_area *pva, unsigned ix_pva, uint32_t max_to_allocate, alloc_policy_t alloc)
{
uint32_t required = max_to_allocate / ah->area_multiple;
/*
* Update amount unreserved - effectively splitting an area
* into two or more parts. If the whole stripe doesn't fit,
* reduce amount we're looking for.
*/
if (alloc == ALLOC_ANYWHERE) {
if (ix_pva >= ah->area_count + ah->parity_count)
required = ah->log_len;
} else if (required < ah->log_len)
required = ah->log_len;
if (required >= pva->unreserved) {
required = pva->unreserved;
pva->unreserved = 0;
} else {
pva->unreserved -= required;
reinsert_changed_pv_area(pva);
}
return required;
}
static void _clear_areas(struct alloc_state *alloc_state)
{
uint32_t s;
alloc_state->num_positional_areas = 0;
for (s = 0; s < alloc_state->areas_size; s++)
alloc_state->areas[s].pva = NULL;
}
static void _reset_unreserved(struct dm_list *pvms)
{
struct pv_map *pvm;
struct pv_area *pva;
dm_list_iterate_items(pvm, pvms)
dm_list_iterate_items(pva, &pvm->areas)
if (pva->unreserved != pva->count) {
pva->unreserved = pva->count;
reinsert_changed_pv_area(pva);
}
}
static void _report_needed_allocation_space(struct alloc_handle *ah,
struct alloc_state *alloc_state,
struct dm_list *pvms)
{
const char *metadata_type;
uint32_t parallel_areas_count, parallel_area_size;
uint32_t metadata_count, metadata_size;
parallel_area_size = ah->new_extents - alloc_state->allocated;
parallel_area_size /= ah->area_multiple;
parallel_area_size -= (ah->alloc_and_split_meta && !ah->split_metadata_is_allocated) ? ah->log_len : 0;
parallel_areas_count = ah->area_count + ah->parity_count;
metadata_size = ah->log_len;
if (ah->alloc_and_split_meta) {
metadata_type = "metadata area";
metadata_count = parallel_areas_count;
if (ah->split_metadata_is_allocated)
metadata_size = 0;
} else {
metadata_type = "mirror log";
metadata_count = alloc_state->log_area_count_still_needed;
}
log_debug_alloc("Still need %s%" PRIu32 " total extents from %" PRIu32 " remaining (%" PRIu32 " positional slots):",
ah->approx_alloc ? "up to " : "",
parallel_area_size * parallel_areas_count + metadata_size * metadata_count, pv_maps_size(pvms),
alloc_state->num_positional_areas);
log_debug_alloc(" %" PRIu32 " (%" PRIu32 " data/%" PRIu32
" parity) parallel areas of %" PRIu32 " extents each",
parallel_areas_count, ah->area_count, ah->parity_count, parallel_area_size);
log_debug_alloc(" %" PRIu32 " %s%s of %" PRIu32 " extents each",
metadata_count, metadata_type,
(metadata_count == 1) ? "" : "s",
metadata_size);
}
/* Work through the array, removing any entries with tags already used by previous areas. */
static int _limit_to_one_area_per_tag(struct alloc_handle *ah, struct alloc_state *alloc_state,
uint32_t ix_log_offset, unsigned *ix)
{
uint32_t s = 0, u = 0;
DM_LIST_INIT(pv_tags);
while (s < alloc_state->areas_size && alloc_state->areas[s].pva) {
/* Start again with an empty tag list when we reach the log devices */
if (u == ix_log_offset)
dm_list_init(&pv_tags);
if (!_pv_has_matching_tag(ah->cling_tag_list_cn, alloc_state->areas[s].pva->map->pv, alloc_state->areas[s].pva->start, s, &pv_tags)) {
/* The comparison fn will ignore any non-cling tags so just add everything */
if (!str_list_add_list(ah->mem, &pv_tags, &alloc_state->areas[s].pva->map->pv->tags))
return_0;
if (s != u)
alloc_state->areas[u] = alloc_state->areas[s];
u++;
} else
(*ix)--; /* One area removed */
s++;
}
alloc_state->areas[u].pva = NULL;
return 1;
}
/*
* Returns 1 regardless of whether any space was found, except on error.
*/
static int _find_some_parallel_space(struct alloc_handle *ah,
struct dm_list *pvms, struct alloc_state *alloc_state,
struct dm_list *parallel_pvs, uint32_t max_to_allocate)
{
const struct alloc_parms *alloc_parms = alloc_state->alloc_parms;
unsigned ix = 0;
unsigned last_ix;
struct pv_map *pvm;
struct pv_area *pva;
unsigned preferred_count = 0;
unsigned already_found_one;
unsigned ix_log_offset; /* Offset to start of areas to use for log */
unsigned too_small_for_log_count; /* How many too small for log? */
unsigned iteration_count = 0; /* cling_to_alloced may need 2 iterations */
unsigned log_iteration_count = 0; /* extra iteration for logs on data devices */
struct alloced_area *aa;
uint32_t s;
uint32_t devices_needed = ah->area_count + ah->parity_count;
uint32_t required;
_clear_areas(alloc_state);
_reset_unreserved(pvms);
/* num_positional_areas holds the number of parallel allocations that must be contiguous/cling */
/* These appear first in the array, so it is also the offset to the non-preferred allocations */
/* At most one of A_CONTIGUOUS_TO_LVSEG, A_CLING_TO_LVSEG or A_CLING_TO_ALLOCED may be set */
if (!(alloc_parms->flags & A_POSITIONAL_FILL))
alloc_state->num_positional_areas = 0;
else if (alloc_parms->flags & (A_CONTIGUOUS_TO_LVSEG | A_CLING_TO_LVSEG))
alloc_state->num_positional_areas = _stripes_per_mimage(alloc_parms->prev_lvseg) * alloc_parms->prev_lvseg->area_count;
else if (alloc_parms->flags & A_CLING_TO_ALLOCED)
alloc_state->num_positional_areas = ah->area_count;
if (alloc_parms->alloc == ALLOC_NORMAL || (alloc_parms->flags & A_CLING_TO_ALLOCED))
log_debug_alloc("Cling_to_allocated is %sset",
alloc_parms->flags & A_CLING_TO_ALLOCED ? "" : "not ");
if (alloc_parms->flags & A_POSITIONAL_FILL)
log_debug_alloc("%u preferred area(s) to be filled positionally.", alloc_state->num_positional_areas);
else
log_debug_alloc("Areas to be sorted and filled sequentially.");
_report_needed_allocation_space(ah, alloc_state, pvms);
/* ix holds the number of areas found on other PVs */
do {
if (log_iteration_count) {
log_debug_alloc("Found %u areas for %" PRIu32 " parallel areas and %" PRIu32 " log areas so far.", ix, devices_needed, alloc_state->log_area_count_still_needed);
} else if (iteration_count)
log_debug_alloc("Filled %u out of %u preferred areas so far.", preferred_count, alloc_state->num_positional_areas);
/*
* Provide for escape from the loop if no progress is made.
* This should not happen: ALLOC_ANYWHERE should be able to use
* all available space. (If there aren't enough extents, the code
* should not reach this point.)
*/
last_ix = ix;
/*
* Put the smallest area of each PV that is at least the
* size we need into areas array. If there isn't one
* that fits completely and we're allowed more than one
* LV segment, then take the largest remaining instead.
*/
dm_list_iterate_items(pvm, pvms) {
/* PV-level checks */
if (dm_list_empty(&pvm->areas))
continue; /* Next PV */
if (alloc_parms->alloc != ALLOC_ANYWHERE) {
/* Don't allocate onto the log PVs */
if (ah->log_area_count)
dm_list_iterate_items(aa, &ah->alloced_areas[ah->area_count])
for (s = 0; s < ah->log_area_count; s++)
if (!aa[s].pv)
goto next_pv;
/* FIXME Split into log and non-log parallel_pvs and only check the log ones if log_iteration? */
/* (I've temporatily disabled the check.) */
/* Avoid PVs used by existing parallel areas */
if (!log_iteration_count && parallel_pvs && _pv_is_parallel(pvm->pv, parallel_pvs))
goto next_pv;
/*
* Avoid PVs already set aside for log.
* We only reach here if there were enough PVs for the main areas but
* not enough for the logs.
*/
if (log_iteration_count) {
for (s = devices_needed; s < ix + alloc_state->num_positional_areas; s++)
if (alloc_state->areas[s].pva && alloc_state->areas[s].pva->map->pv == pvm->pv)
goto next_pv;
/* On a second pass, avoid PVs already used in an uncommitted area */
} else if (iteration_count)
for (s = 0; s < devices_needed; s++)
if (alloc_state->areas[s].pva && alloc_state->areas[s].pva->map->pv == pvm->pv)
goto next_pv;
}
already_found_one = 0;
/* First area in each list is the largest */
dm_list_iterate_items(pva, &pvm->areas) {
/*
* There are two types of allocations, which can't be mixed at present:
*
* PREFERRED are stored immediately in a specific parallel slot.
* This is only used if the A_POSITIONAL_FILL flag is set.
* This requires the number of slots to match, so if comparing with
* prev_lvseg then A_AREA_COUNT_MATCHES must be set.
*
* USE_AREA are stored for later, then sorted and chosen from.
*/
switch(_check_pva(ah, pva, max_to_allocate,
alloc_state, already_found_one, iteration_count, log_iteration_count)) {
case PREFERRED:
preferred_count++;
/* Fall through */
case NEXT_PV:
goto next_pv;
case NEXT_AREA:
continue;
case USE_AREA:
/*
* Except with ALLOC_ANYWHERE, replace first area with this
* one which is smaller but still big enough.
*/
if (!already_found_one ||
alloc_parms->alloc == ALLOC_ANYWHERE) {
ix++;
already_found_one = 1;
}
/* Reserve required amount of pva */
required = _calc_required_extents(ah, pva, ix + alloc_state->num_positional_areas - 1, max_to_allocate, alloc_parms->alloc);
if (!_reserve_required_area(ah, alloc_state, pva, required, ix + alloc_state->num_positional_areas - 1, pva->unreserved))
return_0;
}
}
next_pv:
/* With ALLOC_ANYWHERE we ignore further PVs once we have at least enough areas */
/* With cling and contiguous we stop if we found a match for *all* the areas */
/* FIXME Rename these variables! */
if ((alloc_parms->alloc == ALLOC_ANYWHERE &&
ix + alloc_state->num_positional_areas >= devices_needed + alloc_state->log_area_count_still_needed) ||
(preferred_count == alloc_state->num_positional_areas &&
(alloc_state->num_positional_areas == devices_needed + alloc_state->log_area_count_still_needed)))
break;
}
} while ((alloc_parms->alloc == ALLOC_ANYWHERE && last_ix != ix && ix < devices_needed + alloc_state->log_area_count_still_needed) ||
/* With cling_to_alloced and normal, if there were gaps in the preferred areas, have a second iteration */
(alloc_parms->alloc == ALLOC_NORMAL && preferred_count &&
(preferred_count < alloc_state->num_positional_areas || alloc_state->log_area_count_still_needed) &&
(alloc_parms->flags & A_CLING_TO_ALLOCED) && !iteration_count++) ||
/* Extra iteration needed to fill log areas on PVs already used? */
(alloc_parms->alloc == ALLOC_NORMAL && preferred_count == alloc_state->num_positional_areas && !ah->mirror_logs_separate &&
(ix + preferred_count >= devices_needed) &&
(ix + preferred_count < devices_needed + alloc_state->log_area_count_still_needed) && !log_iteration_count++));
/* Non-zero ix means at least one USE_AREA was returned */
if (preferred_count < alloc_state->num_positional_areas && !(alloc_parms->flags & A_CLING_TO_ALLOCED) && !ix)
return 1;
if (ix + preferred_count < devices_needed + alloc_state->log_area_count_still_needed)
return 1;
/* Sort the areas so we allocate from the biggest */
if (log_iteration_count) {
if (ix > devices_needed + 1) {
log_debug_alloc("Sorting %u log areas", ix - devices_needed);
qsort(alloc_state->areas + devices_needed, ix - devices_needed, sizeof(*alloc_state->areas),
_comp_area);
}
} else if (ix > 1) {
log_debug_alloc("Sorting %u areas", ix);
qsort(alloc_state->areas + alloc_state->num_positional_areas, ix, sizeof(*alloc_state->areas),
_comp_area);
}
/* If there are gaps in our preferred areas, fill them from the sorted part of the array */
if (preferred_count && preferred_count != alloc_state->num_positional_areas) {
for (s = 0; s < devices_needed; s++)
if (!alloc_state->areas[s].pva) {
alloc_state->areas[s].pva = alloc_state->areas[alloc_state->num_positional_areas].pva;
alloc_state->areas[s].used = alloc_state->areas[alloc_state->num_positional_areas].used;
alloc_state->areas[alloc_state->num_positional_areas++].pva = NULL;
}
}
/*
* First time around, if there's a log, allocate it on the
* smallest device that has space for it.
*/
too_small_for_log_count = 0;
ix_log_offset = 0;
/* FIXME This logic is due to its heritage and can be simplified! */
if (alloc_state->log_area_count_still_needed) {
/* How many areas are too small for the log? */
while (too_small_for_log_count < alloc_state->num_positional_areas + ix &&
(*(alloc_state->areas + alloc_state->num_positional_areas + ix - 1 -
too_small_for_log_count)).used < ah->log_len)
too_small_for_log_count++;
ix_log_offset = alloc_state->num_positional_areas + ix - too_small_for_log_count - ah->log_area_count;
}
if (ix + alloc_state->num_positional_areas < devices_needed +
(alloc_state->log_area_count_still_needed ? alloc_state->log_area_count_still_needed +
too_small_for_log_count : 0))
return 1;
/*
* FIXME We should change the code to do separate calls for the log allocation
* and the data allocation so that _limit_to_one_area_per_tag doesn't have to guess
* where the split is going to occur.
*/
/*
* This code covers the initial allocation - after that there is something to 'cling' to
* and we shouldn't get this far.
* alloc_state->num_positional_areas is assumed to be 0 with A_PARTITION_BY_TAGS.
*
* FIXME Consider a second attempt with A_PARTITION_BY_TAGS if, for example, the largest area
* had all the tags set, but other areas don't.
*/
if ((alloc_parms->flags & A_PARTITION_BY_TAGS) && !alloc_state->num_positional_areas) {
if (!_limit_to_one_area_per_tag(ah, alloc_state, ix_log_offset, &ix))
return_0;
/* Recalculate log position because we might have removed some areas from consideration */
if (alloc_state->log_area_count_still_needed) {
/* How many areas are too small for the log? */
too_small_for_log_count = 0;
while (too_small_for_log_count < ix &&
(*(alloc_state->areas + ix - 1 - too_small_for_log_count)).pva &&
(*(alloc_state->areas + ix - 1 - too_small_for_log_count)).used < ah->log_len)
too_small_for_log_count++;
if (ix < too_small_for_log_count + ah->log_area_count)
return 1;
ix_log_offset = ix - too_small_for_log_count - ah->log_area_count;
}
if (ix < devices_needed +
(alloc_state->log_area_count_still_needed ? alloc_state->log_area_count_still_needed +
too_small_for_log_count : 0))
return 1;
}
/*
* Finally add the space identified to the list of areas to be used.
*/
if (!_alloc_parallel_area(ah, max_to_allocate, alloc_state, ix_log_offset))
return_0;
/*
* Log is always allocated first time.
*/
alloc_state->log_area_count_still_needed = 0;
return 1;
}
/*
* Choose sets of parallel areas to use, respecting any constraints
* supplied in alloc_parms.
*/
static int _find_max_parallel_space_for_one_policy(struct alloc_handle *ah, struct alloc_parms *alloc_parms,
struct dm_list *pvms, struct alloc_state *alloc_state)
{
uint32_t max_tmp;
uint32_t max_to_allocate; /* Maximum extents to allocate this time */
uint32_t old_allocated;
uint32_t next_le;
struct seg_pvs *spvs;
struct dm_list *parallel_pvs;
alloc_state->alloc_parms = alloc_parms;
/* FIXME This algorithm needs a lot of cleaning up! */
/* FIXME anywhere doesn't find all space yet */
do {
parallel_pvs = NULL;
max_to_allocate = alloc_parms->extents_still_needed - alloc_state->allocated;
/*
* If there are existing parallel PVs, avoid them and reduce
* the maximum we can allocate in one go accordingly.
*/
if (ah->parallel_areas) {
next_le = (alloc_parms->prev_lvseg ? alloc_parms->prev_lvseg->le + alloc_parms->prev_lvseg->len : 0) + alloc_state->allocated / ah->area_multiple;
dm_list_iterate_items(spvs, ah->parallel_areas) {
if (next_le >= spvs->le + spvs->len)
continue;
max_tmp = max_to_allocate +
alloc_state->allocated;
/*
* Because a request that groups metadata and
* data together will be split, we must adjust
* the comparison accordingly.
*/
if (ah->alloc_and_split_meta && !ah->split_metadata_is_allocated)
max_tmp -= ah->log_len;
if (max_tmp > (spvs->le + spvs->len) * ah->area_multiple) {
max_to_allocate = (spvs->le + spvs->len) * ah->area_multiple - alloc_state->allocated;
max_to_allocate += (ah->alloc_and_split_meta && !ah->split_metadata_is_allocated) ? ah->log_len : 0;
}
parallel_pvs = &spvs->pvs;
break;
}
}
old_allocated = alloc_state->allocated;
if (!_find_some_parallel_space(ah, pvms, alloc_state, parallel_pvs, max_to_allocate))
return_0;
/*
* For ALLOC_CLING, if the number of areas matches and maximise_cling is
* set we allow two passes, first with A_POSITIONAL_FILL then without.
*
* If we didn't allocate anything this time with ALLOC_NORMAL and had
* A_CLING_TO_ALLOCED set, try again without it.
*
* For ALLOC_NORMAL, if we did allocate something without the
* flag set, set it and continue so that further allocations
* remain on the same disks where possible.
*/
if (old_allocated == alloc_state->allocated) {
if (ah->maximise_cling && ((alloc_parms->alloc == ALLOC_CLING) || (alloc_parms->alloc == ALLOC_CLING_BY_TAGS)) &&
(alloc_parms->flags & A_CLING_TO_LVSEG) && (alloc_parms->flags & A_POSITIONAL_FILL))
alloc_parms->flags &= ~A_POSITIONAL_FILL;
else if ((alloc_parms->alloc == ALLOC_NORMAL) && (alloc_parms->flags & A_CLING_TO_ALLOCED))
alloc_parms->flags &= ~A_CLING_TO_ALLOCED;
else
break; /* Give up */
} else if (ah->maximise_cling && alloc_parms->alloc == ALLOC_NORMAL &&
!(alloc_parms->flags & A_CLING_TO_ALLOCED))
alloc_parms->flags |= A_CLING_TO_ALLOCED;
} while ((alloc_parms->alloc != ALLOC_CONTIGUOUS) && alloc_state->allocated != alloc_parms->extents_still_needed && (alloc_parms->flags & A_CAN_SPLIT) && (!ah->approx_alloc || pv_maps_size(pvms)));
return 1;
}
/*
* Allocate several segments, each the same size, in parallel.
* If mirrored_pv and mirrored_pe are supplied, it is used as
* the first area, and additional areas are allocated parallel to it.
*/
static int _allocate(struct alloc_handle *ah,
struct volume_group *vg,
struct logical_volume *lv,
unsigned can_split,
struct dm_list *allocatable_pvs)
{
uint32_t old_allocated;
struct lv_segment *prev_lvseg = NULL;
int r = 0;
struct dm_list *pvms;
alloc_policy_t alloc;
struct alloc_parms alloc_parms;
struct alloc_state alloc_state;
alloc_state.allocated = lv ? lv->le_count : 0;
if (alloc_state.allocated >= ah->new_extents && !ah->log_area_count) {
log_warn("_allocate called with no work to do!");
return 1;
}
if (ah->area_multiple > 1 &&
(ah->new_extents - alloc_state.allocated) % ah->area_multiple) {
log_error("Number of extents requested (" FMTu32 ") needs to be divisible by " FMTu32 ".",
ah->new_extents - alloc_state.allocated,
ah->area_multiple);
return 0;
}
alloc_state.log_area_count_still_needed = ah->log_area_count;
if (ah->alloc == ALLOC_CONTIGUOUS)
can_split = 0;
if (lv && !dm_list_empty(&lv->segments))
prev_lvseg = dm_list_item(dm_list_last(&lv->segments),
struct lv_segment);
/*
* Build the sets of available areas on the pv's.
*/
if (!(pvms = create_pv_maps(ah->mem, vg, allocatable_pvs)))
return_0;
if (!_log_parallel_areas(ah->mem, ah->parallel_areas))
stack;
alloc_state.areas_size = dm_list_size(pvms);
if (alloc_state.areas_size &&
alloc_state.areas_size < (ah->area_count + ah->parity_count + ah->log_area_count)) {
if (ah->alloc != ALLOC_ANYWHERE && ah->mirror_logs_separate) {
log_error("Not enough PVs with free space available "
"for parallel allocation.");
log_error("Consider --alloc anywhere if desperate.");
return 0;
}
alloc_state.areas_size = ah->area_count + ah->parity_count + ah->log_area_count;
}
/* Upper bound if none of the PVs in prev_lvseg is in pvms */
/* FIXME Work size out properly */
if (prev_lvseg)
alloc_state.areas_size += _stripes_per_mimage(prev_lvseg) * prev_lvseg->area_count;
/* Allocate an array of pv_areas to hold the largest space on each PV */
if (!(alloc_state.areas = dm_malloc(sizeof(*alloc_state.areas) * alloc_state.areas_size))) {
log_error("Couldn't allocate areas array.");
return 0;
}
/*
* cling includes implicit cling_by_tags
* but it does nothing unless the lvm.conf setting is present.
*/
if (ah->alloc == ALLOC_CLING)
ah->alloc = ALLOC_CLING_BY_TAGS;
/* Attempt each defined allocation policy in turn */
for (alloc = ALLOC_CONTIGUOUS; alloc <= ah->alloc; alloc++) {
/* Skip cling_by_tags if no list defined */
if (alloc == ALLOC_CLING_BY_TAGS && !ah->cling_tag_list_cn)
continue;
old_allocated = alloc_state.allocated;
log_debug_alloc("Trying allocation using %s policy.", get_alloc_string(alloc));
if (!ah->approx_alloc && !_sufficient_pes_free(ah, pvms, alloc_state.allocated, ah->new_extents))
goto_out;
_init_alloc_parms(ah, &alloc_parms, alloc, prev_lvseg,
can_split, alloc_state.allocated,
ah->new_extents);
if (!_find_max_parallel_space_for_one_policy(ah, &alloc_parms, pvms, &alloc_state))
goto_out;
if ((alloc_state.allocated == ah->new_extents &&
!alloc_state.log_area_count_still_needed) ||
(!can_split && (alloc_state.allocated != old_allocated)))
break;
}
if (alloc_state.allocated != ah->new_extents) {
if (!ah->approx_alloc) {
log_error("Insufficient suitable %sallocatable extents "
"for logical volume %s: %u more required",
can_split ? "" : "contiguous ",
lv ? lv->name : "",
(ah->new_extents - alloc_state.allocated) *
ah->area_count / ah->area_multiple);
goto out;
}
if (!alloc_state.allocated) {
log_error("Insufficient suitable %sallocatable extents "
"found for logical volume %s.",
can_split ? "" : "contiguous ",
lv ? lv->name : "");
goto out;
}
log_verbose("Found fewer %sallocatable extents "
"for logical volume %s than requested: using %" PRIu32 " extents (reduced by %u).",
can_split ? "" : "contiguous ",
lv ? lv->name : "",
alloc_state.allocated,
(ah->new_extents - alloc_state.allocated) * ah->area_count / ah->area_multiple);
ah->new_extents = alloc_state.allocated;
}
if (alloc_state.log_area_count_still_needed) {
log_error("Insufficient free space for log allocation "
"for logical volume %s.",
lv ? lv->name : "");
goto out;
}
r = 1;
out:
dm_free(alloc_state.areas);
return r;
}
int lv_add_virtual_segment(struct logical_volume *lv, uint64_t status,
uint32_t extents, const struct segment_type *segtype)
{
struct lv_segment *seg;
if (!dm_list_empty(&lv->segments) &&
(seg = last_seg(lv)) && (seg->segtype == segtype)) {
seg->area_len += extents;
seg->len += extents;
} else {
if (!(seg = alloc_lv_segment(segtype, lv, lv->le_count, extents,
status, 0, NULL, 0,
extents, 0, 0, 0, NULL))) {
log_error("Couldn't allocate new %s segment.", segtype->name);
return 0;
}
lv->status |= VIRTUAL;
dm_list_add(&lv->segments, &seg->list);
}
lv->le_count += extents;
lv->size += (uint64_t) extents *lv->vg->extent_size;
return 1;
}
/*
* Preparation for a specific allocation attempt
* stripes and mirrors refer to the parallel areas used for data.
* If log_area_count > 1 it is always mirrored (not striped).
*/
static struct alloc_handle *_alloc_init(struct cmd_context *cmd,
const struct segment_type *segtype,
alloc_policy_t alloc, int approx_alloc,
uint32_t existing_extents,
uint32_t new_extents,
uint32_t mirrors,
uint32_t stripes,
uint32_t metadata_area_count,
uint32_t extent_size,
uint32_t region_size,
struct dm_list *parallel_areas)
{
struct dm_pool *mem;
struct alloc_handle *ah;
uint32_t s, area_count, alloc_count, parity_count, total_extents;
size_t size = 0;
if (segtype_is_virtual(segtype)) {
log_error(INTERNAL_ERROR "_alloc_init called for virtual segment.");
return NULL;
}
/* FIXME Caller should ensure this */
if (mirrors && !stripes)
stripes = 1;
if (mirrors > 1)
area_count = mirrors * stripes;
else
area_count = stripes;
if (!(area_count + metadata_area_count)) {
log_error(INTERNAL_ERROR "_alloc_init called for non-virtual segment with no disk space.");
return NULL;
}
size = sizeof(*ah);
/*
* It is a requirement that RAID 4/5/6 are created with a number of
* stripes that is greater than the number of parity devices. (e.g
* RAID4/5 must have at least 2 stripes and RAID6 must have at least
* 3.) It is also a constraint that, when replacing individual devices
* in a RAID 4/5/6 array, no more devices can be replaced than
* there are parity devices. (Otherwise, there would not be enough
* redundancy to maintain the array.) Understanding these two
* constraints allows us to infer whether the caller of this function
* is intending to allocate an entire array or just replacement
* component devices. In the former case, we must account for the
* necessary parity_count. In the later case, we do not need to
* account for the extra parity devices because the array already
* exists and they only want replacement drives.
*/
parity_count = (area_count <= segtype->parity_devs) ? 0 : segtype->parity_devs;
alloc_count = area_count + parity_count;
if (segtype_is_raid(segtype) && metadata_area_count)
/* RAID has a meta area for each device */
alloc_count *= 2;
else
/* mirrors specify their exact log count */
alloc_count += metadata_area_count;
size += sizeof(ah->alloced_areas[0]) * alloc_count;
if (!(mem = dm_pool_create("allocation", 1024))) {
log_error("allocation pool creation failed");
return NULL;
}
if (!(ah = dm_pool_zalloc(mem, size))) {
log_error("allocation handle allocation failed");
dm_pool_destroy(mem);
return NULL;
}
ah->cmd = cmd;
ah->mem = mem;
ah->area_count = area_count;
ah->parity_count = parity_count;
ah->region_size = region_size;
ah->alloc = alloc;
/*
* For the purposes of allocation, area_count and parity_count are
* kept separately. However, the 'area_count' field in an
* lv_segment includes both; and this is what '_calc_area_multiple'
* is calculated from. So, we must pass in the total count to get
* a correct area_multiple.
*/
ah->area_multiple = _calc_area_multiple(segtype, area_count + parity_count, stripes);
//FIXME: s/mirror_logs_separate/metadata_separate/ so it can be used by others?
ah->mirror_logs_separate = find_config_tree_bool(cmd, allocation_mirror_logs_require_separate_pvs_CFG, NULL);
if (mirrors || stripes)
total_extents = new_extents;
else
total_extents = 0;
if (segtype_is_raid(segtype)) {
if (metadata_area_count) {
if (metadata_area_count != area_count)
log_error(INTERNAL_ERROR
"Bad metadata_area_count");
ah->metadata_area_count = area_count;
ah->alloc_and_split_meta = 1;
ah->log_len = RAID_METADATA_AREA_LEN;
/*
* We need 'log_len' extents for each
* RAID device's metadata_area
*/
total_extents += (ah->log_len * ah->area_multiple);
} else {
ah->log_area_count = 0;
ah->log_len = 0;
}
} else if (segtype_is_thin_pool(segtype)) {
/*
* thin_pool uses ah->region_size to
* pass metadata size in extents
*/
ah->log_len = ah->region_size;
ah->log_area_count = metadata_area_count;
ah->region_size = 0;
ah->mirror_logs_separate =
find_config_tree_bool(cmd, allocation_thin_pool_metadata_require_separate_pvs_CFG, NULL);
} else if (segtype_is_cache_pool(segtype)) {
/*
* Like thin_pool, cache_pool uses ah->region_size to
* pass metadata size in extents
*/
ah->log_len = ah->region_size;
/* use metadata_area_count, not log_area_count */
ah->metadata_area_count = metadata_area_count;
ah->region_size = 0;
ah->mirror_logs_separate =
find_config_tree_bool(cmd, allocation_cache_pool_metadata_require_separate_pvs_CFG, NULL);
if (!ah->mirror_logs_separate) {
ah->alloc_and_split_meta = 1;
total_extents += ah->log_len;
}
} else {
ah->log_area_count = metadata_area_count;
ah->log_len = !metadata_area_count ? 0 :
_mirror_log_extents(ah->region_size, extent_size,
(existing_extents + new_extents) / ah->area_multiple);
}
log_debug("Adjusted allocation request to %" PRIu32 " logical extents. Existing size %" PRIu32 ". New size %" PRIu32 ".",
total_extents, existing_extents, total_extents + existing_extents);
if (ah->log_len)
log_debug("Mirror log of %" PRIu32 " extents of size %" PRIu32 "sectors needed for region size %" PRIu32 ".",
ah->log_len, extent_size, ah->region_size);
if (mirrors || stripes)
total_extents += existing_extents;
ah->new_extents = total_extents;
for (s = 0; s < alloc_count; s++)
dm_list_init(&ah->alloced_areas[s]);
ah->parallel_areas = parallel_areas;
if ((ah->cling_tag_list_cn = find_config_tree_array(cmd, allocation_cling_tag_list_CFG, NULL)))
(void) _validate_tag_list(ah->cling_tag_list_cn);
ah->maximise_cling = find_config_tree_bool(cmd, allocation_maximise_cling_CFG, NULL);
ah->approx_alloc = approx_alloc;
return ah;
}
void alloc_destroy(struct alloc_handle *ah)
{
if (ah)
dm_pool_destroy(ah->mem);
}
/*
* Entry point for all extent allocations.
*/
struct alloc_handle *allocate_extents(struct volume_group *vg,
struct logical_volume *lv,
const struct segment_type *segtype,
uint32_t stripes,
uint32_t mirrors, uint32_t log_count,
uint32_t region_size, uint32_t extents,
struct dm_list *allocatable_pvs,
alloc_policy_t alloc, int approx_alloc,
struct dm_list *parallel_areas)
{
struct alloc_handle *ah;
if (segtype_is_virtual(segtype)) {
log_error("allocate_extents does not handle virtual segments");
return NULL;
}
if (!allocatable_pvs) {
log_error(INTERNAL_ERROR "Missing allocatable pvs.");
return NULL;
}
if (vg->fid->fmt->ops->segtype_supported &&
!vg->fid->fmt->ops->segtype_supported(vg->fid, segtype)) {
log_error("Metadata format (%s) does not support required "
"LV segment type (%s).", vg->fid->fmt->name,
segtype->name);
log_error("Consider changing the metadata format by running "
"vgconvert.");
return NULL;
}
if (alloc >= ALLOC_INHERIT)
alloc = vg->alloc;
if (!(ah = _alloc_init(vg->cmd, segtype, alloc, approx_alloc,
lv ? lv->le_count : 0, extents, mirrors, stripes, log_count,
vg->extent_size, region_size,
parallel_areas)))
return_NULL;
if (!_allocate(ah, vg, lv, 1, allocatable_pvs)) {
alloc_destroy(ah);
return_NULL;
}
return ah;
}
/*
* Add new segments to an LV from supplied list of areas.
*/
int lv_add_segment(struct alloc_handle *ah,
uint32_t first_area, uint32_t num_areas,
struct logical_volume *lv,
const struct segment_type *segtype,
uint32_t stripe_size,
uint64_t status,
uint32_t region_size)
{
if (!segtype) {
log_error("Missing segtype in lv_add_segment().");
return 0;
}
if (segtype_is_virtual(segtype)) {
log_error("lv_add_segment cannot handle virtual segments");
return 0;
}
if ((status & MIRROR_LOG) && !dm_list_empty(&lv->segments)) {
log_error("Log segments can only be added to an empty LV");
return 0;
}
if (!_setup_alloced_segments(lv, &ah->alloced_areas[first_area],
num_areas, status,
stripe_size, segtype,
region_size))
return_0;
if ((segtype->flags & SEG_CAN_SPLIT) && !lv_merge_segments(lv)) {
log_error("Couldn't merge segments after extending "
"logical volume.");
return 0;
}
if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv))
return_0;
return 1;
}
/*
* "mirror" segment type doesn't support split.
* So, when adding mirrors to linear LV segment, first split it,
* then convert it to "mirror" and add areas.
*/
static struct lv_segment *_convert_seg_to_mirror(struct lv_segment *seg,
uint32_t region_size,
struct logical_volume *log_lv)
{
struct lv_segment *newseg;
uint32_t s;
if (!seg_is_striped(seg)) {
log_error("Can't convert non-striped segment to mirrored.");
return NULL;
}
if (seg->area_count > 1) {
log_error("Can't convert striped segment with multiple areas "
"to mirrored.");
return NULL;
}
if (!(newseg = alloc_lv_segment(get_segtype_from_string(seg->lv->vg->cmd, SEG_TYPE_NAME_MIRROR),
seg->lv, seg->le, seg->len,
seg->status, seg->stripe_size,
log_lv,
seg->area_count, seg->area_len,
seg->chunk_size, region_size,
seg->extents_copied, NULL))) {
log_error("Couldn't allocate converted LV segment");
return NULL;
}
for (s = 0; s < seg->area_count; s++)
if (!move_lv_segment_area(newseg, s, seg, s))
return_NULL;
seg->pvmove_source_seg = NULL; /* Not maintained after allocation */
dm_list_add(&seg->list, &newseg->list);
dm_list_del(&seg->list);
return newseg;
}
/*
* Add new areas to mirrored segments
*/
int lv_add_segmented_mirror_image(struct alloc_handle *ah,
struct logical_volume *lv, uint32_t le,
uint32_t region_size)
{
char *image_name;
struct alloced_area *aa;
struct lv_segment *seg, *new_seg;
uint32_t current_le = le;
uint32_t s;
struct segment_type *segtype;
struct logical_volume *orig_lv, *copy_lv;
if (!lv_is_pvmove(lv)) {
log_error(INTERNAL_ERROR
"Non-pvmove LV, %s, passed as argument", lv->name);
return 0;
}
if (seg_type(first_seg(lv), 0) != AREA_PV) {
log_error(INTERNAL_ERROR
"Bad segment type for first segment area");
return 0;
}
/*
* If the allocator provided two or more PV allocations for any
* single segment of the original LV, that LV segment must be
* split up to match.
*/
dm_list_iterate_items(aa, &ah->alloced_areas[0]) {
if (!(seg = find_seg_by_le(lv, current_le))) {
log_error("Failed to find segment for %s extent %"
PRIu32, lv->name, current_le);
return 0;
}
/* Allocator assures aa[0].len <= seg->area_len */
if (aa[0].len < seg->area_len) {
if (!lv_split_segment(lv, seg->le + aa[0].len)) {
log_error("Failed to split segment at %s "
"extent %" PRIu32, lv->name, le);
return 0;
}
}
current_le += seg->area_len;
}
current_le = le;
if (!insert_layer_for_lv(lv->vg->cmd, lv, PVMOVE, "_mimage_0")) {
log_error("Failed to build pvmove LV-type mirror, %s",
lv->name);
return 0;
}
orig_lv = seg_lv(first_seg(lv), 0);
if (!(image_name = dm_pool_strdup(lv->vg->vgmem, orig_lv->name)))
return_0;
image_name[strlen(image_name) - 1] = '1';
if (!(copy_lv = lv_create_empty(image_name, NULL,
orig_lv->status,
ALLOC_INHERIT, lv->vg)))
return_0;
if (!lv_add_mirror_lvs(lv, &copy_lv, 1, MIRROR_IMAGE, region_size))
return_0;
if (!(segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_STRIPED)))
return_0;
dm_list_iterate_items(aa, &ah->alloced_areas[0]) {
if (!(seg = find_seg_by_le(orig_lv, current_le))) {
log_error("Failed to find segment for %s extent %"
PRIu32, lv->name, current_le);
return 0;
}
if (!(new_seg = alloc_lv_segment(segtype, copy_lv,
seg->le, seg->len, PVMOVE, 0,
NULL, 1, seg->len,
0, 0, 0, NULL)))
return_0;
for (s = 0; s < ah->area_count; s++) {
if (!set_lv_segment_area_pv(new_seg, s,
aa[s].pv, aa[s].pe))
return_0;
}
dm_list_add(&copy_lv->segments, &new_seg->list);
current_le += seg->area_len;
copy_lv->le_count += seg->area_len;
}
lv->status |= MIRRORED;
/* FIXME: add log */
if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv))
return_0;
return 1;
}
/*
* Add new areas to mirrored segments
*/
int lv_add_mirror_areas(struct alloc_handle *ah,
struct logical_volume *lv, uint32_t le,
uint32_t region_size)
{
struct alloced_area *aa;
struct lv_segment *seg;
uint32_t current_le = le;
uint32_t s, old_area_count, new_area_count;
dm_list_iterate_items(aa, &ah->alloced_areas[0]) {
if (!(seg = find_seg_by_le(lv, current_le))) {
log_error("Failed to find segment for %s extent %"
PRIu32, lv->name, current_le);
return 0;
}
/* Allocator assures aa[0].len <= seg->area_len */
if (aa[0].len < seg->area_len) {
if (!lv_split_segment(lv, seg->le + aa[0].len)) {
log_error("Failed to split segment at %s "
"extent %" PRIu32, lv->name, le);
return 0;
}
}
if (!seg_is_mirrored(seg) &&
(!(seg = _convert_seg_to_mirror(seg, region_size, NULL))))
return_0;
old_area_count = seg->area_count;
new_area_count = old_area_count + ah->area_count;
if (!_lv_segment_add_areas(lv, seg, new_area_count))
return_0;
for (s = 0; s < ah->area_count; s++) {
if (!set_lv_segment_area_pv(seg, s + old_area_count,
aa[s].pv, aa[s].pe))
return_0;
}
current_le += seg->area_len;
}
lv->status |= MIRRORED;
if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv))
return_0;
return 1;
}
/*
* Add mirror image LVs to mirrored segments
*/
int lv_add_mirror_lvs(struct logical_volume *lv,
struct logical_volume **sub_lvs,
uint32_t num_extra_areas,
uint64_t status, uint32_t region_size)
{
struct lv_segment *seg;
uint32_t old_area_count, new_area_count;
uint32_t m;
struct segment_type *mirror_segtype;
seg = first_seg(lv);
if (dm_list_size(&lv->segments) != 1 || seg_type(seg, 0) != AREA_LV) {
log_error("Mirror layer must be inserted before adding mirrors");
return 0;
}
mirror_segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_MIRROR);
if (seg->segtype != mirror_segtype)
if (!(seg = _convert_seg_to_mirror(seg, region_size, NULL)))
return_0;
if (region_size && region_size != seg->region_size) {
log_error("Conflicting region_size");
return 0;
}
old_area_count = seg->area_count;
new_area_count = old_area_count + num_extra_areas;
if (!_lv_segment_add_areas(lv, seg, new_area_count)) {
log_error("Failed to allocate widened LV segment for %s.",
lv->name);
return 0;
}
for (m = 0; m < old_area_count; m++)
seg_lv(seg, m)->status |= status;
for (m = old_area_count; m < new_area_count; m++) {
if (!set_lv_segment_area_lv(seg, m, sub_lvs[m - old_area_count],
0, status))
return_0;
lv_set_hidden(sub_lvs[m - old_area_count]);
}
lv->status |= MIRRORED;
return 1;
}
/*
* Turn an empty LV into a mirror log.
*
* FIXME: Mirrored logs are built inefficiently.
* A mirrored log currently uses the same layout that a mirror
* LV uses. The mirror layer sits on top of AREA_LVs which form the
* legs, rather on AREA_PVs. This is done to allow re-use of the
* various mirror functions to also handle the mirrored LV that makes
* up the log.
*
* If we used AREA_PVs under the mirror layer of a log, we could
* assemble it all at once by calling 'lv_add_segment' with the
* appropriate segtype (mirror/stripe), like this:
* lv_add_segment(ah, ah->area_count, ah->log_area_count,
* log_lv, segtype, 0, MIRROR_LOG, 0);
*
* For now, we use the same mechanism to build a mirrored log as we
* do for building a mirrored LV: 1) create initial LV, 2) add a
* mirror layer, and 3) add the remaining copy LVs
*/
int lv_add_log_segment(struct alloc_handle *ah, uint32_t first_area,
struct logical_volume *log_lv, uint64_t status)
{
return lv_add_segment(ah, ah->area_count + first_area, 1, log_lv,
get_segtype_from_string(log_lv->vg->cmd, SEG_TYPE_NAME_STRIPED),
0, status, 0);
}
static int _lv_insert_empty_sublvs(struct logical_volume *lv,
const struct segment_type *segtype,
uint32_t stripe_size, uint32_t region_size,
uint32_t devices)
{
struct logical_volume *sub_lv;
uint32_t i;
uint64_t sub_lv_status = 0;
const char *layer_name;
char img_name[NAME_LEN];
struct lv_segment *mapseg;
if (lv->le_count || !dm_list_empty(&lv->segments)) {
log_error(INTERNAL_ERROR
"Non-empty LV passed to _lv_insert_empty_sublv");
return 0;
}
if (segtype_is_raid(segtype)) {
lv->status |= RAID;
sub_lv_status = RAID_IMAGE;
layer_name = "rimage";
} else if (segtype_is_mirrored(segtype)) {
lv->status |= MIRRORED;
sub_lv_status = MIRROR_IMAGE;
layer_name = "mimage";
} else
return_0;
/*
* First, create our top-level segment for our top-level LV
*/
if (!(mapseg = alloc_lv_segment(segtype, lv, 0, 0, lv->status,
stripe_size, NULL,
devices, 0, 0, region_size, 0, NULL))) {
log_error("Failed to create mapping segment for %s.",
display_lvname(lv));
return 0;
}
/*
* Next, create all of our sub_lv's and link them in.
*/
for (i = 0; i < devices; i++) {
/* Data LVs */
if (devices > 1) {
if (dm_snprintf(img_name, sizeof(img_name), "%s_%s_%u",
lv->name, layer_name, i) < 0)
goto_bad;
} else {
if (dm_snprintf(img_name, sizeof(img_name), "%s_%s",
lv->name, layer_name) < 0)
goto_bad;
}
/* FIXME Should use ALLOC_INHERIT here and inherit from parent LV */
if (!(sub_lv = lv_create_empty(img_name, NULL,
LVM_READ | LVM_WRITE,
lv->alloc, lv->vg)))
return_0;
if (!set_lv_segment_area_lv(mapseg, i, sub_lv, 0, sub_lv_status))
return_0;
/* Metadata LVs for raid */
if (segtype_is_raid(segtype) && !segtype_is_raid0(segtype)) {
if (dm_snprintf(img_name, sizeof(img_name), "%s_rmeta_%u",
lv->name, i) < 0)
goto_bad;
/* FIXME Should use ALLOC_INHERIT here and inherit from parent LV */
if (!(sub_lv = lv_create_empty(img_name, NULL,
LVM_READ | LVM_WRITE,
lv->alloc, lv->vg)))
return_0;
if (!set_lv_segment_area_lv(mapseg, i, sub_lv, 0, RAID_META))
return_0;
}
}
dm_list_add(&lv->segments, &mapseg->list);
return 1;
bad:
log_error("Failed to create sub LV name for LV %s.",
display_lvname(lv));
return 0;
}
static int _lv_extend_layered_lv(struct alloc_handle *ah,
struct logical_volume *lv,
uint32_t extents, uint32_t first_area,
uint32_t stripes, uint32_t stripe_size)
{
const struct segment_type *segtype;
struct logical_volume *sub_lv, *meta_lv;
struct lv_segment *seg = first_seg(lv);
uint32_t fa, s;
int clear_metadata = 0;
uint32_t area_multiple = 1;
if (!(segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_STRIPED)))
return_0;
/*
* The component devices of a "striped" LV all go in the same
* LV. However, RAID has an LV for each device - making the
* 'stripes' and 'stripe_size' parameters meaningless.
*/
if (seg_is_raid(seg)) {
stripes = 1;
stripe_size = 0;
if (seg_is_any_raid0(seg))
area_multiple = seg->area_count;
}
for (fa = first_area, s = 0; s < seg->area_count; s++) {
if (is_temporary_mirror_layer(seg_lv(seg, s))) {
if (!_lv_extend_layered_lv(ah, seg_lv(seg, s), extents / area_multiple,
fa, stripes, stripe_size))
return_0;
fa += lv_mirror_count(seg_lv(seg, s));
continue;
}
sub_lv = seg_lv(seg, s);
if (!lv_add_segment(ah, fa, stripes, sub_lv, segtype,
stripe_size, sub_lv->status, 0)) {
log_error("Aborting. Failed to extend %s in %s.",
sub_lv->name, lv->name);
return 0;
}
/* Extend metadata LVs only on initial creation */
if (seg_is_raid_with_meta(seg) && !lv->le_count) {
if (!seg->meta_areas) {
log_error("No meta_areas for RAID type");
return 0;
}
meta_lv = seg_metalv(seg, s);
if (!lv_add_segment(ah, fa + seg->area_count, 1,
meta_lv, segtype, 0,
meta_lv->status, 0)) {
log_error("Failed to extend %s in %s.",
meta_lv->name, lv->name);
return 0;
}
lv_set_visible(meta_lv);
/*
* Copy any tags from the new LV to the metadata LV so
* it can be activated temporarily.
*/
if (!str_list_dup(meta_lv->vg->vgmem, &meta_lv->tags, &lv->tags)) {
log_error("Failed to copy tags onto LV %s to clear metadata.", display_lvname(meta_lv));
return 0;
}
clear_metadata = 1;
}
fa += stripes;
}
if (clear_metadata) {
/*
* We must clear the metadata areas upon creation.
*/
/* FIXME VG is not in a fully-consistent state here and should not be committed! */
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
return_0;
for (s = 0; s < seg->area_count; s++) {
meta_lv = seg_metalv(seg, s);
if (test_mode()) {
lv_set_hidden(meta_lv);
continue;
}
/* For clearing, simply activate locally */
if (!activate_lv_local(meta_lv->vg->cmd, meta_lv)) {
log_error("Failed to activate %s/%s for clearing",
meta_lv->vg->name, meta_lv->name);
return 0;
}
log_verbose("Clearing metadata area of %s",
display_lvname(meta_lv));
/*
* Rather than wiping meta_lv->size, we can simply
* wipe '1' to remove the superblock of any previous
* RAID devices. It is much quicker.
*/
if (!wipe_lv(meta_lv, (struct wipe_params)
{ .do_zero = 1, .zero_sectors = 1 })) {
log_error("Failed to zero %s/%s",
meta_lv->vg->name, meta_lv->name);
return 0;
}
if (!deactivate_lv(meta_lv->vg->cmd, meta_lv)) {
log_error("Failed to deactivate %s/%s",
meta_lv->vg->name, meta_lv->name);
return 0;
}
lv_set_hidden(meta_lv);
/* Wipe any temporary tags required for activation. */
str_list_wipe(&meta_lv->tags);
}
}
seg->area_len += extents / area_multiple;
seg->len += extents;
if (!_setup_lv_size(lv, lv->le_count + extents))
return_0;
/*
* The MD bitmap is limited to being able to track 2^21 regions.
* The region_size must be adjusted to meet that criteria
* unless raid0/raid0_meta, which doesn't have a bitmap.
*/
if (seg_is_raid(seg) && !seg_is_any_raid0(seg))
while (seg->region_size < (lv->size / (1 << 21))) {
seg->region_size *= 2;
log_very_verbose("Adjusting RAID region_size from %uS to %uS"
" to support large LV size",
seg->region_size/2, seg->region_size);
}
return 1;
}
/*
* Entry point for single-step LV allocation + extension.
* Extents is the number of logical extents to append to the LV unless
* approx_alloc is set when it is an upper limit for the total number of
* extents to use from the VG.
*
* FIXME The approx_alloc raid/stripe conversion should be performed
* before calling this function.
*/
int lv_extend(struct logical_volume *lv,
const struct segment_type *segtype,
uint32_t stripes, uint32_t stripe_size,
uint32_t mirrors, uint32_t region_size,
uint32_t extents,
struct dm_list *allocatable_pvs, alloc_policy_t alloc,
int approx_alloc)
{
int r = 1;
int log_count = 0;
struct alloc_handle *ah;
uint32_t sub_lv_count;
uint32_t old_extents;
uint32_t new_extents; /* Total logical size after extension. */
log_very_verbose("Adding segment of type %s to LV %s.", segtype->name, lv->name);
if (segtype_is_virtual(segtype))
return lv_add_virtual_segment(lv, 0u, extents, segtype);
if (!lv->le_count) {
if (segtype_is_pool(segtype))
/*
* Pool allocations treat the metadata device like a mirror log.
*/
/* FIXME Support striped metadata pool */
log_count = 1;
else if (segtype_is_raid0_meta(segtype))
/* Extend raid0 metadata LVs too */
log_count = stripes;
else if (segtype_is_raid(segtype) && !segtype_is_raid0(segtype))
log_count = mirrors * stripes;
}
/* FIXME log_count should be 1 for mirrors */
if (!(ah = allocate_extents(lv->vg, lv, segtype, stripes, mirrors,
log_count, region_size, extents,
allocatable_pvs, alloc, approx_alloc, NULL)))
return_0;
new_extents = ah->new_extents;
if (segtype_is_raid(segtype) && !segtype_is_raid0(segtype))
new_extents -= ah->log_len * ah->area_multiple;
if (segtype_is_pool(segtype)) {
if (!(r = create_pool(lv, segtype, ah, stripes, stripe_size)))
stack;
} else if (!segtype_is_mirrored(segtype) && !segtype_is_raid(segtype)) {
if (!(r = lv_add_segment(ah, 0, ah->area_count, lv, segtype,
stripe_size, 0u, 0)))
stack;
} else {
/*
* For RAID, all the devices are AREA_LV.
* However, for 'mirror on stripe' using non-RAID targets,
* the mirror legs are AREA_LV while the stripes underneath
* are AREA_PV.
*/
if (segtype_is_raid(segtype))
sub_lv_count = mirrors * stripes + segtype->parity_devs;
else
sub_lv_count = mirrors;
old_extents = lv->le_count;
if (!lv->le_count &&
!(r = _lv_insert_empty_sublvs(lv, segtype, stripe_size,
region_size, sub_lv_count))) {
log_error("Failed to insert layer for %s", lv->name);
goto out;
}
if (!(r = _lv_extend_layered_lv(ah, lv, new_extents - lv->le_count, 0,
stripes, stripe_size)))
goto_out;
/*
* If we are expanding an existing mirror, we can skip the
* resync of the extension if the LV is currently in-sync
* and the LV has the LV_NOTSYNCED flag set.
*/
if (old_extents &&
segtype_is_mirrored(segtype) &&
(lv_is_not_synced(lv))) {
dm_percent_t sync_percent = DM_PERCENT_INVALID;
if (!lv_is_active_locally(lv)) {
log_error("Unable to read sync percent while LV %s "
"is not locally active.", display_lvname(lv));
/* FIXME Support --force */
if (yes_no_prompt("Do full resync of extended "
"portion of %s? [y/n]: ",
display_lvname(lv)) == 'n') {
r = 0;
goto_out;
}
goto out;
}
if (!(r = lv_mirror_percent(lv->vg->cmd, lv, 0,
&sync_percent, NULL))) {
log_error("Failed to get sync percent for %s.",
display_lvname(lv));
goto out;
} else if (sync_percent == DM_PERCENT_100) {
log_verbose("Skipping initial resync for "
"extended portion of %s",
display_lvname(lv));
init_mirror_in_sync(1);
lv->status |= LV_NOTSYNCED;
} else {
log_error("LV %s cannot be extended while it "
"is recovering.", display_lvname(lv));
r = 0;
goto out;
}
}
}
out:
alloc_destroy(ah);
return r;
}
/*
* Minimal LV renaming function.
* Metadata transaction should be made by caller.
* Assumes new_name is allocated from lv->vgmem pool.
*/
static int _rename_single_lv(struct logical_volume *lv, char *new_name)
{
struct volume_group *vg = lv->vg;
int historical;
if (lv_name_is_used_in_vg(vg, new_name, &historical)) {
log_error("%sLogical Volume \"%s\" already exists in "
"volume group \"%s\"", historical ? "historical " : "",
new_name, vg->name);
return 0;
}
if (lv_is_locked(lv)) {
log_error("Cannot rename locked LV %s", lv->name);
return 0;
}
lv->name = new_name;
return 1;
}
/*
* Rename sub LV.
* 'lv_name_old' and 'lv_name_new' are old and new names of the main LV.
*/
static int _rename_sub_lv(struct logical_volume *lv,
const char *lv_name_old, const char *lv_name_new)
{
const char *suffix;
char *new_name;
size_t len;
/*
* A sub LV name starts with lv_name_old + '_'.
* The suffix follows lv_name_old and includes '_'.
*/
len = strlen(lv_name_old);
if (strncmp(lv->name, lv_name_old, len) || lv->name[len] != '_') {
log_error("Cannot rename \"%s\": name format not recognized "
"for internal LV \"%s\"",
lv_name_old, lv->name);
return 0;
}
suffix = lv->name + len;
/*
* Compose a new name for sub lv:
* e.g. new name is "lvol1_mlog"
* if the sub LV is "lvol0_mlog" and
* a new name for main LV is "lvol1"
*/
len = strlen(lv_name_new) + strlen(suffix) + 1;
new_name = dm_pool_alloc(lv->vg->vgmem, len);
if (!new_name) {
log_error("Failed to allocate space for new name");
return 0;
}
if (dm_snprintf(new_name, len, "%s%s", lv_name_new, suffix) < 0) {
log_error("Failed to create new name");
return 0;
}
if (!validate_name(new_name)) {
log_error("Cannot rename \"%s\". New logical volume name \"%s\" is invalid.",
lv->name, new_name);
return 0;
}
/* Rename it */
return _rename_single_lv(lv, new_name);
}
/* Callback for for_each_sub_lv */
static int _rename_cb(struct logical_volume *lv, void *data)
{
struct lv_names *lv_names = (struct lv_names *) data;
return _rename_sub_lv(lv, lv_names->old, lv_names->new);
}
/*
* Loop down sub LVs and call fn for each.
* fn is responsible to log necessary information on failure.
*/
static int _for_each_sub_lv(struct logical_volume *lv, int skip_pools,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
struct logical_volume *org;
struct lv_segment *seg;
uint32_t s;
if (lv_is_cow(lv) && lv_is_virtual_origin(org = origin_from_cow(lv))) {
if (!fn(org, data))
return_0;
if (!_for_each_sub_lv(org, skip_pools, fn, data))
return_0;
}
dm_list_iterate_items(seg, &lv->segments) {
if (seg->log_lv) {
if (!fn(seg->log_lv, data))
return_0;
if (!_for_each_sub_lv(seg->log_lv, skip_pools, fn, data))
return_0;
}
if (seg->metadata_lv) {
if (!fn(seg->metadata_lv, data))
return_0;
if (!_for_each_sub_lv(seg->metadata_lv, skip_pools, fn, data))
return_0;
}
if (seg->pool_lv && !skip_pools) {
if (!fn(seg->pool_lv, data))
return_0;
if (!_for_each_sub_lv(seg->pool_lv, skip_pools, fn, data))
return_0;
}
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV)
continue;
if (!fn(seg_lv(seg, s), data))
return_0;
if (!_for_each_sub_lv(seg_lv(seg, s), skip_pools, fn, data))
return_0;
}
if (!seg_is_raid_with_meta(seg))
continue;
/* RAID has meta_areas */
for (s = 0; s < seg->area_count; s++) {
if ((seg_metatype(seg, s) != AREA_LV) || !seg_metalv(seg, s))
continue;
if (!fn(seg_metalv(seg, s), data))
return_0;
if (!_for_each_sub_lv(seg_metalv(seg, s), skip_pools, fn, data))
return_0;
}
}
return 1;
}
int for_each_sub_lv(struct logical_volume *lv,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
return _for_each_sub_lv(lv, 0, fn, data);
}
int for_each_sub_lv_except_pools(struct logical_volume *lv,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
return _for_each_sub_lv(lv, 1, fn, data);
}
/*
* Core of LV renaming routine.
* VG must be locked by caller.
*/
int lv_rename_update(struct cmd_context *cmd, struct logical_volume *lv,
const char *new_name, int update_mda)
{
struct volume_group *vg = lv->vg;
struct lv_names lv_names = { .old = lv->name };
int old_lv_is_historical = lv_is_historical(lv);
int historical;
/*
* rename is not allowed on sub LVs except for pools
* (thin pool is 'visible', but cache may not)
*/
if (!lv_is_pool(lv) &&
!lv_is_visible(lv)) {
log_error("Cannot rename internal LV \"%s\".", lv->name);
return 0;
}
if (lv_name_is_used_in_vg(vg, new_name, &historical)) {
log_error("%sLogical Volume \"%s\" already exists in "
"volume group \"%s\"", historical ? "Historical " : "",
new_name, vg->name);
return 0;
}
if (lv_is_locked(lv)) {
log_error("Cannot rename locked LV %s", lv->name);
return 0;
}
if (update_mda && !archive(vg))
return_0;
if (old_lv_is_historical) {
/*
* Historical LVs have neither sub LVs nor any
* devices to reload, so just update metadata.
*/
lv->this_glv->historical->name = lv->name = new_name;
if (update_mda &&
(!vg_write(vg) || !vg_commit(vg)))
return_0;
} else {
if (!(lv_names.new = dm_pool_strdup(cmd->mem, new_name))) {
log_error("Failed to allocate space for new name.");
return 0;
}
/* rename sub LVs */
if (!for_each_sub_lv_except_pools(lv, _rename_cb, (void *) &lv_names))
return_0;
/* rename main LV */
lv->name = lv_names.new;
if (lv_is_cow(lv))
lv = origin_from_cow(lv);
if (update_mda && !lv_update_and_reload((struct logical_volume *)lv_lock_holder(lv)))
return_0;
}
return 1;
}
/*
* Core of LV renaming routine.
* VG must be locked by caller.
*/
int lv_rename(struct cmd_context *cmd, struct logical_volume *lv,
const char *new_name)
{
return lv_rename_update(cmd, lv, new_name, 1);
}
/*
* Core lv resize code
*/
#define SIZE_BUF 128
/* TODO: unify stripe size validation across source code */
static int _validate_stripesize(const struct volume_group *vg,
struct lvresize_params *lp)
{
if (lp->stripe_size > (STRIPE_SIZE_LIMIT * 2)) {
log_error("Stripe size cannot be larger than %s.",
display_size(vg->cmd, (uint64_t) STRIPE_SIZE_LIMIT));
return 0;
}
if (lp->stripe_size > vg->extent_size) {
log_print_unless_silent("Reducing stripe size %s to maximum, "
"physical extent size %s.",
display_size(vg->cmd, lp->stripe_size),
display_size(vg->cmd, vg->extent_size));
lp->stripe_size = vg->extent_size;
}
if (!is_power_of_2(lp->stripe_size)) {
log_error("Stripe size must be power of 2.");
return 0;
}
return 1;
}
static int _request_confirmation(const struct logical_volume *lv,
const struct lvresize_params *lp)
{
const struct volume_group *vg = lv->vg;
struct lvinfo info = { 0 };
if (!lv_info(vg->cmd, lv, 0, &info, 1, 0) && driver_version(NULL, 0)) {
log_error("lv_info failed: aborting.");
return 0;
}
if (lp->resizefs) {
if (!info.exists) {
log_error("Logical volume %s must be activated "
"before resizing filesystem.",
display_lvname(lv));
return 0;
}
return 1;
}
if (!info.exists)
return 1;
log_warn("WARNING: Reducing active%s logical volume to %s.",
info.open_count ? " and open" : "",
display_size(vg->cmd, (uint64_t) lp->extents * vg->extent_size));
log_warn("THIS MAY DESTROY YOUR DATA (filesystem etc.)");
if (!lp->force) {
if (yes_no_prompt("Do you really want to reduce %s? [y/n]: ",
display_lvname(lv)) == 'n') {
log_error("Logical volume %s NOT reduced.",
display_lvname(lv));
return 0;
}
}
return 1;
}
enum fsadm_cmd_e { FSADM_CMD_CHECK, FSADM_CMD_RESIZE };
#define FSADM_CMD "fsadm"
#define FSADM_CMD_MAX_ARGS 6
#define FSADM_CHECK_FAILS_FOR_MOUNTED 3 /* shell exist status code */
/*
* FSADM_CMD --dry-run --verbose --force check lv_path
* FSADM_CMD --dry-run --verbose --force resize lv_path size
*/
static int _fsadm_cmd(enum fsadm_cmd_e fcmd,
struct logical_volume *lv,
uint32_t extents,
int force,
int *status)
{
struct volume_group *vg = lv->vg;
struct cmd_context *cmd = vg->cmd;
char lv_path[PATH_MAX];
char size_buf[SIZE_BUF];
const char *argv[FSADM_CMD_MAX_ARGS + 2];
unsigned i = 0;
argv[i++] = FSADM_CMD;
if (test_mode())
argv[i++] = "--dry-run";
if (verbose_level() >= _LOG_NOTICE)
argv[i++] = "--verbose";
if (force)
argv[i++] = "--force";
argv[i++] = (fcmd == FSADM_CMD_RESIZE) ? "resize" : "check";
if (status)
*status = -1;
if (dm_snprintf(lv_path, sizeof(lv_path), "%s%s/%s", cmd->dev_dir,
vg->name, lv->name) < 0) {
log_error("Couldn't create LV path for %s.", display_lvname(lv));
return 0;
}
argv[i++] = lv_path;
if (fcmd == FSADM_CMD_RESIZE) {
if (dm_snprintf(size_buf, sizeof(size_buf), FMTu64 "K",
(uint64_t) extents * (vg->extent_size / 2)) < 0) {
log_error("Couldn't generate new LV size string.");
return 0;
}
argv[i++] = size_buf;
}
argv[i] = NULL;
return exec_cmd(cmd, argv, status, 1);
}
static uint32_t _adjust_amount(dm_percent_t percent, int policy_threshold, int policy_amount)
{
if (!(DM_PERCENT_0 < percent && percent <= DM_PERCENT_100) ||
percent <= (policy_threshold * DM_PERCENT_1))
return 0; /* nothing to do */
/*
* Evaluate the minimal amount needed to get bellow threshold.
* Keep using DM_PERCENT_1 units for better precision.
* Round-up to needed percentage value
*/
percent = (percent / policy_threshold + (DM_PERCENT_1 - 1) / 100) / (DM_PERCENT_1 / 100) - 100;
/* Use it if current policy amount is smaller */
return (policy_amount < percent) ? (uint32_t) percent : (uint32_t) policy_amount;
}
static int _lvresize_adjust_policy(const struct logical_volume *lv,
uint32_t *amount, uint32_t *meta_amount)
{
struct cmd_context *cmd = lv->vg->cmd;
dm_percent_t percent;
int policy_threshold, policy_amount;
*amount = *meta_amount = 0;
if (lv_is_thin_pool(lv)) {
policy_threshold =
find_config_tree_int(cmd, activation_thin_pool_autoextend_threshold_CFG,
lv_config_profile(lv));
policy_amount =
find_config_tree_int(cmd, activation_thin_pool_autoextend_percent_CFG,
lv_config_profile(lv));
if (policy_threshold < 50) {
log_warn("WARNING: Thin pool autoextend threshold %d%% is set below "
"minimum supported 50%%.", policy_threshold);
policy_threshold = 50;
}
} else {
policy_threshold =
find_config_tree_int(cmd, activation_snapshot_autoextend_threshold_CFG, NULL);
policy_amount =
find_config_tree_int(cmd, activation_snapshot_autoextend_percent_CFG, NULL);
if (policy_threshold < 50) {
log_warn("WARNING: Snapshot autoextend threshold %d%% is set bellow "
"minimal supported value 50%%.", policy_threshold);
policy_threshold = 50;
}
}
if (policy_threshold >= 100)
return 1; /* nothing to do */
if (!policy_amount) {
log_error("Can't extend %s with %s autoextend percent set to 0%%.",
display_lvname(lv), first_seg(lv)->segtype->name);
return 0;
}
if (!lv_is_active_locally(lv)) {
log_error("Can't read state of locally inactive LV %s.",
display_lvname(lv));
return 0;
}
if (lv_is_thin_pool(lv)) {
if (!lv_thin_pool_percent(lv, 1, &percent))
return_0;
*meta_amount = _adjust_amount(percent, policy_threshold, policy_amount);
if (!lv_thin_pool_percent(lv, 0, &percent))
return_0;
} else {
if (!lv_snapshot_percent(lv, &percent))
return_0;
}
*amount = _adjust_amount(percent, policy_threshold, policy_amount);
return 1;
}
static uint32_t lvseg_get_stripes(struct lv_segment *seg, uint32_t *stripesize)
{
uint32_t s;
struct lv_segment *seg_mirr;
/* If segment mirrored, check if images are striped */
if (seg_is_mirrored(seg))
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV)
continue;
seg_mirr = first_seg(seg_lv(seg, s));
if (seg_is_striped(seg_mirr)) {
seg = seg_mirr;
break;
}
}
if (seg_is_striped(seg)) {
*stripesize = seg->stripe_size;
return seg->area_count;
}
*stripesize = 0;
return 0;
}
static int _lvresize_check(struct logical_volume *lv,
struct lvresize_params *lp)
{
struct volume_group *vg = lv->vg;
if (lv_is_external_origin(lv)) {
/*
* Since external-origin can be activated read-only,
* there is no way to use extended areas.
*/
log_error("Cannot resize external origin logical volume %s.",
display_lvname(lv));
return 0;
}
if (lv_is_raid_image(lv) || lv_is_raid_metadata(lv)) {
log_error("Cannot resize a RAID %s directly",
(lv->status & RAID_IMAGE) ? "image" :
"metadata area");
return 0;
}
if (lv_is_raid_with_tracking(lv)) {
log_error("Cannot resize logical volume %s while it is "
"tracking a split image.", display_lvname(lv));
return 0;
}
if (lp->use_policies && !lv_is_cow(lv) && !lv_is_thin_pool(lv)) {
log_error("Policy-based resize is supported only for snapshot and thin pool volumes.");
return 0;
}
if (!lv_is_visible(lv) &&
!lv_is_thin_pool_metadata(lv) &&
!lv_is_lockd_sanlock_lv(lv)) {
log_error("Can't resize internal logical volume %s.", display_lvname(lv));
return 0;
}
if (lv_is_locked(lv)) {
log_error("Can't resize locked logical volume %s.", display_lvname(lv));
return 0;
}
if (lv_is_converting(lv)) {
log_error("Can't resize logical volume %s while "
"lvconvert in progress.", display_lvname(lv));
return 0;
}
if (!lv_is_thin_pool(lv) && lp->poolmetadata_size) {
log_error("--poolmetadatasize can be used only with thin pools.");
return 0;
}
if (lp->stripe_size) {
if (!(vg->fid->fmt->features & FMT_SEGMENTS)) {
log_print_unless_silent("Varied stripesize not supported. Ignoring.");
lp->stripe_size = lp->stripes = 0;
} else if (!_validate_stripesize(vg, lp))
return_0;
}
if (lp->resizefs &&
(lv_is_thin_pool(lv) ||
lv_is_thin_pool_data(lv) ||
lv_is_thin_pool_metadata(lv) ||
lv_is_pool_metadata_spare(lv) ||
lv_is_lockd_sanlock_lv(lv))) {
log_print_unless_silent("Ignoring --resizefs as volume %s does not have a filesystem.",
display_lvname(lv));
lp->resizefs = 0;
}
if (lp->stripes &&
!(vg->fid->fmt->features & FMT_SEGMENTS)) {
log_print_unless_silent("Varied striping not supported. Ignoring.");
lp->stripes = 0;
}
if (lp->mirrors &&
!(vg->fid->fmt->features & FMT_SEGMENTS)) {
log_print_unless_silent("Mirrors not supported. Ignoring.");
lp->mirrors = 0;
}
return 1;
}
static int _lvresize_adjust_size(struct volume_group *vg,
uint64_t size, sign_t sign,
uint32_t *extents)
{
uint32_t extent_size = vg->extent_size;
uint32_t adjust;
/*
* First adjust to an exact multiple of extent size.
* When changing to an absolute size, we round that size up.
* When extending by a relative amount we round that amount up.
* When reducing by a relative amount we remove at most that amount.
*/
if ((adjust = (size % extent_size))) {
if (sign != SIGN_MINUS) /* not reducing */
size += extent_size;
size -= adjust;
log_print_unless_silent("Rounding size to boundary between physical extents: %s.",
display_size(vg->cmd, size));
}
*extents = size / extent_size;
return 1;
}
/*
* If percent options were used, convert them into actual numbers of extents.
*/
static int _lvresize_extents_from_percent(const struct logical_volume *lv,
struct lvresize_params *lp,
struct dm_list *pvh)
{
const struct volume_group *vg = lv->vg;
uint32_t pv_extent_count;
uint32_t old_extents = lp->extents;
switch (lp->percent) {
case PERCENT_VG:
lp->extents = percent_of_extents(lp->extents, vg->extent_count,
(lp->sign != SIGN_MINUS));
break;
case PERCENT_FREE:
lp->extents = percent_of_extents(lp->extents, vg->free_count,
(lp->sign != SIGN_MINUS));
break;
case PERCENT_LV:
lp->extents = percent_of_extents(lp->extents, lv->le_count,
(lp->sign != SIGN_MINUS));
break;
case PERCENT_PVS:
if (pvh != &vg->pvs) {
pv_extent_count = pv_list_extents_free(pvh);
lp->extents = percent_of_extents(lp->extents, pv_extent_count,
(lp->sign != SIGN_MINUS));
} else
lp->extents = percent_of_extents(lp->extents, vg->extent_count,
(lp->sign != SIGN_MINUS));
break;
case PERCENT_ORIGIN:
if (!lv_is_cow(lv)) {
log_error("Specified LV does not have an origin LV.");
return 0;
}
lp->extents = percent_of_extents(lp->extents, origin_from_cow(lv)->le_count,
(lp->sign != SIGN_MINUS));
break;
case PERCENT_NONE:
return 1; /* Nothing to do */
default:
log_error(INTERNAL_ERROR "Unsupported percent type %u.", lp->percent);
return 0;
}
if (lp->percent == PERCENT_VG || lp->percent == PERCENT_FREE || lp->percent == PERCENT_PVS)
lp->extents_are_pes = 1;
if (lp->sign == SIGN_NONE && (lp->percent == PERCENT_VG || lp->percent == PERCENT_FREE || lp->percent == PERCENT_PVS))
lp->approx_alloc = 1;
if (lp->sign == SIGN_PLUS && lp->percent == PERCENT_FREE)
lp->approx_alloc = 1;
log_verbose("Converted %" PRIu32 "%%%s into %s%" PRIu32 " %s extents.", old_extents, get_percent_string(lp->percent),
lp->approx_alloc ? "at most " : "", lp->extents, lp->extents_are_pes ? "physical" : "logical");
return 1;
}
static int _add_pes(struct logical_volume *lv, void *data)
{
uint32_t *pe_total = data;
struct lv_segment *seg;
uint32_t s;
dm_list_iterate_items(seg, &lv->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_PV)
continue;
*pe_total += seg_pvseg(seg, s)->len;
}
}
return 1;
}
static uint32_t _lv_pe_count(struct logical_volume *lv)
{
uint32_t pe_total = 0;
/* Top-level LV first */
if (!_add_pes(lv, &pe_total))
stack;
/* Any sub-LVs */
if (!for_each_sub_lv(lv, _add_pes, &pe_total))
stack;
return pe_total;
}
/* FIXME Avoid having variables like lp->extents mean different things at different places */
static int _lvresize_adjust_extents(struct logical_volume *lv,
struct lvresize_params *lp,
struct dm_list *pvh)
{
struct volume_group *vg = lv->vg;
struct cmd_context *cmd = vg->cmd;
uint32_t logical_extents_used = 0;
uint32_t physical_extents_used = 0;
uint32_t seg_stripes = 0, seg_stripesize = 0;
uint32_t seg_mirrors = 0;
struct lv_segment *seg, *seg_last;
uint32_t sz, str;
uint32_t seg_logical_extents;
uint32_t seg_physical_extents;
uint32_t area_multiple;
uint32_t stripes_extents;
uint32_t size_rest;
uint32_t existing_logical_extents = lv->le_count;
uint32_t existing_physical_extents, saved_existing_physical_extents;
uint32_t existing_extents;
uint32_t seg_size = 0;
uint32_t new_extents;
int reducing = 0;
seg_last = last_seg(lv);
/* FIXME Support LVs with mixed segment types */
if (lp->segtype && (lp->segtype != seg_last->segtype)) {
log_error("VolumeType does not match (%s).", lp->segtype->name);
return 0;
}
/* Use segment type of last segment */
lp->segtype = seg_last->segtype;
/* For virtual devices, just pretend the physical size matches. */
existing_physical_extents = saved_existing_physical_extents = _lv_pe_count(lv);
if (!existing_physical_extents) {
existing_physical_extents = lv->le_count;
lp->extents_are_pes = 0;
}
existing_extents = (lp->extents_are_pes)
? existing_physical_extents : existing_logical_extents;
/* Initial decision on whether we are extending or reducing */
if (lp->sign == SIGN_MINUS ||
(lp->sign == SIGN_NONE && (lp->extents < existing_extents)))
reducing = 1;
/* If extending, find properties of last segment */
if (!reducing) {
seg_mirrors = seg_is_mirrored(seg_last) ? lv_mirror_count(lv) : 0;
if (!lp->mirrors && seg_mirrors) {
log_print_unless_silent("Extending %" PRIu32 " mirror images.", seg_mirrors);
lp->mirrors = seg_mirrors;
} else if ((lp->mirrors || seg_mirrors) && (lp->mirrors != seg_mirrors)) {
log_error("Cannot vary number of mirrors in LV yet.");
return 0;
}
if (seg_is_raid10(seg_last)) {
if (!seg_mirrors) {
log_error(INTERNAL_ERROR "Missing mirror segments for %s.",
display_lvname(lv));
return 0;
}
/* FIXME Warn if command line values are being overridden? */
lp->stripes = seg_last->area_count / seg_mirrors;
lp->stripe_size = seg_last->stripe_size;
} else if (!(lp->stripes == 1 || (lp->stripes > 1 && lp->stripe_size))) {
/* If extending, find stripes, stripesize & size of last segment */
/* FIXME Don't assume mirror seg will always be AREA_LV */
/* FIXME We will need to support resize for metadata LV as well,
* and data LV could be any type (i.e. mirror)) */
dm_list_iterate_items(seg, seg_mirrors ? &seg_lv(seg_last, 0)->segments : &lv->segments) {
/* Allow through "striped" and RAID 4/5/6/10 */
if (!seg_is_striped(seg) &&
(!seg_is_raid(seg) || seg_is_mirrored(seg)) &&
!seg_is_raid10(seg))
continue;
sz = seg->stripe_size;
str = seg->area_count - lp->segtype->parity_devs;
if ((seg_stripesize && seg_stripesize != sz &&
sz && !lp->stripe_size) ||
(seg_stripes && seg_stripes != str && !lp->stripes)) {
log_error("Please specify number of "
"stripes (-i) and stripesize (-I)");
return 0;
}
seg_stripesize = sz;
seg_stripes = str;
}
if (!lp->stripes)
lp->stripes = seg_stripes;
else if (seg_is_raid(first_seg(lv)) &&
(lp->stripes != seg_stripes)) {
log_error("Unable to extend \"%s\" segment type with different number of stripes.",
lvseg_name(first_seg(lv)));
return 0;
}
if (!lp->stripe_size && lp->stripes > 1) {
if (seg_stripesize) {
log_print_unless_silent("Using stripesize of last segment %s",
display_size(cmd, (uint64_t) seg_stripesize));
lp->stripe_size = seg_stripesize;
} else {
lp->stripe_size =
find_config_tree_int(cmd, metadata_stripesize_CFG, NULL) * 2;
log_print_unless_silent("Using default stripesize %s",
display_size(cmd, (uint64_t) lp->stripe_size));
}
}
}
if (lp->stripes > 1 && !lp->stripe_size) {
log_error("Stripesize for striped segment should not be 0!");
return 0;
}
/* Determine the amount to extend by */
if (lp->sign == SIGN_PLUS)
seg_size = lp->extents;
else
seg_size = lp->extents - existing_extents;
/* Convert PEs to LEs */
if (lp->extents_are_pes && !seg_is_striped(seg_last) && !seg_is_virtual(seg_last)) {
area_multiple = _calc_area_multiple(seg_last->segtype, seg_last->area_count, 0);
seg_size = seg_size * area_multiple / (seg_last->area_count - seg_last->segtype->parity_devs);
seg_size = (seg_size / area_multiple) * area_multiple;
}
if (seg_size >= (MAX_EXTENT_COUNT - existing_logical_extents)) {
log_error("Unable to extend %s by %u logical extents: exceeds limit (%u).",
display_lvname(lv), seg_size, MAX_EXTENT_COUNT);
return 0;
}
lp->extents = existing_logical_extents + seg_size;
/* Don't allow a cow to grow larger than necessary. */
if (lv_is_cow(lv)) {
logical_extents_used = cow_max_extents(origin_from_cow(lv), find_snapshot(lv)->chunk_size);
if (logical_extents_used < lp->extents) {
log_print_unless_silent("Reached maximum COW size %s (%" PRIu32 " extents).",
display_size(vg->cmd, (uint64_t) vg->extent_size * logical_extents_used),
logical_extents_used);
lp->extents = logical_extents_used; // CHANGES lp->extents
seg_size = lp->extents - existing_logical_extents; // Recalculate
if (lp->extents == existing_logical_extents) {
/* Signal that normal resizing is not required */
return 1;
}
}
}
} else { /* If reducing, find stripes, stripesize & size of last segment */
if (lp->stripes || lp->stripe_size || lp->mirrors)
log_print_unless_silent("Ignoring stripes, stripesize and mirrors "
"arguments when reducing.");
if (lp->sign == SIGN_MINUS) {
if (lp->extents >= existing_extents) {
log_error("Unable to reduce %s below 1 extent.",
display_lvname(lv));
return 0;
}
new_extents = existing_extents - lp->extents;
} else
new_extents = lp->extents;
dm_list_iterate_items(seg, &lv->segments) {
seg_logical_extents = seg->len;
seg_physical_extents = seg->area_len * seg->area_count; /* FIXME Also metadata, cow etc. */
/* Check for underlying stripe sizes */
seg_stripes = lvseg_get_stripes(seg, &seg_stripesize);
if (seg_is_mirrored(seg))
seg_mirrors = lv_mirror_count(seg->lv);
else
seg_mirrors = 0;
/* Have we reached the final segment of the new LV? */
if (lp->extents_are_pes) {
if (new_extents <= physical_extents_used + seg_physical_extents) {
seg_size = new_extents - physical_extents_used;
if (seg_mirrors)
seg_size /= seg_mirrors;
lp->extents = logical_extents_used + seg_size;
break;
}
} else if (new_extents <= logical_extents_used + seg_logical_extents) {
seg_size = new_extents - logical_extents_used;
lp->extents = new_extents;
break;
}
logical_extents_used += seg_logical_extents;
physical_extents_used += seg_physical_extents;
}
lp->stripe_size = seg_stripesize;
lp->stripes = seg_stripes;
lp->mirrors = seg_mirrors;
}
/* At this point, lp->extents should hold the correct NEW logical size required. */
if (!lp->extents) {
log_error("New size of 0 not permitted.");
return 0;
}
if (lp->extents == existing_logical_extents) {
if (!lp->resizefs) {
log_error("New size (%d extents) matches existing size (%d extents).",
lp->extents, existing_logical_extents);
return 0;
}
lp->resize = LV_EXTEND; /* lets pretend zero size extension */
}
/* Perform any rounding to produce complete stripes. */
if (lp->stripes > 1) {
if (lp->stripe_size < STRIPE_SIZE_MIN) {
log_error("Invalid stripe size %s.",
display_size(cmd, (uint64_t) lp->stripe_size));
return 0;
}
/* Segment size in extents must be divisible by stripes */
stripes_extents = lp->stripes;
if (lp->stripe_size > vg->extent_size)
/* Strip size is bigger then extent size needs more extents */
stripes_extents *= (lp->stripe_size / vg->extent_size);
size_rest = seg_size % stripes_extents;
/* Round toward the original size. */
if (size_rest &&
((lp->extents < existing_logical_extents) ||
!lp->percent ||
(vg->free_count >= (lp->extents - existing_logical_extents - size_rest +
stripes_extents)))) {
log_print_unless_silent("Rounding size (%d extents) up to stripe "
"boundary size for segment (%d extents).",
lp->extents,
lp->extents - size_rest + stripes_extents);
lp->extents = lp->extents - size_rest + stripes_extents;
} else if (size_rest) {
log_print_unless_silent("Rounding size (%d extents) down to stripe "
"boundary size for segment (%d extents)",
lp->extents, lp->extents - size_rest);
lp->extents = lp->extents - size_rest;
}
}
/* Final sanity checking */
if (lp->extents < existing_logical_extents) {
if (lp->resize == LV_EXTEND) {
log_error("New size given (%d extents) not larger "
"than existing size (%d extents)",
lp->extents, existing_logical_extents);
return 0;
}
lp->resize = LV_REDUCE;
} else if (lp->extents > existing_logical_extents) {
if (lp->resize == LV_REDUCE) {
log_error("New size given (%d extents) not less than "
"existing size (%d extents)", lp->extents,
existing_logical_extents);
return 0;
}
lp->resize = LV_EXTEND;
} else if ((lp->extents == existing_logical_extents) && !lp->use_policies) {
if (!lp->resizefs) {
log_error("New size (%d extents) matches existing size "
"(%d extents)", lp->extents, existing_logical_extents);
return 0;
}
lp->resize = LV_EXTEND;
}
/*
* Has the user specified that they would like the additional
* extents of a mirror not to have an initial sync?
*/
if ((lp->extents > existing_logical_extents)) {
if (seg_is_mirrored(first_seg(lv)) && lp->nosync)
lv->status |= LV_NOTSYNCED;
}
log_debug("New size for %s: %" PRIu32 ". Existing logical extents: %" PRIu32 " / physical extents: %" PRIu32 ".",
display_lvname(lv), lp->extents, existing_logical_extents, saved_existing_physical_extents);
return 1;
}
static int _lvresize_check_type(const struct logical_volume *lv,
const struct lvresize_params *lp)
{
if (lv_is_origin(lv)) {
if (lp->resize == LV_REDUCE) {
log_error("Snapshot origin volumes cannot be reduced in size yet.");
return 0;
}
if (lv_is_active(lv)) {
log_error("Snapshot origin volumes can be resized "
"only while inactive: try lvchange -an.");
return 0;
}
}
if (lp->resize == LV_REDUCE) {
if (lv_is_thin_pool_data(lv)) {
log_error("Thin pool volumes %s cannot be reduced in size yet.",
display_lvname(lv));
return 0;
}
if (lv_is_thin_pool_metadata(lv)) {
log_error("Thin pool metadata volumes cannot be reduced.");
return 0;
}
} else if (lp->resize == LV_EXTEND) {
if (lv_is_thin_pool_metadata(lv) &&
!thin_pool_feature_supported(find_pool_seg(first_seg(lv))->lv, THIN_FEATURE_METADATA_RESIZE)) {
log_error("Support for online metadata resize of %s not detected.",
display_lvname(lv));
return 0;
}
/* Validate thin target supports bigger size of thin volume then external origin */
if (lv_is_thin_volume(lv) && first_seg(lv)->external_lv &&
(lv->size > first_seg(lv)->external_lv->size) &&
!thin_pool_feature_supported(first_seg(lv)->pool_lv, THIN_FEATURE_EXTERNAL_ORIGIN_EXTEND)) {
log_error("Thin target does not support external origin smaller then thin volume.");
return 0;
}
}
return 1;
}
static int _lvresize_volume(struct logical_volume *lv,
struct lvresize_params *lp,
struct dm_list *pvh)
{
struct volume_group *vg = lv->vg;
struct cmd_context *cmd = vg->cmd;
uint32_t old_extents;
alloc_policy_t alloc = lp->alloc ? : lv->alloc;
old_extents = lv->le_count;
log_verbose("%sing logical volume %s to %s%s",
(lp->resize == LV_REDUCE) ? "Reduc" : "Extend",
display_lvname(lv), lp->approx_alloc ? "up to " : "",
display_size(cmd, (uint64_t) lp->extents * vg->extent_size));
if (lp->resize == LV_REDUCE) {
if (!lv_reduce(lv, lv->le_count - lp->extents))
return_0;
} else if ((lp->extents > lv->le_count) && /* Ensure we extend */
!lv_extend(lv, lp->segtype,
lp->stripes, lp->stripe_size,
lp->mirrors, first_seg(lv)->region_size,
lp->extents - lv->le_count,
pvh, alloc, lp->approx_alloc))
return_0;
/* Check for over provisioning only when lv_extend() passed,
* ATM this check does not fail */
else if (!pool_check_overprovisioning(lv))
return_0;
if (old_extents == lv->le_count)
log_print_unless_silent("Size of logical volume %s unchanged from %s (%" PRIu32 " extents).",
display_lvname(lv),
display_size(cmd, (uint64_t) old_extents * vg->extent_size), old_extents);
else {
lp->size_changed = 1;
log_print_unless_silent("Size of logical volume %s changed from %s (%" PRIu32 " extents) to %s (%" PRIu32 " extents).",
display_lvname(lv),
display_size(cmd, (uint64_t) old_extents * vg->extent_size), old_extents,
display_size(cmd, (uint64_t) lv->le_count * vg->extent_size), lv->le_count);
}
return 1;
}
static int _lvresize_prepare(struct logical_volume **lv,
struct lvresize_params *lp,
struct dm_list *pvh)
{
struct volume_group *vg = (*lv)->vg;
if (lv_is_thin_pool(*lv))
*lv = seg_lv(first_seg(*lv), 0); /* switch to data LV */
/* Resolve extents from size */
if (lp->size && !_lvresize_adjust_size(vg, lp->size, lp->sign, &lp->extents))
return_0;
else if (lp->extents && !_lvresize_extents_from_percent(*lv, lp, pvh))
return_0;
if (!_lvresize_adjust_extents(*lv, lp, pvh))
return_0;
if (!_lvresize_check_type(*lv, lp))
return_0;
return 1;
}
/* Set aux LV properties, we can't use those from command line */
static struct logical_volume *_lvresize_setup_aux(struct logical_volume *lv,
struct lvresize_params *lp)
{
struct lv_segment *mseg = last_seg(lv);
lp->alloc = lv->alloc;
lp->mirrors = seg_is_mirrored(mseg) ? lv_mirror_count(lv) : 0;
lp->resizefs = 0;
lp->stripes = lp->mirrors ? mseg->area_count / lp->mirrors : 0;
lp->stripe_size = mseg->stripe_size;
return lv;
}
int lv_resize(struct logical_volume *lv,
struct lvresize_params *lp,
struct dm_list *pvh)
{
struct volume_group *vg = lv->vg;
struct cmd_context *cmd = vg->cmd;
struct logical_volume *lock_lv = (struct logical_volume*) lv_lock_holder(lv);
struct logical_volume *aux_lv = NULL; /* Note: aux_lv never resizes fs */
struct lvresize_params aux_lp;
int activated = 0;
int ret = 0;
int status;
if (!_lvresize_check(lv, lp))
return_0;
if (lp->use_policies) {
lp->extents = 0;
lp->sign = SIGN_PLUS;
lp->percent = PERCENT_LV;
aux_lp = *lp;
if (!_lvresize_adjust_policy(lv, &lp->extents, &aux_lp.extents))
return_0;
if (!lp->extents) {
if (!aux_lp.extents)
return 1; /* Nothing to do */
/* Resize thin-pool metadata as mainlv */
lv = first_seg(lv)->metadata_lv; /* metadata LV */
lp->extents = aux_lp.extents;
} else if (aux_lp.extents) {
/* Also resize thin-pool metadata */
aux_lv = _lvresize_setup_aux(first_seg(lv)->metadata_lv, &aux_lp);
}
} else if (lp->poolmetadata_size) {
if (!lp->extents && !lp->size) {
/* When only --poolmetadatasize given and not --size
* switch directly to resize metadata LV */
lv = first_seg(lv)->metadata_lv;
lp->size = lp->poolmetadata_size;
lp->sign = lp->poolmetadata_sign;
} else {
aux_lp = *lp;
aux_lv = _lvresize_setup_aux(first_seg(lv)->metadata_lv, &aux_lp);
aux_lp.size = lp->poolmetadata_size;
aux_lp.sign = lp->poolmetadata_sign;
}
}
if (aux_lv && !_lvresize_prepare(&aux_lv, &aux_lp, pvh))
return_0;
/* Always should have lp->size or lp->extents */
if (!_lvresize_prepare(&lv, lp, pvh))
return_0;
if (((lp->resize == LV_REDUCE) ||
(aux_lv && aux_lp.resize == LV_REDUCE)) &&
(pvh != &vg->pvs))
log_print_unless_silent("Ignoring PVs on command line when reducing.");
/* Request confirmation before operations that are often mistakes. */
/* aux_lv never resize fs */
if ((lp->resizefs || (lp->resize == LV_REDUCE)) &&
!_request_confirmation(lv, lp))
return_0;
if (lp->resizefs) {
if (!lp->nofsck &&
!_fsadm_cmd(FSADM_CMD_CHECK, lv, 0, lp->force, &status)) {
if (status != FSADM_CHECK_FAILS_FOR_MOUNTED) {
log_error("Filesystem check failed.");
return 0;
}
/* some filesystems support online resize */
}
/* FIXME forks here */
if ((lp->resize == LV_REDUCE) &&
!_fsadm_cmd(FSADM_CMD_RESIZE, lv, lp->extents, lp->force, NULL)) {
log_error("Filesystem resize failed.");
return 0;
}
}
if (!lp->extents && (!aux_lv || !aux_lp.extents)) {
lp->extents = lv->le_count;
goto out; /* Nothing to do */
}
if (lv_is_thin_pool(lock_lv) && /* Lock holder is thin-pool */
!lv_is_active(lock_lv)) {
if (!activation()) {
log_error("Cannot resize %s without using "
"device-mapper kernel driver.",
display_lvname(lock_lv));
return 0;
}
/*
* Active 'hidden' -tpool can be waiting for resize, but the
* pool LV itself might be inactive.
* Here plain suspend/resume would not work.
* So active temporarily pool LV (with on disk metadata)
* then use suspend and resume and deactivate pool LV,
* instead of searching for an active thin volume.
*/
if (!activate_lv_excl(cmd, lock_lv)) {
log_error("Failed to activate %s.", display_lvname(lock_lv));
return 0;
}
activated = 1;
}
/*
* If the LV is locked from activation, this lock call is a no-op.
* Otherwise, this acquires a transient lock on the lv (not PERSISTENT).
*/
if (!lockd_lv(cmd, lock_lv, "ex", 0))
return_0;
if (!archive(vg))
return_0;
if (aux_lv) {
if (!_lvresize_volume(aux_lv, &aux_lp, pvh))
goto_bad;
/* store vg on disk(s) */
if (aux_lp.size_changed && !lv_update_and_reload(lock_lv))
goto_bad;
}
if (!_lvresize_volume(lv, lp, pvh))
goto_bad;
/* store vg on disk(s) */
if (!lp->size_changed)
goto out; /* No table reload needed */
if (!lv_update_and_reload(lock_lv))
goto_bad;
if (lv_is_cow_covering_origin(lv))
if (!monitor_dev_for_events(cmd, lv, 0, 0))
stack;
if (lv_is_thin_pool(lock_lv)) {
/* Update lvm pool metadata (drop messages). */
if (!update_pool_lv(lock_lv, 0))
goto_bad;
backup(vg);
}
out:
log_print_unless_silent("Logical volume %s successfully resized.",
display_lvname(lv));
if (lp->resizefs && (lp->resize == LV_EXTEND) &&
!_fsadm_cmd(FSADM_CMD_RESIZE, lv, lp->extents, lp->force, NULL))
return_0;
ret = 1;
bad:
if (activated && !deactivate_lv(cmd, lock_lv)) {
log_error("Problem deactivating %s.", display_lvname(lock_lv));
ret = 0;
}
return ret;
}
char *generate_lv_name(struct volume_group *vg, const char *format,
char *buffer, size_t len)
{
struct lv_list *lvl;
struct glv_list *glvl;
int high = -1, i;
dm_list_iterate_items(lvl, &vg->lvs) {
if (sscanf(lvl->lv->name, format, &i) != 1)
continue;
if (i > high)
high = i;
}
dm_list_iterate_items(glvl, &vg->historical_lvs) {
if (sscanf(glvl->glv->historical->name, format, &i) != 1)
continue;
if (i > high)
high = i;
}
if (dm_snprintf(buffer, len, format, high + 1) < 0)
return NULL;
return buffer;
}
struct generic_logical_volume *get_or_create_glv(struct dm_pool*mem, struct logical_volume *lv, int *glv_created)
{
struct generic_logical_volume *glv;
if (!(glv = lv->this_glv)) {
if (!(glv = dm_pool_zalloc(mem, sizeof(struct generic_logical_volume)))) {
log_error("Failed to allocate generic logical volume structure.");
return NULL;
}
glv->live = lv;
lv->this_glv = glv;
if (glv_created)
*glv_created = 1;
} else if (glv_created)
*glv_created = 0;
return glv;
}
struct glv_list *get_or_create_glvl(struct dm_pool *mem, struct logical_volume *lv, int *glv_created)
{
struct glv_list *glvl;
if (!(glvl = dm_pool_zalloc(mem, sizeof(struct glv_list)))) {
log_error("Failed to allocate generic logical volume list item.");
return NULL;
}
if (!(glvl->glv = get_or_create_glv(mem, lv, glv_created))) {
dm_pool_free(mem, glvl);
return_NULL;
}
return glvl;
}
int add_glv_to_indirect_glvs(struct dm_pool *mem,
struct generic_logical_volume *origin_glv,
struct generic_logical_volume *glv)
{
struct glv_list *glvl;
if (!(glvl = dm_pool_zalloc(mem, sizeof(struct glv_list)))) {
log_error("Failed to allocate generic volume list item "
"for indirect glv %s", glv->is_historical ? glv->historical->name
: glv->live->name);
return 0;
}
glvl->glv = glv;
if (glv->is_historical)
glv->historical->indirect_origin = origin_glv;
else
first_seg(glv->live)->indirect_origin = origin_glv;
if (origin_glv) {
if (origin_glv->is_historical)
dm_list_add(&origin_glv->historical->indirect_glvs, &glvl->list);
else
dm_list_add(&origin_glv->live->indirect_glvs, &glvl->list);
}
return 1;
}
int remove_glv_from_indirect_glvs(struct generic_logical_volume *origin_glv,
struct generic_logical_volume *glv)
{
struct glv_list *glvl, *tglvl;
struct dm_list *list = origin_glv->is_historical ? &origin_glv->historical->indirect_glvs
: &origin_glv->live->indirect_glvs;
dm_list_iterate_items_safe(glvl, tglvl, list) {
if (glvl->glv != glv)
continue;
dm_list_del(&glvl->list);
if (glvl->glv->is_historical)
glvl->glv->historical->indirect_origin = NULL;
else
first_seg(glvl->glv->live)->indirect_origin = NULL;
return 1;
}
log_error(INTERNAL_ERROR "%s logical volume %s is not a user of %s.",
glv->is_historical ? "historical" : "Live",
glv->is_historical ? glv->historical->name : glv->live->name,
origin_glv->is_historical ? origin_glv->historical->name : origin_glv->live->name);
return 0;
}
struct logical_volume *alloc_lv(struct dm_pool *mem)
{
struct logical_volume *lv;
if (!(lv = dm_pool_zalloc(mem, sizeof(*lv)))) {
log_error("Unable to allocate logical volume structure");
return NULL;
}
dm_list_init(&lv->snapshot_segs);
dm_list_init(&lv->segments);
dm_list_init(&lv->tags);
dm_list_init(&lv->segs_using_this_lv);
dm_list_init(&lv->indirect_glvs);
dm_list_init(&lv->rsites);
return lv;
}
/*
* Create a new empty LV.
*/
struct logical_volume *lv_create_empty(const char *name,
union lvid *lvid,
uint64_t status,
alloc_policy_t alloc,
struct volume_group *vg)
{
struct format_instance *fi = vg->fid;
struct logical_volume *lv;
char dname[NAME_LEN];
int historical;
if (vg_max_lv_reached(vg))
stack;
if (strstr(name, "%d") &&
!(name = generate_lv_name(vg, name, dname, sizeof(dname)))) {
log_error("Failed to generate unique name for the new "
"logical volume");
return NULL;
} else if (lv_name_is_used_in_vg(vg, name, &historical)) {
log_error("Unable to create LV %s in Volume Group %s: "
"name already in use%s.", name, vg->name,
historical ? " by historical LV" : "");
return NULL;
}
log_verbose("Creating logical volume %s", name);
if (!(lv = alloc_lv(vg->vgmem)))
return_NULL;
if (!(lv->name = dm_pool_strdup(vg->vgmem, name)))
goto_bad;
lv->status = status;
lv->alloc = alloc;
lv->read_ahead = vg->cmd->default_settings.read_ahead;
lv->major = -1;
lv->minor = -1;
lv->size = UINT64_C(0);
lv->le_count = 0;
if (lvid)
lv->lvid = *lvid;
if (!link_lv_to_vg(vg, lv))
goto_bad;
if (!lv_set_creation(lv, NULL, 0))
goto_bad;
if (fi->fmt->ops->lv_setup && !fi->fmt->ops->lv_setup(fi, lv))
goto_bad;
if (vg->fid->fmt->features & FMT_CONFIG_PROFILE)
lv->profile = vg->cmd->profile_params->global_metadata_profile;
return lv;
bad:
dm_pool_free(vg->vgmem, lv);
return NULL;
}
static int _add_pvs(struct cmd_context *cmd, struct pv_segment *peg,
uint32_t s __attribute__((unused)), void *data)
{
struct seg_pvs *spvs = (struct seg_pvs *) data;
struct pv_list *pvl;
/* Don't add again if it's already on list. */
if (find_pv_in_pv_list(&spvs->pvs, peg->pv))
return 1;
if (!(pvl = dm_pool_alloc(cmd->mem, sizeof(*pvl)))) {
log_error("pv_list allocation failed");
return 0;
}
pvl->pv = peg->pv;
dm_list_add(&spvs->pvs, &pvl->list);
return 1;
}
/*
* build_parallel_areas_from_lv
* @lv
* @use_pvmove_parent_lv
* @create_single_list
*
* For each segment in an LV, create a list of PVs used by the segment.
* Thus, the returned list is really a list of segments (seg_pvs)
* containing a list of PVs that are in use by that segment.
*
* use_pvmove_parent_lv: For pvmove we use the *parent* LV so we can
* pick up stripes & existing mirrors etc.
* create_single_list : Instead of creating a list of segments that
* each contain a list of PVs, return a list
* containing just one segment (i.e. seg_pvs)
* that contains a list of all the PVs used by
* the entire LV and all it's segments.
*/
struct dm_list *build_parallel_areas_from_lv(struct logical_volume *lv,
unsigned use_pvmove_parent_lv,
unsigned create_single_list)
{
struct cmd_context *cmd = lv->vg->cmd;
struct dm_list *parallel_areas;
struct seg_pvs *spvs = NULL;
uint32_t current_le = 0;
uint32_t raid_multiple;
struct lv_segment *seg = first_seg(lv);
if (!(parallel_areas = dm_pool_alloc(cmd->mem, sizeof(*parallel_areas)))) {
log_error("parallel_areas allocation failed");
return NULL;
}
dm_list_init(parallel_areas);
do {
if (!spvs || !create_single_list) {
if (!(spvs = dm_pool_zalloc(cmd->mem, sizeof(*spvs)))) {
log_error("allocation failed");
return NULL;
}
dm_list_init(&spvs->pvs);
dm_list_add(parallel_areas, &spvs->list);
}
spvs->le = current_le;
spvs->len = lv->le_count - current_le;
if (use_pvmove_parent_lv &&
!(seg = find_seg_by_le(lv, current_le))) {
log_error("Failed to find segment for %s extent %" PRIu32,
lv->name, current_le);
return 0;
}
/* Find next segment end */
/* FIXME Unnecessary nesting! */
if (!_for_each_pv(cmd, use_pvmove_parent_lv ? seg->pvmove_source_seg->lv : lv,
use_pvmove_parent_lv ? seg->pvmove_source_seg->le : current_le,
use_pvmove_parent_lv ? spvs->len * _calc_area_multiple(seg->pvmove_source_seg->segtype, seg->pvmove_source_seg->area_count, 0) : spvs->len,
use_pvmove_parent_lv ? seg->pvmove_source_seg : NULL,
&spvs->len,
0, 0, -1, 0, _add_pvs, (void *) spvs))
return_NULL;
current_le = spvs->le + spvs->len;
raid_multiple = (seg->segtype->parity_devs) ?
seg->area_count - seg->segtype->parity_devs : 1;
} while ((current_le * raid_multiple) < lv->le_count);
if (create_single_list) {
spvs->le = 0;
spvs->len = lv->le_count;
}
/*
* FIXME: Merge adjacent segments with identical PV lists
* (avoids need for contiguous allocation attempts between
* successful allocations)
*/
return parallel_areas;
}
void lv_set_visible(struct logical_volume *lv)
{
if (lv_is_visible(lv))
return;
lv->status |= VISIBLE_LV;
log_debug_metadata("LV %s in VG %s is now visible.", lv->name, lv->vg->name);
}
void lv_set_hidden(struct logical_volume *lv)
{
if (!lv_is_visible(lv))
return;
lv->status &= ~VISIBLE_LV;
log_debug_metadata("LV %s in VG %s is now hidden.", lv->name, lv->vg->name);
}
int lv_remove_single(struct cmd_context *cmd, struct logical_volume *lv,
force_t force, int suppress_remove_message)
{
struct volume_group *vg;
struct logical_volume *format1_origin = NULL;
int format1_reload_required = 0;
int visible, historical;
struct logical_volume *pool_lv = NULL;
struct logical_volume *lock_lv = lv;
struct lv_segment *cache_seg = NULL;
int ask_discard;
struct lv_list *lvl;
struct seg_list *sl;
int is_last_pool = lv_is_pool(lv);
vg = lv->vg;
if (!vg_check_status(vg, LVM_WRITE))
return_0;
if (lv_is_origin(lv)) {
log_error("Can't remove logical volume %s under snapshot.",
display_lvname(lv));
return 0;
}
if (lv_is_external_origin(lv)) {
log_error("Can't remove external origin logical volume %s.",
display_lvname(lv));
return 0;
}
if (lv_is_mirror_image(lv)) {
log_error("Can't remove logical volume %s used by a mirror.",
display_lvname(lv));
return 0;
}
if (lv_is_mirror_log(lv)) {
log_error("Can't remove logical volume %s used as mirror log.",
display_lvname(lv));
return 0;
}
if (lv_is_raid_metadata(lv) || lv_is_raid_image(lv)) {
log_error("Can't remove logical volume %s used as RAID device.",
display_lvname(lv));
return 0;
}
if (lv_is_thin_pool_data(lv) || lv_is_thin_pool_metadata(lv) ||
lv_is_cache_pool_data(lv) || lv_is_cache_pool_metadata(lv)) {
log_error("Can't remove logical volume %s used by a pool.",
display_lvname(lv));
return 0;
} else if (lv_is_thin_volume(lv)) {
if (!(pool_lv = first_seg(lv)->pool_lv)) {
log_error(INTERNAL_ERROR "Thin LV %s without pool.",
display_lvname(lv));
return 0;
}
lock_lv = pool_lv;
}
if (lv_is_locked(lv)) {
log_error("Can't remove locked logical volume %s.", display_lvname(lv));
return 0;
}
if (!lockd_lv(cmd, lock_lv, "ex", LDLV_PERSISTENT))
return_0;
/* FIXME Ensure not referred to by another existing LVs */
ask_discard = find_config_tree_bool(cmd, devices_issue_discards_CFG, NULL);
if (!lv_is_cache_pool(lv) && /* cache pool cannot be active */
lv_is_active(lv)) {
if (!lv_check_not_in_use(lv, 1))
return_0;
if ((force == PROMPT) &&
!lv_is_pending_delete(lv) &&
lv_is_visible(lv) &&
lv_is_active(lv)) {
if (yes_no_prompt("Do you really want to remove%s active "
"%slogical volume %s? [y/n]: ",
ask_discard ? " and DISCARD" : "",
vg_is_clustered(vg) ? "clustered " : "",
display_lvname(lv)) == 'n') {
log_error("Logical volume %s not removed.", display_lvname(lv));
return 0;
} else {
ask_discard = 0;
}
}
}
if (!lv_is_historical(lv) && (force == PROMPT) && ask_discard &&
yes_no_prompt("Do you really want to remove and DISCARD "
"logical volume %s? [y/n]: ",
display_lvname(lv)) == 'n') {
log_error("Logical volume %s not removed.", display_lvname(lv));
return 0;
}
if (lv_is_cache(lv) && !lv_is_pending_delete(lv)) {
if (!lv_remove_single(cmd, first_seg(lv)->pool_lv, force,
suppress_remove_message)) {
if (force < DONT_PROMPT_OVERRIDE) {
log_error("Failed to uncache %s.", display_lvname(lv));
return 0;
}
/* Proceed with -ff */
log_print_unless_silent("Ignoring uncache failure of %s.",
display_lvname(lv));
}
is_last_pool = 1;
}
/* Used cache pool, COW or historical LV cannot be activated */
if ((!lv_is_cache_pool(lv) || dm_list_empty(&lv->segs_using_this_lv)) &&
!lv_is_cow(lv) && !lv_is_historical(lv) &&
!deactivate_lv(cmd, lv)) {
/* FIXME Review and fix the snapshot error paths! */
log_error("Unable to deactivate logical volume %s.",
display_lvname(lv));
return 0;
}
if (!archive(vg))
return 0;
/* Clear thin pool stacked messages */
if (pool_lv && !pool_has_message(first_seg(pool_lv), lv, 0) &&
!update_pool_lv(pool_lv, 1)) {
if (force < DONT_PROMPT_OVERRIDE) {
log_error("Failed to update pool %s.", display_lvname(pool_lv));
return 0;
}
log_print_unless_silent("Ignoring update failure of pool %s.",
display_lvname(pool_lv));
pool_lv = NULL; /* Do not retry */
}
/* When referenced by the LV with pending delete flag, remove this deleted LV first */
dm_list_iterate_items(sl, &lv->segs_using_this_lv)
if (lv_is_pending_delete(sl->seg->lv) && !lv_remove(sl->seg->lv)) {
log_error("Error releasing logical volume %s with pending delete.",
display_lvname(sl->seg->lv));
return 0;
}
if (lv_is_cow(lv)) {
/* Old format1 code */
if (!(lv->vg->fid->fmt->features & FMT_MDAS))
format1_origin = origin_from_cow(lv);
log_verbose("Removing snapshot volume %s.", display_lvname(lv));
/* vg_remove_snapshot() will preload origin/former snapshots */
if (!vg_remove_snapshot(lv))
return_0;
if (!deactivate_lv(cmd, lv)) {
/* FIXME Review and fix the snapshot error paths! */
log_error("Unable to deactivate logical volume %s.",
display_lvname(lv));
return 0;
}
}
if (lv_is_cache_pool(lv)) {
/* Cache pool removal drops cache layer
* If the cache pool is not linked, we can simply remove it. */
if (!dm_list_empty(&lv->segs_using_this_lv)) {
if (!(cache_seg = get_only_segment_using_this_lv(lv)))
return_0;
/* TODO: polling */
if (!lv_cache_remove(cache_seg->lv))
return_0;
}
}
visible = lv_is_visible(lv);
historical = lv_is_historical(lv);
log_verbose("Releasing %slogical volume \"%s\"",
historical ? "historical " : "",
historical ? lv->this_glv->historical->name : lv->name);
if (!lv_remove(lv)) {
log_error("Error releasing %slogical volume \"%s\"",
historical ? "historical ": "",
historical ? lv->this_glv->historical->name : lv->name);
return 0;
}
if (is_last_pool && vg->pool_metadata_spare_lv) {
/* When removed last pool, also remove the spare */
dm_list_iterate_items(lvl, &vg->lvs)
if (lv_is_pool_metadata(lvl->lv)) {
is_last_pool = 0;
break;
}
if (is_last_pool) {
/* This is purely internal LV volume, no question */
if (!deactivate_lv(cmd, vg->pool_metadata_spare_lv)) {
log_error("Unable to deactivate spare logical volume %s.",
display_lvname(vg->pool_metadata_spare_lv));
return 0;
}
if (!lv_remove(vg->pool_metadata_spare_lv))
return_0;
}
}
/*
* Old format1 code: If no snapshots left reload without -real.
*/
if (format1_origin && !lv_is_origin(format1_origin)) {
log_warn("WARNING: Support for snapshots with old LVM1-style metadata is deprecated.");
log_warn("WARNING: Please use lvconvert to update to lvm2 metadata at your convenience.");
format1_reload_required = 1;
}
/* store it on disks */
if (!vg_write(vg) || !vg_commit(vg))
return_0;
/* format1 */
if (format1_reload_required) {
if (!suspend_lv(cmd, format1_origin))
log_error("Failed to refresh %s without snapshot.", format1_origin->name);
if (!resume_lv(cmd, format1_origin)) {
log_error("Failed to resume %s.", format1_origin->name);
return 0;
}
}
/* Release unneeded blocks in thin pool */
/* TODO: defer when multiple LVs relased at once */
if (pool_lv && !update_pool_lv(pool_lv, 1)) {
if (force < DONT_PROMPT_OVERRIDE) {
log_error("Failed to update pool %s.", display_lvname(pool_lv));
return 0;
}
log_print_unless_silent("Ignoring update failure of pool %s.",
display_lvname(pool_lv));
}
backup(vg);
lockd_lv(cmd, lock_lv, "un", LDLV_PERSISTENT);
lockd_free_lv(cmd, vg, lv->name, &lv->lvid.id[1], lv->lock_args);
if (!suppress_remove_message && (visible || historical))
log_print_unless_silent("%sogical volume \"%s\" successfully removed",
historical ? "Historical l" : "L",
historical ? lv->this_glv->historical->name : lv->name);
return 1;
}
static int _lv_remove_segs_using_this_lv(struct cmd_context *cmd, struct logical_volume *lv,
const force_t force, unsigned level,
const char *lv_type)
{
struct seg_list *sl;
if ((force == PROMPT) &&
yes_no_prompt("Removing %s \"%s\" will remove %u dependent volume(s). "
"Proceed? [y/n]: ", lv_type, lv->name,
dm_list_size(&lv->segs_using_this_lv)) == 'n') {
log_error("Logical volume \"%s\" not removed.", lv->name);
return 0;
}
/*
* Not using _safe iterator here - since we may delete whole subtree
* (similar as process_each_lv_in_vg())
* the code is roughly equivalent to this:
*
* while (!dm_list_empty(&lv->segs_using_this_lv))
* dm_list_iterate_items(sl, &lv->segs_using_this_lv)
* break;
*/
dm_list_iterate_items(sl, &lv->segs_using_this_lv)
if (!lv_remove_with_dependencies(cmd, sl->seg->lv,
force, level + 1))
return_0;
return 1;
}
/*
* remove LVs with its dependencies - LV leaf nodes should be removed first
*/
int lv_remove_with_dependencies(struct cmd_context *cmd, struct logical_volume *lv,
const force_t force, unsigned level)
{
dm_percent_t snap_percent;
struct dm_list *snh, *snht;
struct lvinfo info;
struct lv_list *lvl;
struct logical_volume *origin;
if (lv_is_cow(lv)) {
/*
* A merging snapshot cannot be removed directly unless
* it has been invalidated or failed merge removal is requested.
*/
if (lv_is_merging_cow(lv) && !level) {
if (lv_info(lv->vg->cmd, lv, 0, &info, 1, 0) &&
info.exists && info.live_table) {
if (!lv_snapshot_percent(lv, &snap_percent)) {
log_error("Failed to obtain merging snapshot progress "
"percentage for logical volume %s.",
display_lvname(lv));
return 0;
}
if ((snap_percent != DM_PERCENT_INVALID) &&
(snap_percent != LVM_PERCENT_MERGE_FAILED)) {
log_error("Can't remove merging snapshot logical volume %s.",
display_lvname(lv));
return 0;
} else if ((snap_percent == LVM_PERCENT_MERGE_FAILED) &&
(force == PROMPT) &&
yes_no_prompt("Removing snapshot %s that failed to merge "
"may leave origin %s inconsistent. Proceed? [y/n]: ",
display_lvname(lv),
display_lvname(origin_from_cow(lv))) == 'n')
goto no_remove;
}
} else if (!level && lv_is_virtual_origin(origin = origin_from_cow(lv)))
/* If this is a sparse device, remove its origin too. */
/* Stacking is not supported */
lv = origin;
}
if (lv_is_origin(lv)) {
/* Remove snapshot LVs first */
if ((force == PROMPT) &&
/* Active snapshot already needs to confirm each active LV */
!lv_is_active(lv) &&
yes_no_prompt("Removing origin %s will also remove %u "
"snapshots(s). Proceed? [y/n]: ",
lv->name, lv->origin_count) == 'n')
goto no_remove;
dm_list_iterate_safe(snh, snht, &lv->snapshot_segs)
if (!lv_remove_with_dependencies(cmd, dm_list_struct_base(snh, struct lv_segment,
origin_list)->cow,
force, level + 1))
return_0;
}
if (lv_is_merging_origin(lv)) {
if (!deactivate_lv(cmd, lv)) {
log_error("Unable to fully deactivate merging origin %s.",
display_lvname(lv));
return 0;
}
if (!lv_remove_with_dependencies(cmd, find_snapshot(lv)->lv,
force, level + 1)) {
log_error("Unable to remove merging origin %s.",
display_lvname(lv));
return 0;
}
}
if (!level && lv_is_merging_thin_snapshot(lv)) {
/* Merged snapshot LV is no longer available for the user */
log_error("Unable to remove %s, volume is merged to %s.",
display_lvname(lv), display_lvname(first_seg(lv)->merge_lv));
return 0;
}
if (lv_is_external_origin(lv) &&
!_lv_remove_segs_using_this_lv(cmd, lv, force, level, "external origin"))
return_0;
if (lv_is_used_thin_pool(lv) &&
!_lv_remove_segs_using_this_lv(cmd, lv, force, level, "pool"))
return_0;
if (lv_is_pool_metadata_spare(lv) &&
(force == PROMPT)) {
dm_list_iterate_items(lvl, &lv->vg->lvs)
if (lv_is_pool_metadata(lvl->lv)) {
if (yes_no_prompt("Removal of pool metadata spare logical volume "
"%s disables automatic recovery attempts "
"after damage to a thin or cache pool. "
"Proceed? [y/n]: ", display_lvname(lv)) == 'n')
goto no_remove;
break;
}
}
return lv_remove_single(cmd, lv, force, 0);
no_remove:
log_error("Logical volume %s not removed.", display_lvname(lv));
return 0;
}
static int _lv_update_and_reload(struct logical_volume *lv, int origin_only)
{
struct volume_group *vg = lv->vg;
int do_backup = 0, r = 0;
const struct logical_volume *lock_lv = lv_lock_holder(lv);
log_very_verbose("Updating logical volume %s on disk(s).",
display_lvname(lock_lv));
if (!vg_write(vg))
return_0;
if (!(origin_only ? suspend_lv_origin(vg->cmd, lock_lv) : suspend_lv(vg->cmd, lock_lv))) {
log_error("Failed to lock logical volume %s.",
display_lvname(lock_lv));
vg_revert(vg);
} else if (!(r = vg_commit(vg)))
stack; /* !vg_commit() has implict vg_revert() */
else
do_backup = 1;
log_very_verbose("Updating logical volume %s in kernel.",
display_lvname(lock_lv));
if (!(origin_only ? resume_lv_origin(vg->cmd, lock_lv) : resume_lv(vg->cmd, lock_lv))) {
log_error("Problem reactivating logical volume %s.",
display_lvname(lock_lv));
r = 0;
}
if (do_backup)
backup(vg);
return r;
}
int lv_update_and_reload(struct logical_volume *lv)
{
return _lv_update_and_reload(lv, 0);
}
int lv_update_and_reload_origin(struct logical_volume *lv)
{
return _lv_update_and_reload(lv, 1);
}
/*
* insert_layer_for_segments_on_pv() inserts a layer segment for a segment area.
* However, layer modification could split the underlying layer segment.
* This function splits the parent area according to keep the 1:1 relationship
* between the parent area and the underlying layer segment.
* Since the layer LV might have other layers below, build_parallel_areas()
* is used to find the lowest-level segment boundaries.
*/
static int _split_parent_area(struct lv_segment *seg, uint32_t s,
struct dm_list *layer_seg_pvs)
{
uint32_t parent_area_len, parent_le, layer_le;
uint32_t area_multiple;
struct seg_pvs *spvs;
if (seg_is_striped(seg))
area_multiple = seg->area_count;
else
area_multiple = 1;
parent_area_len = seg->area_len;
parent_le = seg->le;
layer_le = seg_le(seg, s);
while (parent_area_len > 0) {
/* Find the layer segment pointed at */
if (!(spvs = _find_seg_pvs_by_le(layer_seg_pvs, layer_le))) {
log_error("layer segment for %s:" FMTu32 " not found.",
display_lvname(seg->lv), parent_le);
return 0;
}
if (spvs->le != layer_le) {
log_error("Incompatible layer boundary: "
"%s:" FMTu32 "[" FMTu32 "] on %s:" FMTu32 ".",
display_lvname(seg->lv), parent_le, s,
display_lvname(seg_lv(seg, s)), layer_le);
return 0;
}
if (spvs->len < parent_area_len) {
parent_le += spvs->len * area_multiple;
if (!lv_split_segment(seg->lv, parent_le))
return_0;
}
parent_area_len -= spvs->len;
layer_le += spvs->len;
}
return 1;
}
/*
* Split the parent LV segments if the layer LV below it is splitted.
*/
int split_parent_segments_for_layer(struct cmd_context *cmd,
struct logical_volume *layer_lv)
{
struct lv_list *lvl;
struct logical_volume *parent_lv;
struct lv_segment *seg;
uint32_t s;
struct dm_list *parallel_areas;
if (!(parallel_areas = build_parallel_areas_from_lv(layer_lv, 0, 0)))
return_0;
/* Loop through all LVs except itself */
dm_list_iterate_items(lvl, &layer_lv->vg->lvs) {
parent_lv = lvl->lv;
if (parent_lv == layer_lv)
continue;
/* Find all segments that point at the layer LV */
dm_list_iterate_items(seg, &parent_lv->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV ||
seg_lv(seg, s) != layer_lv)
continue;
if (!_split_parent_area(seg, s, parallel_areas))
return_0;
}
}
}
return 1;
}
/* Remove a layer from the LV */
int remove_layers_for_segments(struct cmd_context *cmd,
struct logical_volume *lv,
struct logical_volume *layer_lv,
uint64_t status_mask, struct dm_list *lvs_changed)
{
struct lv_segment *seg, *lseg;
uint32_t s;
int lv_changed = 0;
struct lv_list *lvl;
log_very_verbose("Removing layer %s for segments of %s",
layer_lv->name, lv->name);
/* Find all segments that point at the temporary mirror */
dm_list_iterate_items(seg, &lv->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV ||
seg_lv(seg, s) != layer_lv)
continue;
/* Find the layer segment pointed at */
if (!(lseg = find_seg_by_le(layer_lv, seg_le(seg, s)))) {
log_error("Layer segment found: %s:%" PRIu32,
layer_lv->name, seg_le(seg, s));
return 0;
}
/* Check the segment params are compatible */
if (!seg_is_striped(lseg) || lseg->area_count != 1) {
log_error("Layer is not linear: %s:%" PRIu32,
layer_lv->name, lseg->le);
return 0;
}
if ((lseg->status & status_mask) != status_mask) {
log_error("Layer status does not match: "
"%s:%" PRIu32 " status: 0x%" PRIx64 "/0x%" PRIx64,
layer_lv->name, lseg->le,
lseg->status, status_mask);
return 0;
}
if (lseg->le != seg_le(seg, s) ||
lseg->area_len != seg->area_len) {
log_error("Layer boundary mismatch: "
"%s:%" PRIu32 "-%" PRIu32 " on "
"%s:%" PRIu32 " / "
FMTu32 "-" FMTu32 " / ",
lv->name, seg->le, seg->area_len,
layer_lv->name, seg_le(seg, s),
lseg->le, lseg->area_len);
return 0;
}
if (!move_lv_segment_area(seg, s, lseg, 0))
return_0;
/* Replace mirror with error segment */
if (!(lseg->segtype =
get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_ERROR))) {
log_error("Missing error segtype");
return 0;
}
lseg->area_count = 0;
/* First time, add LV to list of LVs affected */
if (!lv_changed && lvs_changed) {
if (!(lvl = dm_pool_alloc(cmd->mem, sizeof(*lvl)))) {
log_error("lv_list alloc failed");
return 0;
}
lvl->lv = lv;
dm_list_add(lvs_changed, &lvl->list);
lv_changed = 1;
}
}
}
if (lv_changed && !lv_merge_segments(lv))
stack;
return 1;
}
/* Remove a layer */
int remove_layers_for_segments_all(struct cmd_context *cmd,
struct logical_volume *layer_lv,
uint64_t status_mask,
struct dm_list *lvs_changed)
{
struct lv_list *lvl;
struct logical_volume *lv1;
/* Loop through all LVs except the temporary mirror */
dm_list_iterate_items(lvl, &layer_lv->vg->lvs) {
lv1 = lvl->lv;
if (lv1 == layer_lv)
continue;
if (!remove_layers_for_segments(cmd, lv1, layer_lv,
status_mask, lvs_changed))
return_0;
}
if (!lv_empty(layer_lv))
return_0;
return 1;
}
int move_lv_segments(struct logical_volume *lv_to,
struct logical_volume *lv_from,
uint64_t set_status, uint64_t reset_status)
{
const uint64_t MOVE_BITS = (RAID | MIRROR | THIN_VOLUME);
struct lv_segment *seg;
dm_list_iterate_items(seg, &lv_to->segments)
if (seg->origin) {
log_error("Can't move snapshot segment.");
return 0;
}
dm_list_init(&lv_to->segments);
dm_list_splice(&lv_to->segments, &lv_from->segments);
dm_list_iterate_items(seg, &lv_to->segments) {
seg->lv = lv_to;
seg->status &= ~reset_status;
seg->status |= set_status;
}
/*
* Move LV status bits for selected types with their segments
* i.e. when inserting layer to cache LV, we move raid segments
* to a new place, thus 'raid' LV property now belongs to this LV.
*
* Bits should match to those which appears after read from disk.
*/
lv_to->status |= lv_from->status & MOVE_BITS;
lv_from->status &= ~MOVE_BITS;
lv_to->le_count = lv_from->le_count;
lv_to->size = lv_from->size;
lv_from->le_count = 0;
lv_from->size = 0;
return 1;
}
/* Remove a layer from the LV */
int remove_layer_from_lv(struct logical_volume *lv,
struct logical_volume *layer_lv)
{
static const char _suffixes[][8] = { "_tdata", "_cdata", "_corig" };
struct logical_volume *parent_lv;
struct lv_segment *parent_seg;
struct segment_type *segtype;
struct lv_names lv_names;
unsigned r;
log_very_verbose("Removing layer %s for %s", layer_lv->name, lv->name);
if (!(parent_seg = get_only_segment_using_this_lv(layer_lv))) {
log_error("Failed to find layer %s in %s",
layer_lv->name, lv->name);
return 0;
}
parent_lv = parent_seg->lv;
if (parent_lv != lv) {
log_error(INTERNAL_ERROR "Wrong layer %s in %s",
layer_lv->name, lv->name);
return 0;
}
/*
* Before removal, the layer should be cleaned up,
* i.e. additional segments and areas should have been removed.
*/
if (dm_list_size(&parent_lv->segments) != 1 ||
parent_seg->area_count != 1 ||
seg_type(parent_seg, 0) != AREA_LV ||
layer_lv != seg_lv(parent_seg, 0) ||
parent_lv->le_count != layer_lv->le_count)
return_0;
if (!lv_empty(parent_lv))
return_0;
if (!move_lv_segments(parent_lv, layer_lv, 0, 0))
return_0;
/* Replace the empty layer with error segment */
if (!(segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_ERROR)))
return_0;
if (!lv_add_virtual_segment(layer_lv, 0, parent_lv->le_count, segtype))
return_0;
/*
* recuresively rename sub LVs
* currently supported only for thin data layer
* FIXME: without strcmp it breaks mirrors....
*/
if (!strstr(layer_lv->name, "_mimage"))
for (r = 0; r < DM_ARRAY_SIZE(_suffixes); ++r)
if (strstr(layer_lv->name, _suffixes[r]) == 0) {
lv_names.old = layer_lv->name;
lv_names.new = parent_lv->name;
if (!for_each_sub_lv(parent_lv, _rename_cb, (void *) &lv_names))
return_0;
break;
}
return 1;
}
/*
* Create and insert a linear LV "above" lv_where.
* After the insertion, a new LV named lv_where->name + suffix is created
* and all segments of lv_where is moved to the new LV.
* lv_where will have a single segment which maps linearly to the new LV.
*/
struct logical_volume *insert_layer_for_lv(struct cmd_context *cmd,
struct logical_volume *lv_where,
uint64_t status,
const char *layer_suffix)
{
static const char _suffixes[][8] = { "_tdata", "_cdata", "_corig" };
int r;
char name[NAME_LEN];
struct dm_str_list *sl;
struct logical_volume *layer_lv;
struct segment_type *segtype;
struct lv_segment *mapseg;
struct lv_names lv_names;
unsigned exclusive = 0, i;
/* create an empty layer LV */
if (dm_snprintf(name, sizeof(name), "%s%s", lv_where->name, layer_suffix) < 0) {
log_error("Layered name is too long. Please use shorter LV name.");
return NULL;
}
if (!(layer_lv = lv_create_empty(name, NULL,
/* Preserve read-only flag */
LVM_READ | (lv_where->status & LVM_WRITE),
ALLOC_INHERIT, lv_where->vg))) {
log_error("Creation of layer LV failed");
return NULL;
}
if (lv_is_active_exclusive_locally(lv_where))
exclusive = 1;
if (lv_is_active(lv_where) && strstr(name, "_mimagetmp")) {
log_very_verbose("Creating transient LV %s for mirror conversion in VG %s.", name, lv_where->vg->name);
segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_ERROR);
if (!lv_add_virtual_segment(layer_lv, 0, lv_where->le_count, segtype)) {
log_error("Creation of transient LV %s for mirror conversion in VG %s failed.", name, lv_where->vg->name);
return NULL;
}
/* Temporary tags for activation of the transient LV */
dm_list_iterate_items(sl, &lv_where->tags)
if (!str_list_add(cmd->mem, &layer_lv->tags, sl->str)) {
log_error("Aborting. Unable to tag"
" transient mirror layer.");
return NULL;
}
if (!vg_write(lv_where->vg)) {
log_error("Failed to write intermediate VG %s metadata for mirror conversion.", lv_where->vg->name);
return NULL;
}
if (!vg_commit(lv_where->vg)) {
log_error("Failed to commit intermediate VG %s metadata for mirror conversion.", lv_where->vg->name);
return NULL;
}
if (exclusive)
r = activate_lv_excl(cmd, layer_lv);
else
r = activate_lv(cmd, layer_lv);
if (!r) {
log_error("Failed to resume transient LV"
" %s for mirror conversion in VG %s.",
name, lv_where->vg->name);
return NULL;
}
/* Remove the temporary tags */
dm_list_iterate_items(sl, &lv_where->tags)
str_list_del(&layer_lv->tags, sl->str);
}
log_very_verbose("Inserting layer %s for %s",
layer_lv->name, lv_where->name);
if (!move_lv_segments(layer_lv, lv_where, 0, 0))
return_NULL;
if (!(segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_STRIPED)))
return_NULL;
/* allocate a new linear segment */
if (!(mapseg = alloc_lv_segment(segtype, lv_where, 0, layer_lv->le_count,
status, 0, NULL, 1, layer_lv->le_count,
0, 0, 0, NULL)))
return_NULL;
/* map the new segment to the original underlying are */
if (!set_lv_segment_area_lv(mapseg, 0, layer_lv, 0, 0))
return_NULL;
/* add the new segment to the layer LV */
dm_list_add(&lv_where->segments, &mapseg->list);
lv_where->le_count = layer_lv->le_count;
lv_where->size = (uint64_t) lv_where->le_count * lv_where->vg->extent_size;
/*
* recuresively rename sub LVs
* currently supported only for thin data layer
* FIXME: without strcmp it breaks mirrors....
*/
for (i = 0; i < DM_ARRAY_SIZE(_suffixes); ++i)
if (strcmp(layer_suffix, _suffixes[i]) == 0) {
lv_names.old = lv_where->name;
lv_names.new = layer_lv->name;
if (!for_each_sub_lv(layer_lv, _rename_cb, (void *) &lv_names))
return_NULL;
break;
}
return layer_lv;
}
/*
* Extend and insert a linear layer LV beneath the source segment area.
*/
static int _extend_layer_lv_for_segment(struct logical_volume *layer_lv,
struct lv_segment *seg, uint32_t s,
uint64_t status)
{
struct lv_segment *mapseg;
struct segment_type *segtype;
struct physical_volume *src_pv = seg_pv(seg, s);
uint32_t src_pe = seg_pe(seg, s);
if (seg_type(seg, s) != AREA_PV && seg_type(seg, s) != AREA_LV)
return_0;
if (!(segtype = get_segtype_from_string(layer_lv->vg->cmd, SEG_TYPE_NAME_STRIPED)))
return_0;
/* FIXME Incomplete message? Needs more context */
log_very_verbose("Inserting %s:%" PRIu32 "-%" PRIu32 " of %s/%s",
pv_dev_name(src_pv),
src_pe, src_pe + seg->area_len - 1,
seg->lv->vg->name, seg->lv->name);
/* allocate a new segment */
if (!(mapseg = alloc_lv_segment(segtype, layer_lv, layer_lv->le_count,
seg->area_len, status, 0,
NULL, 1, seg->area_len, 0, 0, 0, seg)))
return_0;
/* map the new segment to the original underlying are */
if (!move_lv_segment_area(mapseg, 0, seg, s))
return_0;
/* add the new segment to the layer LV */
dm_list_add(&layer_lv->segments, &mapseg->list);
layer_lv->le_count += seg->area_len;
layer_lv->size += (uint64_t) seg->area_len * layer_lv->vg->extent_size;
/* map the original area to the new segment */
if (!set_lv_segment_area_lv(seg, s, layer_lv, mapseg->le, 0))
return_0;
return 1;
}
/*
* Match the segment area to PEs in the pvl
* (the segment area boundary should be aligned to PE ranges by
* _adjust_layer_segments() so that there is no partial overlap.)
*/
static int _match_seg_area_to_pe_range(struct lv_segment *seg, uint32_t s,
struct pv_list *pvl)
{
struct pe_range *per;
uint32_t pe_start, per_end;
if (!pvl)
return 1;
if (seg_type(seg, s) != AREA_PV || seg_dev(seg, s) != pvl->pv->dev)
return 0;
pe_start = seg_pe(seg, s);
/* Do these PEs match to any of the PEs in pvl? */
dm_list_iterate_items(per, pvl->pe_ranges) {
per_end = per->start + per->count - 1;
if ((pe_start < per->start) || (pe_start > per_end))
continue;
/* FIXME Missing context in this message - add LV/seg details */
log_debug_alloc("Matched PE range %s:%" PRIu32 "-%" PRIu32 " against "
"%s %" PRIu32 " len %" PRIu32, dev_name(pvl->pv->dev),
per->start, per_end, dev_name(seg_dev(seg, s)),
seg_pe(seg, s), seg->area_len);
return 1;
}
return 0;
}
/*
* For each segment in lv_where that uses a PV in pvl directly,
* split the segment if it spans more than one underlying PV.
*/
static int _align_segment_boundary_to_pe_range(struct logical_volume *lv_where,
struct pv_list *pvl)
{
struct lv_segment *seg;
struct pe_range *per;
uint32_t pe_start, pe_end, per_end, stripe_multiplier, s;
if (!pvl)
return 1;
/* Split LV segments to match PE ranges */
dm_list_iterate_items(seg, &lv_where->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_PV ||
seg_dev(seg, s) != pvl->pv->dev)
continue;
/* Do these PEs match with the condition? */
dm_list_iterate_items(per, pvl->pe_ranges) {
pe_start = seg_pe(seg, s);
pe_end = pe_start + seg->area_len - 1;
per_end = per->start + per->count - 1;
/* No overlap? */
if ((pe_end < per->start) ||
(pe_start > per_end))
continue;
if (seg_is_striped(seg))
stripe_multiplier = seg->area_count;
else
stripe_multiplier = 1;
if ((per->start != pe_start &&
per->start > pe_start) &&
!lv_split_segment(lv_where, seg->le +
(per->start - pe_start) *
stripe_multiplier))
return_0;
if ((per_end != pe_end &&
per_end < pe_end) &&
!lv_split_segment(lv_where, seg->le +
(per_end - pe_start + 1) *
stripe_multiplier))
return_0;
}
}
}
return 1;
}
/*
* Scan lv_where for segments on a PV in pvl, and for each one found
* append a linear segment to lv_layer and insert it between the two.
*
* If pvl is empty, a layer is placed under the whole of lv_where.
* If the layer is inserted, lv_where is added to lvs_changed.
*/
int insert_layer_for_segments_on_pv(struct cmd_context *cmd,
struct logical_volume *lv_where,
struct logical_volume *layer_lv,
uint64_t status,
struct pv_list *pvl,
struct dm_list *lvs_changed)
{
struct lv_segment *seg;
struct lv_list *lvl;
int lv_used = 0;
uint32_t s;
log_very_verbose("Inserting layer %s for segments of %s on %s",
layer_lv->name, lv_where->name,
pvl ? pv_dev_name(pvl->pv) : "any");
if (!_align_segment_boundary_to_pe_range(lv_where, pvl))
return_0;
/* Work through all segments on the supplied PV */
dm_list_iterate_items(seg, &lv_where->segments) {
for (s = 0; s < seg->area_count; s++) {
if (!_match_seg_area_to_pe_range(seg, s, pvl))
continue;
/* First time, add LV to list of LVs affected */
if (!lv_used && lvs_changed) {
if (!(lvl = dm_pool_alloc(cmd->mem, sizeof(*lvl)))) {
log_error("lv_list alloc failed");
return 0;
}
lvl->lv = lv_where;
dm_list_add(lvs_changed, &lvl->list);
lv_used = 1;
}
if (!_extend_layer_lv_for_segment(layer_lv, seg, s,
status)) {
log_error("Failed to insert segment in layer "
"LV %s under %s:%" PRIu32 "-%" PRIu32,
layer_lv->name, lv_where->name,
seg->le, seg->le + seg->len);
return 0;
}
}
}
return 1;
}
/*
* Initialize the LV with 'value'.
*/
int wipe_lv(struct logical_volume *lv, struct wipe_params wp)
{
struct device *dev;
char name[PATH_MAX];
uint64_t zero_sectors;
if (!wp.do_zero && !wp.do_wipe_signatures)
/* nothing to do */
return 1;
/* Wait until devices are available */
if (!sync_local_dev_names(lv->vg->cmd)) {
log_error("Failed to sync local devices before wiping LV %s.",
display_lvname(lv));
return 0;
}
if (!lv_is_active_locally(lv)) {
log_error("Volume \"%s/%s\" is not active locally.",
lv->vg->name, lv->name);
return 0;
}
/*
* FIXME:
* <clausen> also, more than 4k
* <clausen> say, reiserfs puts it's superblock 32k in, IIRC
* <ejt_> k, I'll drop a fixme to that effect
* (I know the device is at least 4k, but not 32k)
*/
if (dm_snprintf(name, sizeof(name), "%s%s/%s", lv->vg->cmd->dev_dir,
lv->vg->name, lv->name) < 0) {
log_error("Name too long - device not cleared (%s)", lv->name);
return 0;
}
if (!(dev = dev_cache_get(name, NULL))) {
log_error("%s: not found: device not cleared", name);
return 0;
}
if (!dev_open_quiet(dev))
return_0;
if (wp.do_wipe_signatures) {
log_verbose("Wiping known signatures on logical volume \"%s/%s\"",
lv->vg->name, lv->name);
if (!wipe_known_signatures(lv->vg->cmd, dev, name, 0,
TYPE_DM_SNAPSHOT_COW,
wp.yes, wp.force, NULL))
stack;
}
if (wp.do_zero) {
zero_sectors = wp.zero_sectors ? : UINT64_C(4096) >> SECTOR_SHIFT;
if (zero_sectors > lv->size)
zero_sectors = lv->size;
log_verbose("Initializing %s of logical volume \"%s/%s\" with value %d.",
display_size(lv->vg->cmd, zero_sectors),
lv->vg->name, lv->name, wp.zero_value);
if (!dev_set(dev, UINT64_C(0), (size_t) zero_sectors << SECTOR_SHIFT, wp.zero_value))
stack;
}
dev_flush(dev);
if (!dev_close_immediate(dev))
stack;
lv->status &= ~LV_NOSCAN;
return 1;
}
static struct logical_volume *_create_virtual_origin(struct cmd_context *cmd,
struct volume_group *vg,
const char *lv_name,
uint32_t permission,
uint64_t voriginextents)
{
const struct segment_type *segtype;
char vorigin_name[NAME_LEN];
struct logical_volume *lv;
if (!(segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_ZERO))) {
log_error("Zero segment type for virtual origin not found");
return NULL;
}
if (dm_snprintf(vorigin_name, sizeof(vorigin_name), "%s_vorigin", lv_name) < 0) {
log_error("Virtual origin name is too long.");
return NULL;
}
if (!(lv = lv_create_empty(vorigin_name, NULL, permission,
ALLOC_INHERIT, vg)))
return_NULL;
if (!lv_extend(lv, segtype, 1, 0, 1, 0, voriginextents,
NULL, ALLOC_INHERIT, 0))
return_NULL;
return lv;
}
/*
* Automatically set ACTIVATION_SKIP flag for the LV supplied - this
* is default behaviour. If override_default is set, then override
* the default behaviour and add/clear the flag based on 'add_skip' arg
* supplied instead.
*/
void lv_set_activation_skip(struct logical_volume *lv, int override_default,
int add_skip)
{
int skip = 0;
/* override default behaviour */
if (override_default)
skip = add_skip;
/* default behaviour */
else if (lv->vg->cmd->auto_set_activation_skip) {
/* skip activation for thin snapshots by default */
if (lv_is_thin_volume(lv) && first_seg(lv)->origin)
skip = 1;
}
if (skip)
lv->status |= LV_ACTIVATION_SKIP;
else
lv->status &= ~LV_ACTIVATION_SKIP;
}
/*
* Get indication whether the LV should be skipped during activation
* based on the ACTIVATION_SKIP flag (deactivation is never skipped!).
* If 'override_lv_skip_flag' is set, then override it based on the value
* of the 'skip' arg supplied instead.
*/
int lv_activation_skip(struct logical_volume *lv, activation_change_t activate,
int override_lv_skip_flag)
{
if (!(lv->status & LV_ACTIVATION_SKIP) ||
!is_change_activating(activate) || /* Do not skip deactivation */
override_lv_skip_flag)
return 0;
log_verbose("ACTIVATION_SKIP flag set for LV %s/%s, skipping activation.",
lv->vg->name, lv->name);
return 1;
}
static int _should_wipe_lv(struct lvcreate_params *lp,
struct logical_volume *lv, int warn)
{
/* Unzeroable segment */
if (first_seg(lv)->segtype->flags & SEG_CANNOT_BE_ZEROED)
return 0;
/* Thin snapshot need not to be zeroed */
/* Thin pool with zeroing doesn't need zeroing or wiping */
if (lv_is_thin_volume(lv) &&
(first_seg(lv)->origin ||
first_seg(first_seg(lv)->pool_lv)->zero_new_blocks))
return 0;
/* Cannot zero read-only volume */
if ((lv->status & LVM_WRITE) &&
(lp->zero || lp->wipe_signatures))
return 1;
if (warn && (!lp->zero || !(lv->status & LVM_WRITE)))
log_warn("WARNING: Logical volume %s not zeroed.",
display_lvname(lv));
if (warn && (!lp->wipe_signatures || !(lv->status & LVM_WRITE)))
log_verbose("Signature wiping on logical volume %s not requested.",
display_lvname(lv));
return 0;
}
/* Check if VG metadata supports needed features */
static int _vg_check_features(struct volume_group *vg,
struct lvcreate_params *lp)
{
uint32_t features = vg->fid->fmt->features;
if (vg_max_lv_reached(vg)) {
log_error("Maximum number of logical volumes (%u) reached "
"in volume group %s", vg->max_lv, vg->name);
return 0;
}
if (!(features & FMT_SEGMENTS) &&
(seg_is_cache(lp) ||
seg_is_cache_pool(lp) ||
seg_is_mirrored(lp) ||
seg_is_raid(lp) ||
seg_is_thin(lp))) {
log_error("Metadata does not support %s segments.",
lp->segtype->name);
return 0;
}
if (!(features & FMT_TAGS) && !dm_list_empty(&lp->tags)) {
log_error("Volume group %s does not support tags.", vg->name);
return 0;
}
if ((features & FMT_RESTRICTED_READAHEAD) &&
lp->read_ahead != DM_READ_AHEAD_AUTO &&
lp->read_ahead != DM_READ_AHEAD_NONE &&
(lp->read_ahead < 2 || lp->read_ahead > 120)) {
log_error("Metadata only supports readahead values between 2 and 120.");
return 0;
}
/* Need to check the vg's format to verify this - the cmd format isn't setup properly yet */
if (!(features & FMT_UNLIMITED_STRIPESIZE) &&
(lp->stripes > 1) && (lp->stripe_size > STRIPE_SIZE_MAX)) {
log_error("Stripe size may not exceed %s.",
display_size(vg->cmd, (uint64_t) STRIPE_SIZE_MAX));
return 0;
}
return 1;
}
/* Thin notes:
* If lp->thin OR lp->activate is AY*, activate the pool if not already active.
* If lp->thin, create thin LV within the pool - as a snapshot if lp->snapshot.
* If lp->activate is AY*, activate it.
* If lp->activate was AN* and the pool was originally inactive, deactivate it.
*/
static struct logical_volume *_lv_create_an_lv(struct volume_group *vg,
struct lvcreate_params *lp,
const char *new_lv_name)
{
struct cmd_context *cmd = vg->cmd;
uint32_t size;
uint64_t status = lp->permission | VISIBLE_LV;
const struct segment_type *create_segtype = lp->segtype;
struct logical_volume *lv, *origin_lv = NULL;
struct logical_volume *pool_lv = NULL;
struct logical_volume *tmp_lv;
struct lv_segment *seg, *pool_seg;
int thin_pool_was_active = -1; /* not scanned, inactive, active */
int historical;
if (new_lv_name && lv_name_is_used_in_vg(vg, new_lv_name, &historical)) {
log_error("%sLogical Volume \"%s\" already exists in "
"volume group \"%s\"", historical ? "historical " : "",
new_lv_name, vg->name);
return NULL;
}
if (!_vg_check_features(vg, lp))
return_NULL;
if (!activation()) {
if (seg_is_cache(lp) ||
seg_is_mirror(lp) ||
(seg_is_raid(lp) && !seg_is_raid0(lp)) ||
seg_is_thin(lp) ||
lp->snapshot) {
/*
* FIXME: For thin pool add some code to allow delayed
* initialization of empty thin pool volume.
* i.e. using some LV flag, fake message,...
* and testing for metadata pool header signature?
*/
log_error("Can't create %s without using "
"device-mapper kernel driver.",
lp->segtype->name);
return NULL;
}
/* Does LV need to be zeroed? */
if (lp->zero && !seg_is_thin(lp)) {
log_error("Can't wipe start of new LV without using "
"device-mapper kernel driver.");
return NULL;
}
}
if (lp->stripe_size > vg->extent_size) {
if (seg_is_raid(lp) && (vg->extent_size < STRIPE_SIZE_MIN)) {
/*
* FIXME: RAID will simply fail to load the table if
* this is the case, but we should probably
* honor the stripe minimum for regular stripe
* volumes as well. Avoiding doing that now
* only to minimize the change.
*/
log_error("The extent size in volume group %s is too "
"small to support striped RAID volumes.",
vg->name);
return NULL;
}
log_print_unless_silent("Reducing requested stripe size %s to maximum, "
"physical extent size %s.",
display_size(cmd, (uint64_t) lp->stripe_size),
display_size(cmd, (uint64_t) vg->extent_size));
lp->stripe_size = vg->extent_size;
}
lp->extents = _round_to_stripe_boundary(vg, lp->extents, lp->stripes, 1);
if (!lp->extents && !seg_is_thin_volume(lp)) {
log_error(INTERNAL_ERROR "Unable to create new logical volume with no extents.");
return_NULL;
}
if ((seg_is_pool(lp) || seg_is_cache(lp)) &&
((uint64_t)lp->extents * vg->extent_size < lp->chunk_size)) {
log_error("Unable to create %s smaller than 1 chunk.",
lp->segtype->name);
return NULL;
}
if ((lp->alloc != ALLOC_ANYWHERE) && (lp->stripes > dm_list_size(lp->pvh))) {
log_error("Number of stripes (%u) must not exceed "
"number of physical volumes (%d)", lp->stripes,
dm_list_size(lp->pvh));
return NULL;
}
if (seg_is_pool(lp))
status |= LVM_WRITE; /* Pool is always writable */
else if (seg_is_cache(lp) || seg_is_thin_volume(lp)) {
/* Resolve pool volume */
if (!lp->pool_name) {
/* Should be already checked */
log_error(INTERNAL_ERROR "Cannot create %s volume without %s pool.",
lp->segtype->name, lp->segtype->name);
return NULL;
}
if (!(pool_lv = find_lv(vg, lp->pool_name))) {
log_error("Couldn't find volume %s in Volume group %s.",
lp->pool_name, vg->name);
return NULL;
}
if (lv_is_locked(pool_lv)) {
log_error("Cannot use locked pool volume %s.",
display_lvname(pool_lv));
return NULL;
}
if (seg_is_cache(lp)) {
/* validate metadata size */
if (!validate_lv_cache_chunk_size(pool_lv, lp->chunk_size))
return_0;
first_seg(pool_lv)->chunk_size = lp->chunk_size;
}
/* Validate volume size to to aling on chunk for small extents */
/* Cache chunk size is always set */
size = first_seg(pool_lv)->chunk_size;
if (size > vg->extent_size) {
/* Align extents on chunk boundary size */
size = ((uint64_t)vg->extent_size * lp->extents + size - 1) /
size * size / vg->extent_size;
if (size != lp->extents) {
log_print_unless_silent("Rounding size (%d extents) up to chunk boundary "
"size (%d extents).", lp->extents, size);
lp->extents = size;
}
}
if (seg_is_thin_volume(lp)) {
thin_pool_was_active = lv_is_active(pool_lv);
if (lv_is_new_thin_pool(pool_lv)) {
if (!check_new_thin_pool(pool_lv))
return_NULL;
/* New pool is now inactive */
} else {
if (!activate_lv_excl_local(cmd, pool_lv)) {
log_error("Aborting. Failed to locally activate thin pool %s.",
display_lvname(pool_lv));
return 0;
}
if (!pool_below_threshold(first_seg(pool_lv))) {
log_error("Cannot create new thin volume, free space in "
"thin pool %s reached threshold.",
display_lvname(pool_lv));
return NULL;
}
}
}
if (seg_is_cache(lp) &&
!wipe_cache_pool(pool_lv))
return_NULL;
}
/* Resolve origin volume */
if (lp->origin_name &&
!(origin_lv = find_lv(vg, lp->origin_name))) {
log_error("Origin volume %s not found in Volume group %s.",
lp->origin_name, vg->name);
return NULL;
}
if (origin_lv && seg_is_cache_pool(lp)) {
/* Converting exiting origin and creating cache pool */
if (!validate_lv_cache_create_origin(origin_lv))
return_NULL;
if (origin_lv->size < lp->chunk_size) {
log_error("Caching of origin cache volume smaller then chunk size is unsupported.");
return NULL;
}
/* Validate cache origin is exclusively active */
if (vg_is_clustered(origin_lv->vg) &&
locking_is_clustered() &&
locking_supports_remote_queries() &&
lv_is_active(origin_lv) &&
!lv_is_active_exclusive(origin_lv)) {
log_error("Cannot cache not exclusively active origin volume %s.",
display_lvname(origin_lv));
return NULL;
}
} else if (seg_is_cache(lp)) {
if (!pool_lv) {
log_error(INTERNAL_ERROR "Pool LV for cache is missing.");
return NULL;
}
if (!lv_is_cache_pool(pool_lv)) {
log_error("Logical volume %s is not a cache pool.",
display_lvname(pool_lv));
return NULL;
}
/* Create cache origin for cache pool */
/* FIXME Eventually support raid/mirrors with -m */
if (!(create_segtype = get_segtype_from_string(vg->cmd, SEG_TYPE_NAME_STRIPED)))
return_0;
} else if (seg_is_mirrored(lp) || (seg_is_raid(lp) && !seg_is_any_raid0(lp))) {
if (is_change_activating(lp->activate) && (lp->activate != CHANGE_AEY) &&
vg_is_clustered(vg) && seg_is_mirrored(lp) && !seg_is_raid(lp) &&
!cluster_mirror_is_available(vg->cmd)) {
log_error("Shared cluster mirrors are not available.");
return NULL;
}
/* FIXME This will not pass cluster lock! */
init_mirror_in_sync(lp->nosync);
if (lp->nosync) {
log_warn("WARNING: New %s won't be synchronised. "
"Don't read what you didn't write!",
lp->segtype->name);
status |= LV_NOTSYNCED;
}
lp->region_size = adjusted_mirror_region_size(vg->extent_size,
lp->extents,
lp->region_size, 0,
vg_is_clustered(vg));
} else if (pool_lv && seg_is_thin_volume(lp)) {
if (!lv_is_thin_pool(pool_lv)) {
log_error("Logical volume %s is not a thin pool.",
display_lvname(pool_lv));
return NULL;
}
if (origin_lv) {
if (lv_is_locked(origin_lv)) {
log_error("Snapshots of locked devices are not supported.");
return NULL;
}
lp->virtual_extents = origin_lv->le_count;
/*
* Check if using 'external origin' or the 'normal' snapshot
* within the same thin pool
*/
if (first_seg(origin_lv)->pool_lv != pool_lv) {
if (!pool_supports_external_origin(first_seg(pool_lv), origin_lv))
return_NULL;
if (origin_lv->status & LVM_WRITE) {
log_error("Cannot use writable LV as the external origin.");
return NULL; /* FIXME conversion for inactive */
}
if (lv_is_active(origin_lv) && !lv_is_external_origin(origin_lv)) {
log_error("Cannot use active LV for the external origin.");
return NULL; /* We can't be sure device is read-only */
}
}
}
} else if (lp->snapshot) {
if (!lp->virtual_extents) {
if (!origin_lv) {
log_error("Couldn't find origin volume '%s'.",
lp->origin_name);
return NULL;
}
if (lv_is_virtual_origin(origin_lv)) {
log_error("Can't share virtual origins. "
"Use --virtualsize.");
return NULL;
}
if (lv_is_cow(origin_lv)) {
log_error("Snapshots of snapshots are not supported.");
return NULL;
}
if (lv_is_locked(origin_lv)) {
log_error("Snapshots of locked devices are not supported.");
return NULL;
}
if (lv_is_merging_origin(origin_lv)) {
log_error("Snapshots of an origin that has a "
"merging snapshot is not supported");
return NULL;
}
if (lv_is_cache_type(origin_lv)) {
log_error("Snapshots of cache type volume %s "
"is not supported.", display_lvname(origin_lv));
return NULL;
}
if (lv_is_thin_type(origin_lv) && !lv_is_thin_volume(origin_lv)) {
log_error("Snapshots of thin pool %sdevices "
"are not supported.",
lv_is_thin_pool_data(origin_lv) ? "data " :
lv_is_thin_pool_metadata(origin_lv) ?
"metadata " : "");
return NULL;
}
if (lv_is_mirror_type(origin_lv)) {
log_warn("WARNING: Snapshots of mirrors can deadlock under rare device failures.");
log_warn("WARNING: Consider using the raid1 mirror type to avoid this.");
log_warn("WARNING: See global/mirror_segtype_default in lvm.conf.");
}
if (vg_is_clustered(vg) && lv_is_active(origin_lv) &&
!lv_is_active_exclusive_locally(origin_lv)) {
log_error("%s must be active exclusively to"
" create snapshot", origin_lv->name);
return NULL;
}
}
if (!cow_has_min_chunks(vg, lp->extents, lp->chunk_size))
return_NULL;
/* The snapshot segment gets created later */
if (!(create_segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_STRIPED)))
return_NULL;
/* Must zero cow */
status |= LVM_WRITE;
lp->zero = 1;
lp->wipe_signatures = 0;
}
if (!segtype_is_virtual(create_segtype) && !lp->approx_alloc &&
(vg->free_count < lp->extents)) {
log_error("Volume group \"%s\" has insufficient free space "
"(%u extents): %u required.",
vg->name, vg->free_count, lp->extents);
return NULL;
}
if (!archive(vg))
return_NULL;
if (pool_lv && segtype_is_thin_volume(create_segtype)) {
/* Ensure all stacked messages are submitted */
if ((pool_is_active(pool_lv) || is_change_activating(lp->activate)) &&
!update_pool_lv(pool_lv, 1))
return_NULL;
}
if (!(lv = lv_create_empty(new_lv_name ? : "lvol%d", NULL,
status, lp->alloc, vg)))
return_NULL;
if (lp->read_ahead != lv->read_ahead) {
lv->read_ahead = lp->read_ahead;
log_debug_metadata("Setting read ahead sectors %u.", lv->read_ahead);
}
if (!segtype_is_pool(create_segtype) && lp->minor >= 0) {
lv->major = lp->major;
lv->minor = lp->minor;
lv->status |= FIXED_MINOR;
log_debug_metadata("Setting device number to (%d, %d).",
lv->major, lv->minor);
}
/*
* The specific LV may not use a lock. lockd_init_lv() sets
* lv->lock_args to NULL if this LV does not use its own lock.
*/
if (!lockd_init_lv(vg->cmd, vg, lv, lp))
return_NULL;
dm_list_splice(&lv->tags, &lp->tags);
if (!lv_extend(lv, create_segtype,
lp->stripes, lp->stripe_size,
lp->mirrors,
segtype_is_pool(create_segtype) ? lp->pool_metadata_extents : lp->region_size,
segtype_is_thin_volume(create_segtype) ? lp->virtual_extents : lp->extents,
lp->pvh, lp->alloc, lp->approx_alloc))
return_NULL;
/* Unlock memory if possible */
memlock_unlock(vg->cmd);
if (lv_is_cache_pool(lv)) {
if (!cache_set_params(first_seg(lv),
lp->cache_mode,
lp->policy_name,
lp->policy_settings,
lp->chunk_size)) {
stack;
goto revert_new_lv;
}
} else if (lv_is_raid(lv) && !seg_is_any_raid0(first_seg(lv))) {
first_seg(lv)->min_recovery_rate = lp->min_recovery_rate;
first_seg(lv)->max_recovery_rate = lp->max_recovery_rate;
} else if (lv_is_thin_pool(lv)) {
first_seg(lv)->chunk_size = lp->chunk_size;
first_seg(lv)->zero_new_blocks = lp->zero ? 1 : 0;
first_seg(lv)->discards = lp->discards;
if (!recalculate_pool_chunk_size_with_dev_hints(lv, lp->passed_args,
lp->thin_chunk_size_calc_policy)) {
stack;
goto revert_new_lv;
}
if (lp->error_when_full)
lv->status |= LV_ERROR_WHEN_FULL;
} else if (pool_lv && lv_is_virtual(lv)) { /* going to be a thin volume */
seg = first_seg(lv);
pool_seg = first_seg(pool_lv);
if (!(seg->device_id = get_free_pool_device_id(pool_seg)))
return_NULL;
seg->transaction_id = pool_seg->transaction_id;
if (origin_lv && lv_is_thin_volume(origin_lv) &&
(first_seg(origin_lv)->pool_lv == pool_lv)) {
/* For thin snapshot pool must match */
if (!attach_pool_lv(seg, pool_lv, origin_lv, NULL, NULL))
return_NULL;
/* Use the same external origin */
if (!attach_thin_external_origin(seg, first_seg(origin_lv)->external_lv))
return_NULL;
} else {
if (!attach_pool_lv(seg, pool_lv, NULL, NULL, NULL))
return_NULL;
/* If there is an external origin... */
if (!attach_thin_external_origin(seg, origin_lv))
return_NULL;
}
if (!attach_pool_message(pool_seg, DM_THIN_MESSAGE_CREATE_THIN, lv, 0, 0))
return_NULL;
}
if (!pool_check_overprovisioning(lv))
return_NULL;
/* FIXME Log allocation and attachment should have happened inside lv_extend. */
if (lp->log_count &&
!seg_is_raid(first_seg(lv)) && seg_is_mirrored(first_seg(lv))) {
if (!add_mirror_log(cmd, lv, lp->log_count,
first_seg(lv)->region_size,
lp->pvh, lp->alloc)) {
stack;
goto revert_new_lv;
}
}
lv_set_activation_skip(lv, lp->activation_skip & ACTIVATION_SKIP_SET,
lp->activation_skip & ACTIVATION_SKIP_SET_ENABLED);
/*
* Check for autoactivation.
* If the LV passes the auto activation filter, activate
* it just as if CHANGE_AY was used, CHANGE_AN otherwise.
*/
if (lp->activate == CHANGE_AAY)
lp->activate = lv_passes_auto_activation_filter(cmd, lv)
? CHANGE_ALY : CHANGE_ALN;
if (lv_activation_skip(lv, lp->activate, lp->activation_skip & ACTIVATION_SKIP_IGNORE))
lp->activate = CHANGE_AN;
/* store vg on disk(s) */
if (!vg_write(vg) || !vg_commit(vg))
/* Pool created metadata LV, but better avoid recover when vg_write/commit fails */
return_NULL;
backup(vg);
if (test_mode()) {
log_verbose("Test mode: Skipping activation, zeroing and signature wiping.");
goto out;
}
/* Do not scan this LV until properly zeroed/wiped. */
if (_should_wipe_lv(lp, lv, 0))
lv->status |= LV_NOSCAN;
if (lp->temporary)
lv->status |= LV_TEMPORARY;
if (seg_is_cache(lp)) {
/* FIXME Support remote exclusive activation? */
/* Not yet 'cache' LV, it is stripe volume for wiping */
if (is_change_activating(lp->activate) &&
!activate_lv_excl_local(cmd, lv)) {
log_error("Aborting. Failed to activate LV %s locally exclusively.",
display_lvname(lv));
goto revert_new_lv;
}
} else if (lv_is_cache_pool(lv)) {
/* Cache pool cannot be actived and zeroed */
log_very_verbose("Cache pool is prepared.");
} else if (lv_is_thin_volume(lv)) {
/* For snapshot, suspend active thin origin first */
if (origin_lv && lv_is_active(origin_lv) && lv_is_thin_volume(origin_lv)) {
if (!suspend_lv_origin(cmd, origin_lv)) {
log_error("Failed to suspend thin snapshot origin %s/%s.",
origin_lv->vg->name, origin_lv->name);
goto revert_new_lv;
}
if (!resume_lv_origin(cmd, origin_lv)) { /* deptree updates thin-pool */
log_error("Failed to resume thin snapshot origin %s/%s.",
origin_lv->vg->name, origin_lv->name);
goto revert_new_lv;
}
/* At this point remove pool messages, snapshot is active */
if (!update_pool_lv(pool_lv, 0)) {
stack;
goto revert_new_lv;
}
}
if (!dm_list_empty(&first_seg(pool_lv)->thin_messages)) {
/* Send message so that table preload knows new thin */
if (!lv_is_active(pool_lv)) {
/* Avoid multiple thin-pool activations in this case */
if (thin_pool_was_active < 0)
thin_pool_was_active = 0;
if (!activate_lv_excl(cmd, pool_lv)) {
log_error("Failed to activate thin pool %s.",
display_lvname(pool_lv));
goto revert_new_lv;
}
if (!lv_is_active(pool_lv)) {
log_error("Cannot activate thin pool %s, perhaps skipped in lvm.conf volume_list?",
display_lvname(pool_lv));
return 0;
}
}
/* Keep thin pool active until thin volume is activated */
if (!update_pool_lv(pool_lv, 1)) {
stack;
goto revert_new_lv;
}
}
backup(vg);
if (!lv_active_change(cmd, lv, lp->activate, 0)) {
log_error("Failed to activate thin %s.", lv->name);
goto deactivate_and_revert_new_lv;
}
/* Restore inactive state if needed */
if (!thin_pool_was_active &&
!deactivate_lv(cmd, pool_lv)) {
log_error("Failed to deactivate thin pool %s.",
display_lvname(pool_lv));
return NULL;
}
} else if (lp->snapshot) {
lv->status |= LV_TEMPORARY;
if (!activate_lv_local(cmd, lv)) {
log_error("Aborting. Failed to activate snapshot "
"exception store.");
goto revert_new_lv;
}
lv->status &= ~LV_TEMPORARY;
} else if (!lv_active_change(cmd, lv, lp->activate, 0)) {
log_error("Failed to activate new LV.");
goto deactivate_and_revert_new_lv;
}
if (_should_wipe_lv(lp, lv, !lp->suppress_zero_warn)) {
if (!wipe_lv(lv, (struct wipe_params)
{
.do_zero = lp->zero,
.do_wipe_signatures = lp->wipe_signatures,
.yes = lp->yes,
.force = lp->force
})) {
log_error("Aborting. Failed to wipe %s.", lp->snapshot
? "snapshot exception store" : "start of new LV");
goto deactivate_and_revert_new_lv;
}
}
if (seg_is_cache(lp) || (origin_lv && lv_is_cache_pool(lv))) {
/* Finish cache conversion magic */
if (origin_lv) {
/* Convert origin to cached LV */
if (!(tmp_lv = lv_cache_create(lv, origin_lv))) {
/* FIXME Do a better revert */
log_error("Aborting. Leaving cache pool %s and uncached origin volume %s.",
display_lvname(lv), display_lvname(origin_lv));
return NULL;
}
} else {
if (!(tmp_lv = lv_cache_create(pool_lv, lv))) {
/* 'lv' still keeps created new LV */
stack;
goto deactivate_and_revert_new_lv;
}
}
lv = tmp_lv;
if (!cache_set_params(first_seg(lv),
lp->cache_mode,
lp->policy_name,
lp->policy_settings,
(lp->passed_args & PASS_ARG_CHUNK_SIZE) ? lp->chunk_size : 0))
return_NULL; /* revert? */
cache_check_for_warns(first_seg(lv));
if (!lv_update_and_reload(lv)) {
/* FIXME Do a better revert */
log_error("Aborting. Manual intervention required.");
return NULL; /* FIXME: revert */
}
} else if (lp->snapshot) {
/* Deactivate zeroed COW, avoid any race usage */
if (!deactivate_lv(cmd, lv)) {
log_error("Aborting. Couldn't deactivate snapshot COW area %s.",
display_lvname(lv));
goto deactivate_and_revert_new_lv; /* Let's retry on error path */
}
/* Get in sync with deactivation, before reusing LV as snapshot */
if (!sync_local_dev_names(lv->vg->cmd)) {
log_error("Failed to sync local devices before creating snapshot using %s.",
display_lvname(lv));
goto revert_new_lv;
}
/* Create zero origin volume for spare snapshot */
if (lp->virtual_extents &&
!(origin_lv = _create_virtual_origin(cmd, vg, lv->name,
lp->permission,
lp->virtual_extents)))
goto revert_new_lv;
/* Reset permission after zeroing */
if (!(lp->permission & LVM_WRITE))
lv->status &= ~LVM_WRITE;
/*
* COW LV is activated via implicit activation of origin LV
* Only the snapshot origin holds the LV lock in cluster
*/
if (!vg_add_snapshot(origin_lv, lv, NULL,
origin_lv->le_count, lp->chunk_size)) {
log_error("Couldn't create snapshot.");
goto deactivate_and_revert_new_lv;
}
if (lp->virtual_extents) {
/* Store vg on disk(s) */
if (!vg_write(vg) || !vg_commit(vg))
return_NULL; /* Metadata update fails, deep troubles */
backup(vg);
/*
* FIXME We do not actually need snapshot-origin as an active device,
* as virtual origin is already 'hidden' private device without
* vg/lv links. As such it is not supposed to be used by any user.
* Also it would save one dm table entry, but it needs quite a few
* changes in the libdm/lvm2 code base to support it.
*/
/* Activate spare snapshot once it is a complete LV */
if (!lv_active_change(cmd, origin_lv, lp->activate, 1)) {
log_error("Failed to activate sparce volume %s.",
display_lvname(origin_lv));
return NULL;
}
} else if (!lv_update_and_reload(origin_lv)) {
log_error("Aborting. Manual intervention required.");
return NULL; /* FIXME: revert */
}
}
out:
return lv;
deactivate_and_revert_new_lv:
if (!deactivate_lv(cmd, lv)) {
log_error("Unable to deactivate failed new LV %s. "
"Manual intervention required.", display_lvname(lv));
return NULL;
}
revert_new_lv:
lockd_free_lv(vg->cmd, vg, lp->lv_name, &lv->lvid.id[1], lp->lock_args);
/* FIXME Better to revert to backup of metadata? */
if (!lv_remove(lv) || !vg_write(vg) || !vg_commit(vg))
log_error("Manual intervention may be required to remove "
"abandoned LV(s) before retrying.");
else
backup(vg);
return NULL;
}
struct logical_volume *lv_create_single(struct volume_group *vg,
struct lvcreate_params *lp)
{
const struct segment_type *segtype;
struct logical_volume *lv;
/* Create pool first if necessary */
if (lp->create_pool && !seg_is_pool(lp)) {
segtype = lp->segtype;
if (seg_is_thin_volume(lp)) {
if (!(lp->segtype = get_segtype_from_string(vg->cmd, SEG_TYPE_NAME_THIN_POOL)))
return_NULL;
if (!(lv = _lv_create_an_lv(vg, lp, lp->pool_name)))
return_NULL;
} else if (seg_is_cache(lp)) {
if (!lp->origin_name) {
/* Until we have --pooldatasize we are lost */
log_error(INTERNAL_ERROR "Unsupported creation of cache and cache pool volume.");
return NULL;
}
/* origin_name is defined -> creates cache LV with new cache pool */
if (!(lp->segtype = get_segtype_from_string(vg->cmd, SEG_TYPE_NAME_CACHE_POOL)))
return_NULL;
if (!(lv = _lv_create_an_lv(vg, lp, lp->pool_name)))
return_NULL;
if (!lv_is_cache(lv)) {
log_error(INTERNAL_ERROR "Logical volume is not cache %s.",
display_lvname(lv));
return NULL;
}
/* Convertion via lvcreate */
log_print_unless_silent("Logical volume %s is now cached.",
display_lvname(lv));
return lv;
} else {
log_error(INTERNAL_ERROR "Creation of pool for unsupported segment type %s.",
lp->segtype->name);
return NULL;
}
lp->pool_name = lv->name;
lp->segtype = segtype;
}
if (!(lv = _lv_create_an_lv(vg, lp, lp->lv_name)))
return_NULL;
if (lp->temporary)
log_verbose("Temporary logical volume \"%s\" created.", lv->name);
else
log_print_unless_silent("Logical volume \"%s\" created.", lv->name);
return lv;
}