blob: 5137f0c295364c284643df97ff3be37cb111ad6d [file] [log] [blame]
/*
*
* (C) COPYRIGHT 2010-2016 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU licence.
*
* A copy of the licence is included with the program, and can also be obtained
* from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
/**
* @file mali_kbase_mem.h
* Base kernel memory APIs
*/
#ifndef _KBASE_MEM_H_
#define _KBASE_MEM_H_
#ifndef _KBASE_H_
#error "Don't include this file directly, use mali_kbase.h instead"
#endif
#include <linux/kref.h>
#ifdef CONFIG_KDS
#include <linux/kds.h>
#endif /* CONFIG_KDS */
#ifdef CONFIG_UMP
#include <linux/ump.h>
#endif /* CONFIG_UMP */
#include "mali_base_kernel.h"
#include <mali_kbase_hw.h>
#include "mali_kbase_pm.h"
#include "mali_kbase_defs.h"
#if defined(CONFIG_MALI_GATOR_SUPPORT)
#include "mali_kbase_gator.h"
#endif
/* Required for kbase_mem_evictable_unmake */
#include "mali_kbase_mem_linux.h"
/* Part of the workaround for uTLB invalid pages is to ensure we grow/shrink tmem by 4 pages at a time */
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_8316 (2) /* round to 4 pages */
/* Part of the workaround for PRLAM-9630 requires us to grow/shrink memory by 8 pages.
The MMU reads in 8 page table entries from memory at a time, if we have more than one page fault within the same 8 pages and
page tables are updated accordingly, the MMU does not re-read the page table entries from memory for the subsequent page table
updates and generates duplicate page faults as the page table information used by the MMU is not valid. */
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_9630 (3) /* round to 8 pages */
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2 (0) /* round to 1 page */
/* This must always be a power of 2 */
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES (1u << KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2)
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_HW_ISSUE_8316 (1u << KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_8316)
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_HW_ISSUE_9630 (1u << KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_9630)
/**
* A CPU mapping
*/
struct kbase_cpu_mapping {
struct list_head mappings_list;
struct kbase_mem_phy_alloc *alloc;
struct kbase_context *kctx;
struct kbase_va_region *region;
int count;
int free_on_close;
};
enum kbase_memory_type {
KBASE_MEM_TYPE_NATIVE,
KBASE_MEM_TYPE_IMPORTED_UMP,
KBASE_MEM_TYPE_IMPORTED_UMM,
KBASE_MEM_TYPE_IMPORTED_USER_BUF,
KBASE_MEM_TYPE_ALIAS,
KBASE_MEM_TYPE_TB,
KBASE_MEM_TYPE_RAW
};
/* internal structure, mirroring base_mem_aliasing_info,
* but with alloc instead of a gpu va (handle) */
struct kbase_aliased {
struct kbase_mem_phy_alloc *alloc; /* NULL for special, non-NULL for native */
u64 offset; /* in pages */
u64 length; /* in pages */
};
/**
* @brief Physical pages tracking object properties
*/
#define KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED (1ul << 0)
#define KBASE_MEM_PHY_ALLOC_LARGE (1ul << 1)
/* physical pages tracking object.
* Set up to track N pages.
* N not stored here, the creator holds that info.
* This object only tracks how many elements are actually valid (present).
* Changing of nents or *pages should only happen if the kbase_mem_phy_alloc is not
* shared with another region or client. CPU mappings are OK to exist when changing, as
* long as the tracked mappings objects are updated as part of the change.
*/
struct kbase_mem_phy_alloc {
struct kref kref; /* number of users of this alloc */
atomic_t gpu_mappings;
size_t nents; /* 0..N */
phys_addr_t *pages; /* N elements, only 0..nents are valid */
/* kbase_cpu_mappings */
struct list_head mappings;
/* Node used to store this allocation on the eviction list */
struct list_head evict_node;
/* Physical backing size when the pages where evicted */
size_t evicted;
/*
* Back reference to the region structure which created this
* allocation, or NULL if it has been freed.
*/
struct kbase_va_region *reg;
/* type of buffer */
enum kbase_memory_type type;
unsigned long properties;
struct list_head zone_cache;
/* member in union valid based on @a type */
union {
#ifdef CONFIG_UMP
ump_dd_handle ump_handle;
#endif /* CONFIG_UMP */
#if defined(CONFIG_DMA_SHARED_BUFFER)
struct {
struct dma_buf *dma_buf;
struct dma_buf_attachment *dma_attachment;
unsigned int current_mapping_usage_count;
struct sg_table *sgt;
} umm;
#endif /* defined(CONFIG_DMA_SHARED_BUFFER) */
struct {
u64 stride;
size_t nents;
struct kbase_aliased *aliased;
} alias;
/* Used by type = (KBASE_MEM_TYPE_NATIVE, KBASE_MEM_TYPE_TB) */
struct kbase_context *kctx;
struct {
unsigned long address;
unsigned long size;
unsigned long nr_pages;
struct page **pages;
unsigned int current_mapping_usage_count;
struct mm_struct *mm;
dma_addr_t *dma_addrs;
} user_buf;
} imported;
};
static inline void kbase_mem_phy_alloc_gpu_mapped(struct kbase_mem_phy_alloc *alloc)
{
KBASE_DEBUG_ASSERT(alloc);
/* we only track mappings of NATIVE buffers */
if (alloc->type == KBASE_MEM_TYPE_NATIVE)
atomic_inc(&alloc->gpu_mappings);
}
static inline void kbase_mem_phy_alloc_gpu_unmapped(struct kbase_mem_phy_alloc *alloc)
{
KBASE_DEBUG_ASSERT(alloc);
/* we only track mappings of NATIVE buffers */
if (alloc->type == KBASE_MEM_TYPE_NATIVE)
if (0 > atomic_dec_return(&alloc->gpu_mappings)) {
pr_err("Mismatched %s:\n", __func__);
dump_stack();
}
}
void kbase_mem_kref_free(struct kref *kref);
int kbase_mem_init(struct kbase_device *kbdev);
void kbase_mem_halt(struct kbase_device *kbdev);
void kbase_mem_term(struct kbase_device *kbdev);
static inline struct kbase_mem_phy_alloc *kbase_mem_phy_alloc_get(struct kbase_mem_phy_alloc *alloc)
{
kref_get(&alloc->kref);
return alloc;
}
static inline struct kbase_mem_phy_alloc *kbase_mem_phy_alloc_put(struct kbase_mem_phy_alloc *alloc)
{
kref_put(&alloc->kref, kbase_mem_kref_free);
return NULL;
}
/**
* A GPU memory region, and attributes for CPU mappings.
*/
struct kbase_va_region {
struct rb_node rblink;
struct list_head link;
struct kbase_context *kctx; /* Backlink to base context */
u64 start_pfn; /* The PFN in GPU space */
size_t nr_pages;
/* Free region */
#define KBASE_REG_FREE (1ul << 0)
/* CPU write access */
#define KBASE_REG_CPU_WR (1ul << 1)
/* GPU write access */
#define KBASE_REG_GPU_WR (1ul << 2)
/* No eXecute flag */
#define KBASE_REG_GPU_NX (1ul << 3)
/* Is CPU cached? */
#define KBASE_REG_CPU_CACHED (1ul << 4)
/* Is GPU cached? */
#define KBASE_REG_GPU_CACHED (1ul << 5)
#define KBASE_REG_GROWABLE (1ul << 6)
/* Can grow on pf? */
#define KBASE_REG_PF_GROW (1ul << 7)
/* VA managed by us */
#define KBASE_REG_CUSTOM_VA (1ul << 8)
/* inner shareable coherency */
#define KBASE_REG_SHARE_IN (1ul << 9)
/* inner & outer shareable coherency */
#define KBASE_REG_SHARE_BOTH (1ul << 10)
/* Space for 4 different zones */
#define KBASE_REG_ZONE_MASK (3ul << 11)
#define KBASE_REG_ZONE(x) (((x) & 3) << 11)
/* GPU read access */
#define KBASE_REG_GPU_RD (1ul<<13)
/* CPU read access */
#define KBASE_REG_CPU_RD (1ul<<14)
/* Index of chosen MEMATTR for this region (0..7) */
#define KBASE_REG_MEMATTR_MASK (7ul << 16)
#define KBASE_REG_MEMATTR_INDEX(x) (((x) & 7) << 16)
#define KBASE_REG_MEMATTR_VALUE(x) (((x) & KBASE_REG_MEMATTR_MASK) >> 16)
#define KBASE_REG_SECURE (1ul << 19)
#define KBASE_REG_DONT_NEED (1ul << 20)
#define KBASE_REG_ZONE_SAME_VA KBASE_REG_ZONE(0)
/* only used with 32-bit clients */
/*
* On a 32bit platform, custom VA should be wired from (4GB + shader region)
* to the VA limit of the GPU. Unfortunately, the Linux mmap() interface
* limits us to 2^32 pages (2^44 bytes, see mmap64 man page for reference).
* So we put the default limit to the maximum possible on Linux and shrink
* it down, if required by the GPU, during initialization.
*/
/*
* Dedicated 16MB region for shader code:
* VA range 0x101000000-0x102000000
*/
#define KBASE_REG_ZONE_EXEC KBASE_REG_ZONE(1)
#define KBASE_REG_ZONE_EXEC_BASE (0x101000000ULL >> PAGE_SHIFT)
#define KBASE_REG_ZONE_EXEC_SIZE ((16ULL * 1024 * 1024) >> PAGE_SHIFT)
#define KBASE_REG_ZONE_CUSTOM_VA KBASE_REG_ZONE(2)
#define KBASE_REG_ZONE_CUSTOM_VA_BASE (KBASE_REG_ZONE_EXEC_BASE + KBASE_REG_ZONE_EXEC_SIZE) /* Starting after KBASE_REG_ZONE_EXEC */
#define KBASE_REG_ZONE_CUSTOM_VA_SIZE (((1ULL << 44) >> PAGE_SHIFT) - KBASE_REG_ZONE_CUSTOM_VA_BASE)
/* end 32-bit clients only */
unsigned long flags;
size_t extent; /* nr of pages alloc'd on PF */
struct kbase_mem_phy_alloc *cpu_alloc; /* the one alloc object we mmap to the CPU when mapping this region */
struct kbase_mem_phy_alloc *gpu_alloc; /* the one alloc object we mmap to the GPU when mapping this region */
/* non-NULL if this memory object is a kds_resource */
struct kds_resource *kds_res;
/* List head used to store the region in the JIT allocation pool */
struct list_head jit_node;
};
/* Common functions */
static inline phys_addr_t *kbase_get_cpu_phy_pages(struct kbase_va_region *reg)
{
KBASE_DEBUG_ASSERT(reg);
KBASE_DEBUG_ASSERT(reg->cpu_alloc);
KBASE_DEBUG_ASSERT(reg->gpu_alloc);
KBASE_DEBUG_ASSERT(reg->cpu_alloc->nents == reg->gpu_alloc->nents);
return reg->cpu_alloc->pages;
}
static inline phys_addr_t *kbase_get_gpu_phy_pages(struct kbase_va_region *reg)
{
KBASE_DEBUG_ASSERT(reg);
KBASE_DEBUG_ASSERT(reg->cpu_alloc);
KBASE_DEBUG_ASSERT(reg->gpu_alloc);
KBASE_DEBUG_ASSERT(reg->cpu_alloc->nents == reg->gpu_alloc->nents);
return reg->gpu_alloc->pages;
}
static inline size_t kbase_reg_current_backed_size(struct kbase_va_region *reg)
{
KBASE_DEBUG_ASSERT(reg);
/* if no alloc object the backed size naturally is 0 */
if (!reg->cpu_alloc)
return 0;
KBASE_DEBUG_ASSERT(reg->cpu_alloc);
KBASE_DEBUG_ASSERT(reg->gpu_alloc);
KBASE_DEBUG_ASSERT(reg->cpu_alloc->nents == reg->gpu_alloc->nents);
return reg->cpu_alloc->nents;
}
#define KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD ((size_t)(4*1024)) /* size above which vmalloc is used over kmalloc */
static inline struct kbase_mem_phy_alloc *kbase_alloc_create(size_t nr_pages, enum kbase_memory_type type)
{
struct kbase_mem_phy_alloc *alloc;
size_t alloc_size = sizeof(*alloc) + sizeof(*alloc->pages) * nr_pages;
size_t per_page_size = sizeof(*alloc->pages);
/* Imported pages may have page private data already in use */
if (type == KBASE_MEM_TYPE_IMPORTED_USER_BUF) {
alloc_size += nr_pages *
sizeof(*alloc->imported.user_buf.dma_addrs);
per_page_size += sizeof(*alloc->imported.user_buf.dma_addrs);
}
/*
* Prevent nr_pages*per_page_size + sizeof(*alloc) from
* wrapping around.
*/
if (nr_pages > ((((size_t) -1) - sizeof(*alloc))
/ per_page_size))
return ERR_PTR(-ENOMEM);
/* Allocate based on the size to reduce internal fragmentation of vmem */
if (alloc_size > KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD)
alloc = vzalloc(alloc_size);
else
alloc = kzalloc(alloc_size, GFP_KERNEL);
if (!alloc)
return ERR_PTR(-ENOMEM);
/* Store allocation method */
if (alloc_size > KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD)
alloc->properties |= KBASE_MEM_PHY_ALLOC_LARGE;
kref_init(&alloc->kref);
atomic_set(&alloc->gpu_mappings, 0);
alloc->nents = 0;
alloc->pages = (void *)(alloc + 1);
INIT_LIST_HEAD(&alloc->mappings);
alloc->type = type;
INIT_LIST_HEAD(&alloc->zone_cache);
if (type == KBASE_MEM_TYPE_IMPORTED_USER_BUF)
alloc->imported.user_buf.dma_addrs =
(void *) (alloc->pages + nr_pages);
return alloc;
}
static inline int kbase_reg_prepare_native(struct kbase_va_region *reg,
struct kbase_context *kctx)
{
KBASE_DEBUG_ASSERT(reg);
KBASE_DEBUG_ASSERT(!reg->cpu_alloc);
KBASE_DEBUG_ASSERT(!reg->gpu_alloc);
KBASE_DEBUG_ASSERT(reg->flags & KBASE_REG_FREE);
reg->cpu_alloc = kbase_alloc_create(reg->nr_pages,
KBASE_MEM_TYPE_NATIVE);
if (IS_ERR(reg->cpu_alloc))
return PTR_ERR(reg->cpu_alloc);
else if (!reg->cpu_alloc)
return -ENOMEM;
reg->cpu_alloc->imported.kctx = kctx;
INIT_LIST_HEAD(&reg->cpu_alloc->evict_node);
if (kbase_ctx_flag(kctx, KCTX_INFINITE_CACHE)
&& (reg->flags & KBASE_REG_CPU_CACHED)) {
reg->gpu_alloc = kbase_alloc_create(reg->nr_pages,
KBASE_MEM_TYPE_NATIVE);
reg->gpu_alloc->imported.kctx = kctx;
INIT_LIST_HEAD(&reg->gpu_alloc->evict_node);
} else {
reg->gpu_alloc = kbase_mem_phy_alloc_get(reg->cpu_alloc);
}
INIT_LIST_HEAD(&reg->jit_node);
reg->flags &= ~KBASE_REG_FREE;
return 0;
}
static inline int kbase_atomic_add_pages(int num_pages, atomic_t *used_pages)
{
int new_val = atomic_add_return(num_pages, used_pages);
#if defined(CONFIG_MALI_GATOR_SUPPORT)
kbase_trace_mali_total_alloc_pages_change((long long int)new_val);
#endif
return new_val;
}
static inline int kbase_atomic_sub_pages(int num_pages, atomic_t *used_pages)
{
int new_val = atomic_sub_return(num_pages, used_pages);
#if defined(CONFIG_MALI_GATOR_SUPPORT)
kbase_trace_mali_total_alloc_pages_change((long long int)new_val);
#endif
return new_val;
}
/*
* Max size for kbdev memory pool (in pages)
*/
#define KBASE_MEM_POOL_MAX_SIZE_KBDEV (SZ_64M >> PAGE_SHIFT)
/*
* Max size for kctx memory pool (in pages)
*/
#define KBASE_MEM_POOL_MAX_SIZE_KCTX (SZ_64M >> PAGE_SHIFT)
/**
* kbase_mem_pool_init - Create a memory pool for a kbase device
* @pool: Memory pool to initialize
* @max_size: Maximum number of free pages the pool can hold
* @kbdev: Kbase device where memory is used
* @next_pool: Pointer to the next pool or NULL.
*
* Allocations from @pool are in whole pages. Each @pool has a free list where
* pages can be quickly allocated from. The free list is initially empty and
* filled whenever pages are freed back to the pool. The number of free pages
* in the pool will in general not exceed @max_size, but the pool may in
* certain corner cases grow above @max_size.
*
* If @next_pool is not NULL, we will allocate from @next_pool before going to
* the kernel allocator. Similarily pages can spill over to @next_pool when
* @pool is full. Pages are zeroed before they spill over to another pool, to
* prevent leaking information between applications.
*
* A shrinker is registered so that Linux mm can reclaim pages from the pool as
* needed.
*
* Return: 0 on success, negative -errno on error
*/
int kbase_mem_pool_init(struct kbase_mem_pool *pool,
size_t max_size,
struct kbase_device *kbdev,
struct kbase_mem_pool *next_pool);
/**
* kbase_mem_pool_term - Destroy a memory pool
* @pool: Memory pool to destroy
*
* Pages in the pool will spill over to @next_pool (if available) or freed to
* the kernel.
*/
void kbase_mem_pool_term(struct kbase_mem_pool *pool);
/**
* kbase_mem_pool_alloc - Allocate a page from memory pool
* @pool: Memory pool to allocate from
*
* Allocations from the pool are made as follows:
* 1. If there are free pages in the pool, allocate a page from @pool.
* 2. Otherwise, if @next_pool is not NULL and has free pages, allocate a page
* from @next_pool.
* 3. Return NULL if no memory in the pool
*
* Return: Pointer to allocated page, or NULL if allocation failed.
*/
struct page *kbase_mem_pool_alloc(struct kbase_mem_pool *pool);
/**
* kbase_mem_pool_free - Free a page to memory pool
* @pool: Memory pool where page should be freed
* @page: Page to free to the pool
* @dirty: Whether some of the page may be dirty in the cache.
*
* Pages are freed to the pool as follows:
* 1. If @pool is not full, add @page to @pool.
* 2. Otherwise, if @next_pool is not NULL and not full, add @page to
* @next_pool.
* 3. Finally, free @page to the kernel.
*/
void kbase_mem_pool_free(struct kbase_mem_pool *pool, struct page *page,
bool dirty);
/**
* kbase_mem_pool_alloc_pages - Allocate pages from memory pool
* @pool: Memory pool to allocate from
* @nr_pages: Number of pages to allocate
* @pages: Pointer to array where the physical address of the allocated
* pages will be stored.
*
* Like kbase_mem_pool_alloc() but optimized for allocating many pages.
*
* Return: 0 on success, negative -errno on error
*/
int kbase_mem_pool_alloc_pages(struct kbase_mem_pool *pool, size_t nr_pages,
phys_addr_t *pages);
/**
* kbase_mem_pool_free_pages - Free pages to memory pool
* @pool: Memory pool where pages should be freed
* @nr_pages: Number of pages to free
* @pages: Pointer to array holding the physical addresses of the pages to
* free.
* @dirty: Whether any pages may be dirty in the cache.
* @reclaimed: Whether the pages where reclaimable and thus should bypass
* the pool and go straight to the kernel.
*
* Like kbase_mem_pool_free() but optimized for freeing many pages.
*/
void kbase_mem_pool_free_pages(struct kbase_mem_pool *pool, size_t nr_pages,
phys_addr_t *pages, bool dirty, bool reclaimed);
/**
* kbase_mem_pool_size - Get number of free pages in memory pool
* @pool: Memory pool to inspect
*
* Note: the size of the pool may in certain corner cases exceed @max_size!
*
* Return: Number of free pages in the pool
*/
static inline size_t kbase_mem_pool_size(struct kbase_mem_pool *pool)
{
return ACCESS_ONCE(pool->cur_size);
}
/**
* kbase_mem_pool_max_size - Get maximum number of free pages in memory pool
* @pool: Memory pool to inspect
*
* Return: Maximum number of free pages in the pool
*/
static inline size_t kbase_mem_pool_max_size(struct kbase_mem_pool *pool)
{
return pool->max_size;
}
/**
* kbase_mem_pool_set_max_size - Set maximum number of free pages in memory pool
* @pool: Memory pool to inspect
* @max_size: Maximum number of free pages the pool can hold
*
* If @max_size is reduced, the pool will be shrunk to adhere to the new limit.
* For details see kbase_mem_pool_shrink().
*/
void kbase_mem_pool_set_max_size(struct kbase_mem_pool *pool, size_t max_size);
/**
* kbase_mem_pool_grow - Grow the pool
* @pool: Memory pool to grow
* @nr_to_grow: Number of pages to add to the pool
*
* Adds @nr_to_grow pages to the pool. Note that this may cause the pool to
* become larger than the maximum size specified.
*
* Returns: 0 on success, -ENOMEM if unable to allocate sufficent pages
*/
int kbase_mem_pool_grow(struct kbase_mem_pool *pool, size_t nr_to_grow);
/**
* kbase_mem_pool_trim - Grow or shrink the pool to a new size
* @pool: Memory pool to trim
* @new_size: New number of pages in the pool
*
* If @new_size > @cur_size, fill the pool with new pages from the kernel, but
* not above the max_size for the pool.
* If @new_size < @cur_size, shrink the pool by freeing pages to the kernel.
*/
void kbase_mem_pool_trim(struct kbase_mem_pool *pool, size_t new_size);
/*
* kbase_mem_alloc_page - Allocate a new page for a device
* @kbdev: The kbase device
*
* Most uses should use kbase_mem_pool_alloc to allocate a page. However that
* function can fail in the event the pool is empty.
*
* Return: A new page or NULL if no memory
*/
struct page *kbase_mem_alloc_page(struct kbase_device *kbdev);
int kbase_region_tracker_init(struct kbase_context *kctx);
int kbase_region_tracker_init_jit(struct kbase_context *kctx, u64 jit_va_pages);
void kbase_region_tracker_term(struct kbase_context *kctx);
struct kbase_va_region *kbase_region_tracker_find_region_enclosing_address(struct kbase_context *kctx, u64 gpu_addr);
/**
* @brief Check that a pointer is actually a valid region.
*
* Must be called with context lock held.
*/
struct kbase_va_region *kbase_region_tracker_find_region_base_address(struct kbase_context *kctx, u64 gpu_addr);
struct kbase_va_region *kbase_alloc_free_region(struct kbase_context *kctx, u64 start_pfn, size_t nr_pages, int zone);
void kbase_free_alloced_region(struct kbase_va_region *reg);
int kbase_add_va_region(struct kbase_context *kctx, struct kbase_va_region *reg, u64 addr, size_t nr_pages, size_t align);
bool kbase_check_alloc_flags(unsigned long flags);
bool kbase_check_import_flags(unsigned long flags);
void kbase_update_region_flags(struct kbase_context *kctx,
struct kbase_va_region *reg, unsigned long flags);
void kbase_gpu_vm_lock(struct kbase_context *kctx);
void kbase_gpu_vm_unlock(struct kbase_context *kctx);
int kbase_alloc_phy_pages(struct kbase_va_region *reg, size_t vsize, size_t size);
int kbase_mmu_init(struct kbase_context *kctx);
void kbase_mmu_term(struct kbase_context *kctx);
phys_addr_t kbase_mmu_alloc_pgd(struct kbase_context *kctx);
void kbase_mmu_free_pgd(struct kbase_context *kctx);
int kbase_mmu_insert_pages_no_flush(struct kbase_context *kctx, u64 vpfn,
phys_addr_t *phys, size_t nr,
unsigned long flags);
int kbase_mmu_insert_pages(struct kbase_context *kctx, u64 vpfn,
phys_addr_t *phys, size_t nr,
unsigned long flags);
int kbase_mmu_insert_single_page(struct kbase_context *kctx, u64 vpfn,
phys_addr_t phys, size_t nr,
unsigned long flags);
int kbase_mmu_teardown_pages(struct kbase_context *kctx, u64 vpfn, size_t nr);
int kbase_mmu_update_pages(struct kbase_context *kctx, u64 vpfn, phys_addr_t *phys, size_t nr, unsigned long flags);
/**
* @brief Register region and map it on the GPU.
*
* Call kbase_add_va_region() and map the region on the GPU.
*/
int kbase_gpu_mmap(struct kbase_context *kctx, struct kbase_va_region *reg, u64 addr, size_t nr_pages, size_t align);
/**
* @brief Remove the region from the GPU and unregister it.
*
* Must be called with context lock held.
*/
int kbase_gpu_munmap(struct kbase_context *kctx, struct kbase_va_region *reg);
/**
* The caller has the following locking conditions:
* - It must hold kbase_device->mmu_hw_mutex
* - It must hold the hwaccess_lock
*/
void kbase_mmu_update(struct kbase_context *kctx);
/**
* kbase_mmu_disable() - Disable the MMU for a previously active kbase context.
* @kctx: Kbase context
*
* Disable and perform the required cache maintenance to remove the all
* data from provided kbase context from the GPU caches.
*
* The caller has the following locking conditions:
* - It must hold kbase_device->mmu_hw_mutex
* - It must hold the hwaccess_lock
*/
void kbase_mmu_disable(struct kbase_context *kctx);
/**
* kbase_mmu_disable_as() - Set the MMU to unmapped mode for the specified
* address space.
* @kbdev: Kbase device
* @as_nr: The address space number to set to unmapped.
*
* This function must only be called during reset/power-up and it used to
* ensure the registers are in a known state.
*
* The caller must hold kbdev->mmu_hw_mutex.
*/
void kbase_mmu_disable_as(struct kbase_device *kbdev, int as_nr);
void kbase_mmu_interrupt(struct kbase_device *kbdev, u32 irq_stat);
/** Dump the MMU tables to a buffer
*
* This function allocates a buffer (of @c nr_pages pages) to hold a dump of the MMU tables and fills it. If the
* buffer is too small then the return value will be NULL.
*
* The GPU vm lock must be held when calling this function.
*
* The buffer returned should be freed with @ref vfree when it is no longer required.
*
* @param[in] kctx The kbase context to dump
* @param[in] nr_pages The number of pages to allocate for the buffer.
*
* @return The address of the buffer containing the MMU dump or NULL on error (including if the @c nr_pages is too
* small)
*/
void *kbase_mmu_dump(struct kbase_context *kctx, int nr_pages);
int kbase_sync_now(struct kbase_context *kctx, struct base_syncset *syncset);
void kbase_sync_single(struct kbase_context *kctx, phys_addr_t cpu_pa,
phys_addr_t gpu_pa, off_t offset, size_t size,
enum kbase_sync_type sync_fn);
void kbase_pre_job_sync(struct kbase_context *kctx, struct base_syncset *syncsets, size_t nr);
void kbase_post_job_sync(struct kbase_context *kctx, struct base_syncset *syncsets, size_t nr);
/* OS specific functions */
int kbase_mem_free(struct kbase_context *kctx, u64 gpu_addr);
int kbase_mem_free_region(struct kbase_context *kctx, struct kbase_va_region *reg);
void kbase_os_mem_map_lock(struct kbase_context *kctx);
void kbase_os_mem_map_unlock(struct kbase_context *kctx);
/**
* @brief Update the memory allocation counters for the current process
*
* OS specific call to updates the current memory allocation counters for the current process with
* the supplied delta.
*
* @param[in] kctx The kbase context
* @param[in] pages The desired delta to apply to the memory usage counters.
*/
void kbasep_os_process_page_usage_update(struct kbase_context *kctx, int pages);
/**
* @brief Add to the memory allocation counters for the current process
*
* OS specific call to add to the current memory allocation counters for the current process by
* the supplied amount.
*
* @param[in] kctx The kernel base context used for the allocation.
* @param[in] pages The desired delta to apply to the memory usage counters.
*/
static inline void kbase_process_page_usage_inc(struct kbase_context *kctx, int pages)
{
kbasep_os_process_page_usage_update(kctx, pages);
}
/**
* @brief Subtract from the memory allocation counters for the current process
*
* OS specific call to subtract from the current memory allocation counters for the current process by
* the supplied amount.
*
* @param[in] kctx The kernel base context used for the allocation.
* @param[in] pages The desired delta to apply to the memory usage counters.
*/
static inline void kbase_process_page_usage_dec(struct kbase_context *kctx, int pages)
{
kbasep_os_process_page_usage_update(kctx, 0 - pages);
}
/**
* kbasep_find_enclosing_cpu_mapping_offset() - Find the offset of the CPU
* mapping of a memory allocation containing a given address range
*
* Searches for a CPU mapping of any part of any region that fully encloses the
* CPU virtual address range specified by @uaddr and @size. Returns a failure
* indication if only part of the address range lies within a CPU mapping.
*
* @kctx: The kernel base context used for the allocation.
* @uaddr: Start of the CPU virtual address range.
* @size: Size of the CPU virtual address range (in bytes).
* @offset: The offset from the start of the allocation to the specified CPU
* virtual address.
*
* Return: 0 if offset was obtained successfully. Error code otherwise.
*/
int kbasep_find_enclosing_cpu_mapping_offset(
struct kbase_context *kctx,
unsigned long uaddr, size_t size, u64 *offset);
enum hrtimer_restart kbasep_as_poke_timer_callback(struct hrtimer *timer);
void kbase_as_poking_timer_retain_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom);
void kbase_as_poking_timer_release_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom);
/**
* @brief Allocates physical pages.
*
* Allocates \a nr_pages_requested and updates the alloc object.
*
* @param[in] alloc allocation object to add pages to
* @param[in] nr_pages_requested number of physical pages to allocate
*
* @return 0 if all pages have been successfully allocated. Error code otherwise
*/
int kbase_alloc_phy_pages_helper(struct kbase_mem_phy_alloc *alloc, size_t nr_pages_requested);
/**
* @brief Free physical pages.
*
* Frees \a nr_pages and updates the alloc object.
*
* @param[in] alloc allocation object to free pages from
* @param[in] nr_pages_to_free number of physical pages to free
*/
int kbase_free_phy_pages_helper(struct kbase_mem_phy_alloc *alloc, size_t nr_pages_to_free);
static inline void kbase_set_dma_addr(struct page *p, dma_addr_t dma_addr)
{
SetPagePrivate(p);
if (sizeof(dma_addr_t) > sizeof(p->private)) {
/* on 32-bit ARM with LPAE dma_addr_t becomes larger, but the
* private field stays the same. So we have to be clever and
* use the fact that we only store DMA addresses of whole pages,
* so the low bits should be zero */
KBASE_DEBUG_ASSERT(!(dma_addr & (PAGE_SIZE - 1)));
set_page_private(p, dma_addr >> PAGE_SHIFT);
} else {
set_page_private(p, dma_addr);
}
}
static inline dma_addr_t kbase_dma_addr(struct page *p)
{
if (sizeof(dma_addr_t) > sizeof(p->private))
return ((dma_addr_t)page_private(p)) << PAGE_SHIFT;
return (dma_addr_t)page_private(p);
}
static inline void kbase_clear_dma_addr(struct page *p)
{
ClearPagePrivate(p);
}
/**
* @brief Process a bus or page fault.
*
* This function will process a fault on a specific address space
*
* @param[in] kbdev The @ref kbase_device the fault happened on
* @param[in] kctx The @ref kbase_context for the faulting address space if
* one was found.
* @param[in] as The address space that has the fault
*/
void kbase_mmu_interrupt_process(struct kbase_device *kbdev,
struct kbase_context *kctx, struct kbase_as *as);
/**
* @brief Process a page fault.
*
* @param[in] data work_struct passed by queue_work()
*/
void page_fault_worker(struct work_struct *data);
/**
* @brief Process a bus fault.
*
* @param[in] data work_struct passed by queue_work()
*/
void bus_fault_worker(struct work_struct *data);
/**
* @brief Flush MMU workqueues.
*
* This function will cause any outstanding page or bus faults to be processed.
* It should be called prior to powering off the GPU.
*
* @param[in] kbdev Device pointer
*/
void kbase_flush_mmu_wqs(struct kbase_device *kbdev);
/**
* kbase_sync_single_for_device - update physical memory and give GPU ownership
* @kbdev: Device pointer
* @handle: DMA address of region
* @size: Size of region to sync
* @dir: DMA data direction
*/
void kbase_sync_single_for_device(struct kbase_device *kbdev, dma_addr_t handle,
size_t size, enum dma_data_direction dir);
/**
* kbase_sync_single_for_cpu - update physical memory and give CPU ownership
* @kbdev: Device pointer
* @handle: DMA address of region
* @size: Size of region to sync
* @dir: DMA data direction
*/
void kbase_sync_single_for_cpu(struct kbase_device *kbdev, dma_addr_t handle,
size_t size, enum dma_data_direction dir);
#ifdef CONFIG_DEBUG_FS
/**
* kbase_jit_debugfs_init - Add per context debugfs entry for JIT.
* @kctx: kbase context
*/
void kbase_jit_debugfs_init(struct kbase_context *kctx);
#endif /* CONFIG_DEBUG_FS */
/**
* kbase_jit_init - Initialize the JIT memory pool management
* @kctx: kbase context
*
* Returns zero on success or negative error number on failure.
*/
int kbase_jit_init(struct kbase_context *kctx);
/**
* kbase_jit_allocate - Allocate JIT memory
* @kctx: kbase context
* @info: JIT allocation information
*
* Return: JIT allocation on success or NULL on failure.
*/
struct kbase_va_region *kbase_jit_allocate(struct kbase_context *kctx,
struct base_jit_alloc_info *info);
/**
* kbase_jit_free - Free a JIT allocation
* @kctx: kbase context
* @reg: JIT allocation
*
* Frees a JIT allocation and places it into the free pool for later reuse.
*/
void kbase_jit_free(struct kbase_context *kctx, struct kbase_va_region *reg);
/**
* kbase_jit_backing_lost - Inform JIT that an allocation has lost backing
* @reg: JIT allocation
*/
void kbase_jit_backing_lost(struct kbase_va_region *reg);
/**
* kbase_jit_evict - Evict a JIT allocation from the pool
* @kctx: kbase context
*
* Evict the least recently used JIT allocation from the pool. This can be
* required if normal VA allocations are failing due to VA exhaustion.
*
* Return: True if a JIT allocation was freed, false otherwise.
*/
bool kbase_jit_evict(struct kbase_context *kctx);
/**
* kbase_jit_term - Terminate the JIT memory pool management
* @kctx: kbase context
*/
void kbase_jit_term(struct kbase_context *kctx);
/**
* kbase_map_external_resource - Map an external resource to the GPU.
* @kctx: kbase context.
* @reg: The region to map.
* @locked_mm: The mm_struct which has been locked for this operation.
* @kds_res_count: The number of KDS resources.
* @kds_resources: Array of KDS resources.
* @kds_access_bitmap: Access bitmap for KDS.
* @exclusive: If the KDS resource requires exclusive access.
*
* Return: The physical allocation which backs the region on success or NULL
* on failure.
*/
struct kbase_mem_phy_alloc *kbase_map_external_resource(
struct kbase_context *kctx, struct kbase_va_region *reg,
struct mm_struct *locked_mm
#ifdef CONFIG_KDS
, u32 *kds_res_count, struct kds_resource **kds_resources,
unsigned long *kds_access_bitmap, bool exclusive
#endif
);
/**
* kbase_unmap_external_resource - Unmap an external resource from the GPU.
* @kctx: kbase context.
* @reg: The region to unmap or NULL if it has already been released.
* @alloc: The physical allocation being unmapped.
*/
void kbase_unmap_external_resource(struct kbase_context *kctx,
struct kbase_va_region *reg, struct kbase_mem_phy_alloc *alloc);
/**
* kbase_sticky_resource_init - Initialize sticky resource management.
* @kctx: kbase context
*
* Returns zero on success or negative error number on failure.
*/
int kbase_sticky_resource_init(struct kbase_context *kctx);
/**
* kbase_sticky_resource_acquire - Acquire a reference on a sticky resource.
* @kctx: kbase context.
* @gpu_addr: The GPU address of the external resource.
*
* Return: The metadata object which represents the binding between the
* external resource and the kbase context on success or NULL on failure.
*/
struct kbase_ctx_ext_res_meta *kbase_sticky_resource_acquire(
struct kbase_context *kctx, u64 gpu_addr);
/**
* kbase_sticky_resource_release - Release a reference on a sticky resource.
* @kctx: kbase context.
* @meta: Binding metadata.
* @gpu_addr: GPU address of the external resource.
*
* If meta is NULL then gpu_addr will be used to scan the metadata list and
* find the matching metadata (if any), otherwise the provided meta will be
* used and gpu_addr will be ignored.
*
* Return: True if the release found the metadata and the reference was dropped.
*/
bool kbase_sticky_resource_release(struct kbase_context *kctx,
struct kbase_ctx_ext_res_meta *meta, u64 gpu_addr);
/**
* kbase_sticky_resource_term - Terminate sticky resource management.
* @kctx: kbase context
*/
void kbase_sticky_resource_term(struct kbase_context *kctx);
/**
* kbase_zone_cache_update - Update the memory zone cache after new pages have
* been added.
* @alloc: The physical memory allocation to build the cache for.
* @start_offset: Offset to where the new pages start.
*
* Updates an existing memory zone cache, updating the counters for the
* various zones.
* If the memory allocation doesn't already have a zone cache assume that
* one isn't created and thus don't do anything.
*
* Return: Zero cache was updated, negative error code on error.
*/
int kbase_zone_cache_update(struct kbase_mem_phy_alloc *alloc,
size_t start_offset);
/**
* kbase_zone_cache_build - Build the memory zone cache.
* @alloc: The physical memory allocation to build the cache for.
*
* Create a new zone cache for the provided physical memory allocation if
* one doesn't already exist, if one does exist then just return.
*
* Return: Zero if the zone cache was created, negative error code on error.
*/
int kbase_zone_cache_build(struct kbase_mem_phy_alloc *alloc);
/**
* kbase_zone_cache_clear - Clear the memory zone cache.
* @alloc: The physical memory allocation to clear the cache on.
*/
void kbase_zone_cache_clear(struct kbase_mem_phy_alloc *alloc);
#endif /* _KBASE_MEM_H_ */