blob: 9a3f9b571d96dc4e30971cb08386cc49f4718f45 [file] [log] [blame]
/*
*
* (C) COPYRIGHT 2015-2016 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU licence.
*
* A copy of the licence is included with the program, and can also be obtained
* from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include <mali_kbase.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/shrinker.h>
#include <linux/atomic.h>
#include <linux/version.h>
/* This function is only provided for backwards compatibility with kernels
* which use the old carveout allocator.
*
* The forward declaration is to keep sparse happy.
*/
int __init kbase_carveout_mem_reserve(
phys_addr_t size);
int __init kbase_carveout_mem_reserve(phys_addr_t size)
{
return 0;
}
#define pool_dbg(pool, format, ...) \
dev_dbg(pool->kbdev->dev, "%s-pool [%zu/%zu]: " format, \
(pool->next_pool) ? "kctx" : "kbdev", \
kbase_mem_pool_size(pool), \
kbase_mem_pool_max_size(pool), \
##__VA_ARGS__)
#define NOT_DIRTY false
#define NOT_RECLAIMED false
static inline void kbase_mem_pool_lock(struct kbase_mem_pool *pool)
{
spin_lock(&pool->pool_lock);
}
static inline void kbase_mem_pool_unlock(struct kbase_mem_pool *pool)
{
spin_unlock(&pool->pool_lock);
}
static size_t kbase_mem_pool_capacity(struct kbase_mem_pool *pool)
{
ssize_t max_size = kbase_mem_pool_max_size(pool);
ssize_t cur_size = kbase_mem_pool_size(pool);
return max(max_size - cur_size, (ssize_t)0);
}
static bool kbase_mem_pool_is_full(struct kbase_mem_pool *pool)
{
return kbase_mem_pool_size(pool) >= kbase_mem_pool_max_size(pool);
}
static bool kbase_mem_pool_is_empty(struct kbase_mem_pool *pool)
{
return kbase_mem_pool_size(pool) == 0;
}
static void kbase_mem_pool_add_locked(struct kbase_mem_pool *pool,
struct page *p)
{
lockdep_assert_held(&pool->pool_lock);
list_add(&p->lru, &pool->page_list);
pool->cur_size++;
zone_page_state_add(1, page_zone(p), NR_SLAB_RECLAIMABLE);
pool_dbg(pool, "added page\n");
}
static void kbase_mem_pool_add(struct kbase_mem_pool *pool, struct page *p)
{
kbase_mem_pool_lock(pool);
kbase_mem_pool_add_locked(pool, p);
kbase_mem_pool_unlock(pool);
}
static void kbase_mem_pool_add_list_locked(struct kbase_mem_pool *pool,
struct list_head *page_list, size_t nr_pages)
{
struct page *p;
lockdep_assert_held(&pool->pool_lock);
list_for_each_entry(p, page_list, lru) {
zone_page_state_add(1, page_zone(p), NR_SLAB_RECLAIMABLE);
}
list_splice(page_list, &pool->page_list);
pool->cur_size += nr_pages;
pool_dbg(pool, "added %zu pages\n", nr_pages);
}
static void kbase_mem_pool_add_list(struct kbase_mem_pool *pool,
struct list_head *page_list, size_t nr_pages)
{
kbase_mem_pool_lock(pool);
kbase_mem_pool_add_list_locked(pool, page_list, nr_pages);
kbase_mem_pool_unlock(pool);
}
static struct page *kbase_mem_pool_remove_locked(struct kbase_mem_pool *pool)
{
struct page *p;
lockdep_assert_held(&pool->pool_lock);
if (kbase_mem_pool_is_empty(pool))
return NULL;
p = list_first_entry(&pool->page_list, struct page, lru);
list_del_init(&p->lru);
pool->cur_size--;
zone_page_state_add(-1, page_zone(p), NR_SLAB_RECLAIMABLE);
pool_dbg(pool, "removed page\n");
return p;
}
static struct page *kbase_mem_pool_remove(struct kbase_mem_pool *pool)
{
struct page *p;
kbase_mem_pool_lock(pool);
p = kbase_mem_pool_remove_locked(pool);
kbase_mem_pool_unlock(pool);
return p;
}
static void kbase_mem_pool_sync_page(struct kbase_mem_pool *pool,
struct page *p)
{
struct device *dev = pool->kbdev->dev;
dma_sync_single_for_device(dev, kbase_dma_addr(p),
PAGE_SIZE, DMA_BIDIRECTIONAL);
}
static void kbase_mem_pool_zero_page(struct kbase_mem_pool *pool,
struct page *p)
{
clear_highpage(p);
kbase_mem_pool_sync_page(pool, p);
}
static void kbase_mem_pool_spill(struct kbase_mem_pool *next_pool,
struct page *p)
{
/* Zero page before spilling */
kbase_mem_pool_zero_page(next_pool, p);
kbase_mem_pool_add(next_pool, p);
}
struct page *kbase_mem_alloc_page(struct kbase_device *kbdev)
{
struct page *p;
gfp_t gfp;
struct device *dev = kbdev->dev;
dma_addr_t dma_addr;
#if defined(CONFIG_ARM) && !defined(CONFIG_HAVE_DMA_ATTRS) && \
LINUX_VERSION_CODE < KERNEL_VERSION(3, 5, 0)
/* DMA cache sync fails for HIGHMEM before 3.5 on ARM */
gfp = GFP_USER | __GFP_ZERO;
#else
gfp = GFP_HIGHUSER | __GFP_ZERO;
#endif
if (current->flags & PF_KTHREAD) {
/* Don't trigger OOM killer from kernel threads, e.g. when
* growing memory on GPU page fault */
gfp |= __GFP_NORETRY;
}
p = alloc_page(gfp);
if (!p)
return NULL;
dma_addr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, dma_addr)) {
__free_page(p);
return NULL;
}
WARN_ON(dma_addr != page_to_phys(p));
kbase_set_dma_addr(p, dma_addr);
return p;
}
static void kbase_mem_pool_free_page(struct kbase_mem_pool *pool,
struct page *p)
{
struct device *dev = pool->kbdev->dev;
dma_addr_t dma_addr = kbase_dma_addr(p);
dma_unmap_page(dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
kbase_clear_dma_addr(p);
__free_page(p);
pool_dbg(pool, "freed page to kernel\n");
}
static size_t kbase_mem_pool_shrink_locked(struct kbase_mem_pool *pool,
size_t nr_to_shrink)
{
struct page *p;
size_t i;
lockdep_assert_held(&pool->pool_lock);
for (i = 0; i < nr_to_shrink && !kbase_mem_pool_is_empty(pool); i++) {
p = kbase_mem_pool_remove_locked(pool);
kbase_mem_pool_free_page(pool, p);
}
return i;
}
static size_t kbase_mem_pool_shrink(struct kbase_mem_pool *pool,
size_t nr_to_shrink)
{
size_t nr_freed;
kbase_mem_pool_lock(pool);
nr_freed = kbase_mem_pool_shrink_locked(pool, nr_to_shrink);
kbase_mem_pool_unlock(pool);
return nr_freed;
}
int kbase_mem_pool_grow(struct kbase_mem_pool *pool,
size_t nr_to_grow)
{
struct page *p;
size_t i;
for (i = 0; i < nr_to_grow; i++) {
p = kbase_mem_alloc_page(pool->kbdev);
if (!p)
return -ENOMEM;
kbase_mem_pool_add(pool, p);
}
return 0;
}
void kbase_mem_pool_trim(struct kbase_mem_pool *pool, size_t new_size)
{
size_t cur_size;
cur_size = kbase_mem_pool_size(pool);
if (new_size > pool->max_size)
new_size = pool->max_size;
if (new_size < cur_size)
kbase_mem_pool_shrink(pool, cur_size - new_size);
else if (new_size > cur_size)
kbase_mem_pool_grow(pool, new_size - cur_size);
}
void kbase_mem_pool_set_max_size(struct kbase_mem_pool *pool, size_t max_size)
{
size_t cur_size;
size_t nr_to_shrink;
kbase_mem_pool_lock(pool);
pool->max_size = max_size;
cur_size = kbase_mem_pool_size(pool);
if (max_size < cur_size) {
nr_to_shrink = cur_size - max_size;
kbase_mem_pool_shrink_locked(pool, nr_to_shrink);
}
kbase_mem_pool_unlock(pool);
}
static unsigned long kbase_mem_pool_reclaim_count_objects(struct shrinker *s,
struct shrink_control *sc)
{
struct kbase_mem_pool *pool;
pool = container_of(s, struct kbase_mem_pool, reclaim);
pool_dbg(pool, "reclaim count: %zu\n", kbase_mem_pool_size(pool));
return kbase_mem_pool_size(pool);
}
static unsigned long kbase_mem_pool_reclaim_scan_objects(struct shrinker *s,
struct shrink_control *sc)
{
struct kbase_mem_pool *pool;
unsigned long freed;
pool = container_of(s, struct kbase_mem_pool, reclaim);
pool_dbg(pool, "reclaim scan %ld:\n", sc->nr_to_scan);
freed = kbase_mem_pool_shrink(pool, sc->nr_to_scan);
pool_dbg(pool, "reclaim freed %ld pages\n", freed);
return freed;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 12, 0)
static int kbase_mem_pool_reclaim_shrink(struct shrinker *s,
struct shrink_control *sc)
{
if (sc->nr_to_scan == 0)
return kbase_mem_pool_reclaim_count_objects(s, sc);
return kbase_mem_pool_reclaim_scan_objects(s, sc);
}
#endif
int kbase_mem_pool_init(struct kbase_mem_pool *pool,
size_t max_size,
struct kbase_device *kbdev,
struct kbase_mem_pool *next_pool)
{
pool->cur_size = 0;
pool->max_size = max_size;
pool->kbdev = kbdev;
pool->next_pool = next_pool;
spin_lock_init(&pool->pool_lock);
INIT_LIST_HEAD(&pool->page_list);
/* Register shrinker */
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 12, 0)
pool->reclaim.shrink = kbase_mem_pool_reclaim_shrink;
#else
pool->reclaim.count_objects = kbase_mem_pool_reclaim_count_objects;
pool->reclaim.scan_objects = kbase_mem_pool_reclaim_scan_objects;
#endif
pool->reclaim.seeks = DEFAULT_SEEKS;
/* Kernel versions prior to 3.1 :
* struct shrinker does not define batch */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0)
pool->reclaim.batch = 0;
#endif
register_shrinker(&pool->reclaim);
pool_dbg(pool, "initialized\n");
return 0;
}
void kbase_mem_pool_term(struct kbase_mem_pool *pool)
{
struct kbase_mem_pool *next_pool = pool->next_pool;
struct page *p;
size_t nr_to_spill = 0;
LIST_HEAD(spill_list);
int i;
pool_dbg(pool, "terminate()\n");
unregister_shrinker(&pool->reclaim);
kbase_mem_pool_lock(pool);
pool->max_size = 0;
if (next_pool && !kbase_mem_pool_is_full(next_pool)) {
/* Spill to next pool (may overspill) */
nr_to_spill = kbase_mem_pool_capacity(next_pool);
nr_to_spill = min(kbase_mem_pool_size(pool), nr_to_spill);
/* Zero pages first without holding the next_pool lock */
for (i = 0; i < nr_to_spill; i++) {
p = kbase_mem_pool_remove_locked(pool);
kbase_mem_pool_zero_page(pool, p);
list_add(&p->lru, &spill_list);
}
}
while (!kbase_mem_pool_is_empty(pool)) {
/* Free remaining pages to kernel */
p = kbase_mem_pool_remove_locked(pool);
kbase_mem_pool_free_page(pool, p);
}
kbase_mem_pool_unlock(pool);
if (next_pool && nr_to_spill) {
/* Add new page list to next_pool */
kbase_mem_pool_add_list(next_pool, &spill_list, nr_to_spill);
pool_dbg(pool, "terminate() spilled %zu pages\n", nr_to_spill);
}
pool_dbg(pool, "terminated\n");
}
struct page *kbase_mem_pool_alloc(struct kbase_mem_pool *pool)
{
struct page *p;
do {
pool_dbg(pool, "alloc()\n");
p = kbase_mem_pool_remove(pool);
if (p)
return p;
pool = pool->next_pool;
} while (pool);
return NULL;
}
void kbase_mem_pool_free(struct kbase_mem_pool *pool, struct page *p,
bool dirty)
{
struct kbase_mem_pool *next_pool = pool->next_pool;
pool_dbg(pool, "free()\n");
if (!kbase_mem_pool_is_full(pool)) {
/* Add to our own pool */
if (dirty)
kbase_mem_pool_sync_page(pool, p);
kbase_mem_pool_add(pool, p);
} else if (next_pool && !kbase_mem_pool_is_full(next_pool)) {
/* Spill to next pool */
kbase_mem_pool_spill(next_pool, p);
} else {
/* Free page */
kbase_mem_pool_free_page(pool, p);
}
}
int kbase_mem_pool_alloc_pages(struct kbase_mem_pool *pool, size_t nr_pages,
phys_addr_t *pages)
{
struct page *p;
size_t nr_from_pool;
size_t i;
int err = -ENOMEM;
pool_dbg(pool, "alloc_pages(%zu):\n", nr_pages);
/* Get pages from this pool */
kbase_mem_pool_lock(pool);
nr_from_pool = min(nr_pages, kbase_mem_pool_size(pool));
for (i = 0; i < nr_from_pool; i++) {
p = kbase_mem_pool_remove_locked(pool);
pages[i] = page_to_phys(p);
}
kbase_mem_pool_unlock(pool);
if (i != nr_pages && pool->next_pool) {
/* Allocate via next pool */
err = kbase_mem_pool_alloc_pages(pool->next_pool,
nr_pages - i, pages + i);
if (err)
goto err_rollback;
i += nr_pages - i;
}
/* Get any remaining pages from kernel */
for (; i < nr_pages; i++) {
p = kbase_mem_alloc_page(pool->kbdev);
if (!p)
goto err_rollback;
pages[i] = page_to_phys(p);
}
pool_dbg(pool, "alloc_pages(%zu) done\n", nr_pages);
return 0;
err_rollback:
kbase_mem_pool_free_pages(pool, i, pages, NOT_DIRTY, NOT_RECLAIMED);
return err;
}
static void kbase_mem_pool_add_array(struct kbase_mem_pool *pool,
size_t nr_pages, phys_addr_t *pages, bool zero, bool sync)
{
struct page *p;
size_t nr_to_pool = 0;
LIST_HEAD(new_page_list);
size_t i;
if (!nr_pages)
return;
pool_dbg(pool, "add_array(%zu, zero=%d, sync=%d):\n",
nr_pages, zero, sync);
/* Zero/sync pages first without holding the pool lock */
for (i = 0; i < nr_pages; i++) {
if (unlikely(!pages[i]))
continue;
p = phys_to_page(pages[i]);
if (zero)
kbase_mem_pool_zero_page(pool, p);
else if (sync)
kbase_mem_pool_sync_page(pool, p);
list_add(&p->lru, &new_page_list);
nr_to_pool++;
pages[i] = 0;
}
/* Add new page list to pool */
kbase_mem_pool_add_list(pool, &new_page_list, nr_to_pool);
pool_dbg(pool, "add_array(%zu) added %zu pages\n",
nr_pages, nr_to_pool);
}
void kbase_mem_pool_free_pages(struct kbase_mem_pool *pool, size_t nr_pages,
phys_addr_t *pages, bool dirty, bool reclaimed)
{
struct kbase_mem_pool *next_pool = pool->next_pool;
struct page *p;
size_t nr_to_pool;
LIST_HEAD(to_pool_list);
size_t i = 0;
pool_dbg(pool, "free_pages(%zu):\n", nr_pages);
if (!reclaimed) {
/* Add to this pool */
nr_to_pool = kbase_mem_pool_capacity(pool);
nr_to_pool = min(nr_pages, nr_to_pool);
kbase_mem_pool_add_array(pool, nr_to_pool, pages, false, dirty);
i += nr_to_pool;
if (i != nr_pages && next_pool) {
/* Spill to next pool (may overspill) */
nr_to_pool = kbase_mem_pool_capacity(next_pool);
nr_to_pool = min(nr_pages - i, nr_to_pool);
kbase_mem_pool_add_array(next_pool, nr_to_pool,
pages + i, true, dirty);
i += nr_to_pool;
}
}
/* Free any remaining pages to kernel */
for (; i < nr_pages; i++) {
if (unlikely(!pages[i]))
continue;
p = phys_to_page(pages[i]);
if (reclaimed)
zone_page_state_add(-1, page_zone(p),
NR_SLAB_RECLAIMABLE);
kbase_mem_pool_free_page(pool, p);
pages[i] = 0;
}
pool_dbg(pool, "free_pages(%zu) done\n", nr_pages);
}