blob: b093e631b66a2f554e80f0ba805c2e0f16a8af69 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
/*
*
* (C) COPYRIGHT 2011-2022 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU license.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
*/
/*
* Base kernel property query APIs
*/
#include <mali_kbase.h>
#include <gpu/mali_kbase_gpu_regmap.h>
#include <mali_kbase_gpuprops.h>
#include <mali_kbase_hwaccess_gpuprops.h>
#include <mali_kbase_config_defaults.h>
#include <uapi/gpu/arm/midgard/mali_kbase_ioctl.h>
#include <linux/clk.h>
#include <backend/gpu/mali_kbase_pm_internal.h>
#include <linux/of_platform.h>
#include <linux/moduleparam.h>
static void kbase_gpuprops_construct_coherent_groups(
struct base_gpu_props * const props)
{
struct mali_base_gpu_coherent_group *current_group;
u64 group_present;
u64 group_mask;
u64 first_set, first_set_prev;
u32 num_groups = 0;
KBASE_DEBUG_ASSERT(props != NULL);
props->coherency_info.coherency = props->raw_props.mem_features;
props->coherency_info.num_core_groups = hweight64(props->raw_props.l2_present);
if (props->coherency_info.coherency & GROUPS_L2_COHERENT) {
/* Group is l2 coherent */
group_present = props->raw_props.l2_present;
} else {
/* Group is l1 coherent */
group_present = props->raw_props.shader_present;
}
/*
* The coherent group mask can be computed from the l2 present
* register.
*
* For the coherent group n:
* group_mask[n] = (first_set[n] - 1) & ~(first_set[n-1] - 1)
* where first_set is group_present with only its nth set-bit kept
* (i.e. the position from where a new group starts).
*
* For instance if the groups are l2 coherent and l2_present=0x0..01111:
* The first mask is:
* group_mask[1] = (first_set[1] - 1) & ~(first_set[0] - 1)
* = (0x0..010 - 1) & ~(0x0..01 - 1)
* = 0x0..00f
* The second mask is:
* group_mask[2] = (first_set[2] - 1) & ~(first_set[1] - 1)
* = (0x0..100 - 1) & ~(0x0..010 - 1)
* = 0x0..0f0
* And so on until all the bits from group_present have been cleared
* (i.e. there is no group left).
*/
current_group = props->coherency_info.group;
first_set = group_present & ~(group_present - 1);
while (group_present != 0 && num_groups < BASE_MAX_COHERENT_GROUPS) {
group_present -= first_set; /* Clear the current group bit */
first_set_prev = first_set;
first_set = group_present & ~(group_present - 1);
group_mask = (first_set - 1) & ~(first_set_prev - 1);
/* Populate the coherent_group structure for each group */
current_group->core_mask = group_mask & props->raw_props.shader_present;
current_group->num_cores = hweight64(current_group->core_mask);
num_groups++;
current_group++;
}
if (group_present != 0)
pr_warn("Too many coherent groups (keeping only %d groups).\n", BASE_MAX_COHERENT_GROUPS);
props->coherency_info.num_groups = num_groups;
}
/**
* kbase_gpuprops_get_curr_config_props - Get the current allocated resources
* @kbdev: The &struct kbase_device structure for the device
* @curr_config: The &struct curr_config_props structure to receive the result
*
* Fill the &struct curr_config_props structure with values from the GPU
* configuration registers.
*
* Return: Zero on success, Linux error code on failure
*/
int kbase_gpuprops_get_curr_config_props(struct kbase_device *kbdev,
struct curr_config_props * const curr_config)
{
struct kbase_current_config_regdump curr_config_regdump;
int err;
if (WARN_ON(!kbdev) || WARN_ON(!curr_config))
return -EINVAL;
/* If update not needed just return. */
if (!curr_config->update_needed)
return 0;
/* Dump relevant registers */
err = kbase_backend_gpuprops_get_curr_config(kbdev,
&curr_config_regdump);
if (err)
return err;
curr_config->l2_slices =
KBASE_UBFX32(curr_config_regdump.mem_features, 8U, 4) + 1;
curr_config->l2_present =
((u64) curr_config_regdump.l2_present_hi << 32) +
curr_config_regdump.l2_present_lo;
curr_config->shader_present =
((u64) curr_config_regdump.shader_present_hi << 32) +
curr_config_regdump.shader_present_lo;
curr_config->num_cores = hweight64(curr_config->shader_present);
curr_config->update_needed = false;
return 0;
}
/**
* kbase_gpuprops_req_curr_config_update - Request Current Config Update
* @kbdev: The &struct kbase_device structure for the device
*
* Requests the current configuration to be updated next time the
* kbase_gpuprops_get_curr_config_props() is called.
*
* Return: Zero on success, Linux error code on failure
*/
int kbase_gpuprops_req_curr_config_update(struct kbase_device *kbdev)
{
if (WARN_ON(!kbdev))
return -EINVAL;
kbdev->gpu_props.curr_config.update_needed = true;
return 0;
}
/**
* kbase_gpuprops_get_props - Get the GPU configuration
* @gpu_props: The &struct base_gpu_props structure
* @kbdev: The &struct kbase_device structure for the device
*
* Fill the &struct base_gpu_props structure with values from the GPU
* configuration registers. Only the raw properties are filled in this function.
*
* Return: Zero on success, Linux error code on failure
*/
static int kbase_gpuprops_get_props(struct base_gpu_props * const gpu_props,
struct kbase_device *kbdev)
{
struct kbase_gpuprops_regdump regdump;
int i;
int err;
KBASE_DEBUG_ASSERT(kbdev != NULL);
KBASE_DEBUG_ASSERT(gpu_props != NULL);
/* Dump relevant registers */
err = kbase_backend_gpuprops_get(kbdev, &regdump);
if (err)
return err;
gpu_props->raw_props.gpu_id = regdump.gpu_id;
gpu_props->raw_props.tiler_features = regdump.tiler_features;
gpu_props->raw_props.mem_features = regdump.mem_features;
gpu_props->raw_props.mmu_features = regdump.mmu_features;
gpu_props->raw_props.l2_features = regdump.l2_features;
gpu_props->raw_props.as_present = regdump.as_present;
gpu_props->raw_props.js_present = regdump.js_present;
gpu_props->raw_props.shader_present =
((u64) regdump.shader_present_hi << 32) +
regdump.shader_present_lo;
gpu_props->raw_props.tiler_present =
((u64) regdump.tiler_present_hi << 32) +
regdump.tiler_present_lo;
gpu_props->raw_props.l2_present =
((u64) regdump.l2_present_hi << 32) +
regdump.l2_present_lo;
gpu_props->raw_props.stack_present =
((u64) regdump.stack_present_hi << 32) +
regdump.stack_present_lo;
for (i = 0; i < GPU_MAX_JOB_SLOTS; i++)
gpu_props->raw_props.js_features[i] = regdump.js_features[i];
for (i = 0; i < BASE_GPU_NUM_TEXTURE_FEATURES_REGISTERS; i++)
gpu_props->raw_props.texture_features[i] = regdump.texture_features[i];
gpu_props->raw_props.thread_max_barrier_size = regdump.thread_max_barrier_size;
gpu_props->raw_props.thread_max_threads = regdump.thread_max_threads;
gpu_props->raw_props.thread_max_workgroup_size = regdump.thread_max_workgroup_size;
gpu_props->raw_props.thread_features = regdump.thread_features;
gpu_props->raw_props.thread_tls_alloc = regdump.thread_tls_alloc;
gpu_props->raw_props.gpu_features =
((u64) regdump.gpu_features_hi << 32) +
regdump.gpu_features_lo;
return 0;
}
void kbase_gpuprops_update_core_props_gpu_id(
struct base_gpu_props * const gpu_props)
{
gpu_props->core_props.version_status =
KBASE_UBFX32(gpu_props->raw_props.gpu_id, 0U, 4);
gpu_props->core_props.minor_revision =
KBASE_UBFX32(gpu_props->raw_props.gpu_id, 4U, 8);
gpu_props->core_props.major_revision =
KBASE_UBFX32(gpu_props->raw_props.gpu_id, 12U, 4);
gpu_props->core_props.product_id =
KBASE_UBFX32(gpu_props->raw_props.gpu_id, 16U, 16);
}
/**
* kbase_gpuprops_update_max_config_props - Updates the max config properties in
* the base_gpu_props.
* @base_props: The &struct base_gpu_props structure
* @kbdev: The &struct kbase_device structure for the device
*
* Updates the &struct base_gpu_props structure with the max config properties.
*/
static void kbase_gpuprops_update_max_config_props(
struct base_gpu_props * const base_props, struct kbase_device *kbdev)
{
int l2_n = 0;
if (WARN_ON(!kbdev) || WARN_ON(!base_props))
return;
/* return if the max_config is not set during arbif initialization */
if (kbdev->gpu_props.max_config.core_mask == 0)
return;
/*
* Set the base_props with the maximum config values to ensure that the
* user space will always be based on the maximum resources available.
*/
base_props->l2_props.num_l2_slices =
kbdev->gpu_props.max_config.l2_slices;
base_props->raw_props.shader_present =
kbdev->gpu_props.max_config.core_mask;
/*
* Update l2_present in the raw data to be consistent with the
* max_config.l2_slices number.
*/
base_props->raw_props.l2_present = 0;
for (l2_n = 0; l2_n < base_props->l2_props.num_l2_slices; l2_n++) {
base_props->raw_props.l2_present <<= 1;
base_props->raw_props.l2_present |= 0x1;
}
/*
* Update the coherency_info data using just one core group. For
* architectures where the max_config is provided by the arbiter it is
* not necessary to split the shader core groups in different coherent
* groups.
*/
base_props->coherency_info.coherency =
base_props->raw_props.mem_features;
base_props->coherency_info.num_core_groups = 1;
base_props->coherency_info.num_groups = 1;
base_props->coherency_info.group[0].core_mask =
kbdev->gpu_props.max_config.core_mask;
base_props->coherency_info.group[0].num_cores =
hweight32(kbdev->gpu_props.max_config.core_mask);
}
/**
* kbase_gpuprops_calculate_props - Calculate the derived properties
* @gpu_props: The &struct base_gpu_props structure
* @kbdev: The &struct kbase_device structure for the device
*
* Fill the &struct base_gpu_props structure with values derived from the GPU
* configuration registers
*/
static void kbase_gpuprops_calculate_props(
struct base_gpu_props * const gpu_props, struct kbase_device *kbdev)
{
int i;
u32 gpu_id;
/* Populate the base_gpu_props structure */
kbase_gpuprops_update_core_props_gpu_id(gpu_props);
gpu_props->core_props.log2_program_counter_size = KBASE_GPU_PC_SIZE_LOG2;
#if KERNEL_VERSION(5, 0, 0) > LINUX_VERSION_CODE
gpu_props->core_props.gpu_available_memory_size = totalram_pages << PAGE_SHIFT;
#else
gpu_props->core_props.gpu_available_memory_size =
totalram_pages() << PAGE_SHIFT;
#endif
for (i = 0; i < BASE_GPU_NUM_TEXTURE_FEATURES_REGISTERS; i++)
gpu_props->core_props.texture_features[i] = gpu_props->raw_props.texture_features[i];
gpu_props->l2_props.log2_line_size = KBASE_UBFX32(gpu_props->raw_props.l2_features, 0U, 8);
gpu_props->l2_props.log2_cache_size = KBASE_UBFX32(gpu_props->raw_props.l2_features, 16U, 8);
/* Field with number of l2 slices is added to MEM_FEATURES register
* since t76x. Below code assumes that for older GPU reserved bits will
* be read as zero.
*/
gpu_props->l2_props.num_l2_slices =
KBASE_UBFX32(gpu_props->raw_props.mem_features, 8U, 4) + 1;
gpu_props->tiler_props.bin_size_bytes = 1 << KBASE_UBFX32(gpu_props->raw_props.tiler_features, 0U, 6);
gpu_props->tiler_props.max_active_levels = KBASE_UBFX32(gpu_props->raw_props.tiler_features, 8U, 4);
if (gpu_props->raw_props.thread_max_threads == 0)
gpu_props->thread_props.max_threads = THREAD_MT_DEFAULT;
else
gpu_props->thread_props.max_threads = gpu_props->raw_props.thread_max_threads;
if (gpu_props->raw_props.thread_max_workgroup_size == 0)
gpu_props->thread_props.max_workgroup_size = THREAD_MWS_DEFAULT;
else
gpu_props->thread_props.max_workgroup_size = gpu_props->raw_props.thread_max_workgroup_size;
if (gpu_props->raw_props.thread_max_barrier_size == 0)
gpu_props->thread_props.max_barrier_size = THREAD_MBS_DEFAULT;
else
gpu_props->thread_props.max_barrier_size = gpu_props->raw_props.thread_max_barrier_size;
if (gpu_props->raw_props.thread_tls_alloc == 0)
gpu_props->thread_props.tls_alloc =
gpu_props->thread_props.max_threads;
else
gpu_props->thread_props.tls_alloc =
gpu_props->raw_props.thread_tls_alloc;
/* MIDHARC-2364 was intended for tULx.
* Workaround for the incorrectly applied THREAD_FEATURES to tDUx.
*/
gpu_id = kbdev->gpu_props.props.raw_props.gpu_id;
#if MALI_USE_CSF
CSTD_UNUSED(gpu_id);
gpu_props->thread_props.max_registers =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
0U, 22);
gpu_props->thread_props.impl_tech =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
22U, 2);
gpu_props->thread_props.max_task_queue =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
24U, 8);
gpu_props->thread_props.max_thread_group_split = 0;
#else
if ((gpu_id & GPU_ID2_PRODUCT_MODEL) == GPU_ID2_PRODUCT_TDUX) {
gpu_props->thread_props.max_registers =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
0U, 22);
gpu_props->thread_props.impl_tech =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
22U, 2);
gpu_props->thread_props.max_task_queue =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
24U, 8);
gpu_props->thread_props.max_thread_group_split = 0;
} else {
gpu_props->thread_props.max_registers =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
0U, 16);
gpu_props->thread_props.max_task_queue =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
16U, 8);
gpu_props->thread_props.max_thread_group_split =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
24U, 6);
gpu_props->thread_props.impl_tech =
KBASE_UBFX32(gpu_props->raw_props.thread_features,
30U, 2);
}
#endif
/* If values are not specified, then use defaults */
if (gpu_props->thread_props.max_registers == 0) {
gpu_props->thread_props.max_registers = THREAD_MR_DEFAULT;
gpu_props->thread_props.max_task_queue = THREAD_MTQ_DEFAULT;
gpu_props->thread_props.max_thread_group_split = THREAD_MTGS_DEFAULT;
}
/*
* If the maximum resources allocated information is available it is
* necessary to update the base_gpu_props with the max_config info to
* the userspace. This is applicable to systems that receive this
* information from the arbiter.
*/
if (kbdev->gpu_props.max_config.core_mask)
/* Update the max config properties in the base_gpu_props */
kbase_gpuprops_update_max_config_props(gpu_props,
kbdev);
else
/* Initialize the coherent_group structure for each group */
kbase_gpuprops_construct_coherent_groups(gpu_props);
}
void kbase_gpuprops_set_max_config(struct kbase_device *kbdev,
const struct max_config_props *max_config)
{
if (WARN_ON(!kbdev) || WARN_ON(!max_config))
return;
kbdev->gpu_props.max_config.l2_slices = max_config->l2_slices;
kbdev->gpu_props.max_config.core_mask = max_config->core_mask;
}
void kbase_gpuprops_set(struct kbase_device *kbdev)
{
struct kbase_gpu_props *gpu_props;
struct gpu_raw_gpu_props *raw;
if (WARN_ON(!kbdev))
return;
gpu_props = &kbdev->gpu_props;
raw = &gpu_props->props.raw_props;
/* Initialize the base_gpu_props structure from the hardware */
kbase_gpuprops_get_props(&gpu_props->props, kbdev);
/* Populate the derived properties */
kbase_gpuprops_calculate_props(&gpu_props->props, kbdev);
/* Populate kbase-only fields */
gpu_props->l2_props.associativity = KBASE_UBFX32(raw->l2_features, 8U, 8);
gpu_props->l2_props.external_bus_width = KBASE_UBFX32(raw->l2_features, 24U, 8);
gpu_props->mem.core_group = KBASE_UBFX32(raw->mem_features, 0U, 1);
gpu_props->mmu.va_bits = KBASE_UBFX32(raw->mmu_features, 0U, 8);
gpu_props->mmu.pa_bits = KBASE_UBFX32(raw->mmu_features, 8U, 8);
gpu_props->num_cores = hweight64(raw->shader_present);
gpu_props->num_core_groups =
gpu_props->props.coherency_info.num_core_groups;
gpu_props->num_address_spaces = hweight32(raw->as_present);
gpu_props->num_job_slots = hweight32(raw->js_present);
/*
* Current configuration is used on HW interactions so that the maximum
* config is just used for user space avoiding interactions with parts
* of the hardware that might not be allocated to the kbase instance at
* that moment.
*/
kbase_gpuprops_req_curr_config_update(kbdev);
kbase_gpuprops_get_curr_config_props(kbdev, &gpu_props->curr_config);
}
int kbase_gpuprops_set_features(struct kbase_device *kbdev)
{
struct base_gpu_props *gpu_props;
struct kbase_gpuprops_regdump regdump;
int err;
gpu_props = &kbdev->gpu_props.props;
/* Dump relevant registers */
err = kbase_backend_gpuprops_get_features(kbdev, &regdump);
if (err)
return err;
/*
* Copy the raw value from the register, later this will get turned
* into the selected coherency mode.
* Additionally, add non-coherent mode, as this is always supported.
*/
gpu_props->raw_props.coherency_mode = regdump.coherency_features |
COHERENCY_FEATURE_BIT(COHERENCY_NONE);
if (!kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_THREAD_GROUP_SPLIT))
gpu_props->thread_props.max_thread_group_split = 0;
/*
* The CORE_FEATURES register has different meanings depending on GPU.
* On tGOx, bits[3:0] encode num_exec_engines.
* On CSF GPUs, bits[7:0] is an enumeration that needs to be parsed,
* instead.
* GPUs like tTIx have additional fields like LSC_SIZE that are
* otherwise reserved/RAZ on older GPUs.
*/
gpu_props->raw_props.core_features = regdump.core_features;
#if !MALI_USE_CSF
gpu_props->core_props.num_exec_engines =
KBASE_UBFX32(gpu_props->raw_props.core_features, 0, 4);
#endif
return err;
}
/*
* Module parameters to allow the L2 size and hash configuration to be
* overridden.
*
* These parameters must be set on insmod to take effect, and are not visible
* in sysfs.
*/
static u8 override_l2_size;
module_param(override_l2_size, byte, 0000);
MODULE_PARM_DESC(override_l2_size, "Override L2 size config for testing");
static u8 override_l2_hash;
module_param(override_l2_hash, byte, 0000);
MODULE_PARM_DESC(override_l2_hash, "Override L2 hash config for testing");
static u32 l2_hash_values[ASN_HASH_COUNT] = {
0,
};
static int num_override_l2_hash_values;
module_param_array(l2_hash_values, uint, &num_override_l2_hash_values, 0000);
MODULE_PARM_DESC(l2_hash_values, "Override L2 hash values config for testing");
/* Definitions for range of supported user defined hash functions for GPUs
* that support L2_CONFIG and not ASN_HASH features. Supported hash function
* range from 0b1000-0b1111 inclusive. Selection of any other values will
* lead to undefined behavior.
*/
#define USER_DEFINED_HASH_LO ((u8)0x08)
#define USER_DEFINED_HASH_HI ((u8)0x0F)
enum l2_config_override_result {
L2_CONFIG_OVERRIDE_FAIL = -1,
L2_CONFIG_OVERRIDE_NONE,
L2_CONFIG_OVERRIDE_OK,
};
/**
* kbase_read_l2_config_from_dt - Read L2 configuration
* @kbdev: The kbase device for which to get the L2 configuration.
*
* Check for L2 configuration overrides in module parameters and device tree.
* Override values in module parameters take priority over override values in
* device tree.
*
* Return: L2_CONFIG_OVERRIDE_OK if either size or hash, or both was properly
* overridden, L2_CONFIG_OVERRIDE_NONE if no overrides are provided.
* L2_CONFIG_OVERRIDE_FAIL otherwise.
*/
static enum l2_config_override_result
kbase_read_l2_config_from_dt(struct kbase_device *const kbdev)
{
struct device_node *np = kbdev->dev->of_node;
if (!np)
return L2_CONFIG_OVERRIDE_NONE;
if (override_l2_size)
kbdev->l2_size_override = override_l2_size;
else if (of_property_read_u8(np, "l2-size", &kbdev->l2_size_override))
kbdev->l2_size_override = 0;
/* Check overriding value is supported, if not will result in
* undefined behavior.
*/
if (override_l2_hash >= USER_DEFINED_HASH_LO &&
override_l2_hash <= USER_DEFINED_HASH_HI)
kbdev->l2_hash_override = override_l2_hash;
else if (of_property_read_u8(np, "l2-hash", &kbdev->l2_hash_override))
kbdev->l2_hash_override = 0;
kbdev->l2_hash_values_override = false;
if (num_override_l2_hash_values) {
int i;
kbdev->l2_hash_values_override = true;
for (i = 0; i < num_override_l2_hash_values; i++)
kbdev->l2_hash_values[i] = l2_hash_values[i];
} else if (!of_property_read_u32_array(np, "l2-hash-values",
kbdev->l2_hash_values,
ASN_HASH_COUNT))
kbdev->l2_hash_values_override = true;
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_ASN_HASH) &&
(kbdev->l2_hash_override)) {
dev_err(kbdev->dev, "l2-hash not supported\n");
return L2_CONFIG_OVERRIDE_FAIL;
}
if (!kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_ASN_HASH) &&
(kbdev->l2_hash_values_override)) {
dev_err(kbdev->dev, "l2-hash-values not supported\n");
return L2_CONFIG_OVERRIDE_FAIL;
}
if (kbdev->l2_hash_override && kbdev->l2_hash_values_override) {
dev_err(kbdev->dev,
"both l2-hash & l2-hash-values not supported\n");
return L2_CONFIG_OVERRIDE_FAIL;
}
if (kbdev->l2_size_override || kbdev->l2_hash_override ||
kbdev->l2_hash_values_override)
return L2_CONFIG_OVERRIDE_OK;
return L2_CONFIG_OVERRIDE_NONE;
}
int kbase_gpuprops_update_l2_features(struct kbase_device *kbdev)
{
int err = 0;
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_L2_CONFIG)) {
struct kbase_gpuprops_regdump regdump;
struct base_gpu_props *gpu_props = &kbdev->gpu_props.props;
/* Check for L2 cache size & hash overrides */
switch (kbase_read_l2_config_from_dt(kbdev)) {
case L2_CONFIG_OVERRIDE_FAIL:
err = -EIO;
goto exit;
case L2_CONFIG_OVERRIDE_NONE:
goto exit;
default:
break;
}
/* pm.active_count is expected to be 1 here, which is set in
* kbase_hwaccess_pm_powerup().
*/
WARN_ON(kbdev->pm.active_count != 1);
/* The new settings for L2 cache can only be applied when it is
* off, so first do the power down.
*/
kbase_pm_context_idle(kbdev);
kbase_pm_wait_for_desired_state(kbdev);
/* Need L2 to get powered to reflect to L2_FEATURES */
kbase_pm_context_active(kbdev);
/* Wait for the completion of L2 power transition */
kbase_pm_wait_for_l2_powered(kbdev);
/* Dump L2_FEATURES register */
err = kbase_backend_gpuprops_get_l2_features(kbdev, &regdump);
if (err)
goto exit;
dev_info(kbdev->dev, "Reflected L2_FEATURES is 0x%x\n",
regdump.l2_features);
dev_info(kbdev->dev, "Reflected L2_CONFIG is 0x%08x\n",
regdump.l2_config);
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_ASN_HASH)) {
int idx;
const bool asn_he = regdump.l2_config &
L2_CONFIG_ASN_HASH_ENABLE_MASK;
if (!asn_he && kbdev->l2_hash_values_override)
dev_err(kbdev->dev,
"Failed to use requested ASN_HASH, fallback to default");
for (idx = 0; idx < ASN_HASH_COUNT; idx++)
dev_info(kbdev->dev,
"%s ASN_HASH[%d] is [0x%08x]\n",
asn_he ? "Overridden" : "Default", idx,
regdump.l2_asn_hash[idx]);
}
/* Update gpuprops with reflected L2_FEATURES */
gpu_props->raw_props.l2_features = regdump.l2_features;
gpu_props->l2_props.log2_cache_size =
KBASE_UBFX32(gpu_props->raw_props.l2_features, 16U, 8);
}
exit:
return err;
}
static struct {
u32 type;
size_t offset;
int size;
} gpu_property_mapping[] = {
#define PROP(name, member) \
{KBASE_GPUPROP_ ## name, offsetof(struct base_gpu_props, member), \
sizeof(((struct base_gpu_props *)0)->member)}
#define BACKWARDS_COMPAT_PROP(name, type) \
{ \
KBASE_GPUPROP_##name, SIZE_MAX, sizeof(type) \
}
PROP(PRODUCT_ID, core_props.product_id),
PROP(VERSION_STATUS, core_props.version_status),
PROP(MINOR_REVISION, core_props.minor_revision),
PROP(MAJOR_REVISION, core_props.major_revision),
PROP(GPU_FREQ_KHZ_MAX, core_props.gpu_freq_khz_max),
PROP(LOG2_PROGRAM_COUNTER_SIZE, core_props.log2_program_counter_size),
PROP(TEXTURE_FEATURES_0, core_props.texture_features[0]),
PROP(TEXTURE_FEATURES_1, core_props.texture_features[1]),
PROP(TEXTURE_FEATURES_2, core_props.texture_features[2]),
PROP(TEXTURE_FEATURES_3, core_props.texture_features[3]),
PROP(GPU_AVAILABLE_MEMORY_SIZE, core_props.gpu_available_memory_size),
#if MALI_USE_CSF
BACKWARDS_COMPAT_PROP(NUM_EXEC_ENGINES, u8),
#else
PROP(NUM_EXEC_ENGINES, core_props.num_exec_engines),
#endif
PROP(L2_LOG2_LINE_SIZE, l2_props.log2_line_size),
PROP(L2_LOG2_CACHE_SIZE, l2_props.log2_cache_size),
PROP(L2_NUM_L2_SLICES, l2_props.num_l2_slices),
PROP(TILER_BIN_SIZE_BYTES, tiler_props.bin_size_bytes),
PROP(TILER_MAX_ACTIVE_LEVELS, tiler_props.max_active_levels),
PROP(MAX_THREADS, thread_props.max_threads),
PROP(MAX_WORKGROUP_SIZE, thread_props.max_workgroup_size),
PROP(MAX_BARRIER_SIZE, thread_props.max_barrier_size),
PROP(MAX_REGISTERS, thread_props.max_registers),
PROP(MAX_TASK_QUEUE, thread_props.max_task_queue),
PROP(MAX_THREAD_GROUP_SPLIT, thread_props.max_thread_group_split),
PROP(IMPL_TECH, thread_props.impl_tech),
PROP(TLS_ALLOC, thread_props.tls_alloc),
PROP(RAW_SHADER_PRESENT, raw_props.shader_present),
PROP(RAW_TILER_PRESENT, raw_props.tiler_present),
PROP(RAW_L2_PRESENT, raw_props.l2_present),
PROP(RAW_STACK_PRESENT, raw_props.stack_present),
PROP(RAW_L2_FEATURES, raw_props.l2_features),
PROP(RAW_CORE_FEATURES, raw_props.core_features),
PROP(RAW_MEM_FEATURES, raw_props.mem_features),
PROP(RAW_MMU_FEATURES, raw_props.mmu_features),
PROP(RAW_AS_PRESENT, raw_props.as_present),
PROP(RAW_JS_PRESENT, raw_props.js_present),
PROP(RAW_JS_FEATURES_0, raw_props.js_features[0]),
PROP(RAW_JS_FEATURES_1, raw_props.js_features[1]),
PROP(RAW_JS_FEATURES_2, raw_props.js_features[2]),
PROP(RAW_JS_FEATURES_3, raw_props.js_features[3]),
PROP(RAW_JS_FEATURES_4, raw_props.js_features[4]),
PROP(RAW_JS_FEATURES_5, raw_props.js_features[5]),
PROP(RAW_JS_FEATURES_6, raw_props.js_features[6]),
PROP(RAW_JS_FEATURES_7, raw_props.js_features[7]),
PROP(RAW_JS_FEATURES_8, raw_props.js_features[8]),
PROP(RAW_JS_FEATURES_9, raw_props.js_features[9]),
PROP(RAW_JS_FEATURES_10, raw_props.js_features[10]),
PROP(RAW_JS_FEATURES_11, raw_props.js_features[11]),
PROP(RAW_JS_FEATURES_12, raw_props.js_features[12]),
PROP(RAW_JS_FEATURES_13, raw_props.js_features[13]),
PROP(RAW_JS_FEATURES_14, raw_props.js_features[14]),
PROP(RAW_JS_FEATURES_15, raw_props.js_features[15]),
PROP(RAW_TILER_FEATURES, raw_props.tiler_features),
PROP(RAW_TEXTURE_FEATURES_0, raw_props.texture_features[0]),
PROP(RAW_TEXTURE_FEATURES_1, raw_props.texture_features[1]),
PROP(RAW_TEXTURE_FEATURES_2, raw_props.texture_features[2]),
PROP(RAW_TEXTURE_FEATURES_3, raw_props.texture_features[3]),
PROP(RAW_GPU_ID, raw_props.gpu_id),
PROP(RAW_THREAD_MAX_THREADS, raw_props.thread_max_threads),
PROP(RAW_THREAD_MAX_WORKGROUP_SIZE, raw_props.thread_max_workgroup_size),
PROP(RAW_THREAD_MAX_BARRIER_SIZE, raw_props.thread_max_barrier_size),
PROP(RAW_THREAD_FEATURES, raw_props.thread_features),
PROP(RAW_COHERENCY_MODE, raw_props.coherency_mode),
PROP(RAW_THREAD_TLS_ALLOC, raw_props.thread_tls_alloc),
PROP(RAW_GPU_FEATURES, raw_props.gpu_features),
PROP(COHERENCY_NUM_GROUPS, coherency_info.num_groups),
PROP(COHERENCY_NUM_CORE_GROUPS, coherency_info.num_core_groups),
PROP(COHERENCY_COHERENCY, coherency_info.coherency),
PROP(COHERENCY_GROUP_0, coherency_info.group[0].core_mask),
PROP(COHERENCY_GROUP_1, coherency_info.group[1].core_mask),
PROP(COHERENCY_GROUP_2, coherency_info.group[2].core_mask),
PROP(COHERENCY_GROUP_3, coherency_info.group[3].core_mask),
PROP(COHERENCY_GROUP_4, coherency_info.group[4].core_mask),
PROP(COHERENCY_GROUP_5, coherency_info.group[5].core_mask),
PROP(COHERENCY_GROUP_6, coherency_info.group[6].core_mask),
PROP(COHERENCY_GROUP_7, coherency_info.group[7].core_mask),
PROP(COHERENCY_GROUP_8, coherency_info.group[8].core_mask),
PROP(COHERENCY_GROUP_9, coherency_info.group[9].core_mask),
PROP(COHERENCY_GROUP_10, coherency_info.group[10].core_mask),
PROP(COHERENCY_GROUP_11, coherency_info.group[11].core_mask),
PROP(COHERENCY_GROUP_12, coherency_info.group[12].core_mask),
PROP(COHERENCY_GROUP_13, coherency_info.group[13].core_mask),
PROP(COHERENCY_GROUP_14, coherency_info.group[14].core_mask),
PROP(COHERENCY_GROUP_15, coherency_info.group[15].core_mask),
#undef PROP
};
int kbase_gpuprops_populate_user_buffer(struct kbase_device *kbdev)
{
struct kbase_gpu_props *kprops = &kbdev->gpu_props;
struct base_gpu_props *props = &kprops->props;
u32 count = ARRAY_SIZE(gpu_property_mapping);
u32 i;
u32 size = 0;
u8 *p;
for (i = 0; i < count; i++) {
/* 4 bytes for the ID, and the size of the property */
size += 4 + gpu_property_mapping[i].size;
}
kprops->prop_buffer_size = size;
kprops->prop_buffer = kmalloc(size, GFP_KERNEL);
if (!kprops->prop_buffer) {
kprops->prop_buffer_size = 0;
return -ENOMEM;
}
p = kprops->prop_buffer;
#define WRITE_U8(v) (*p++ = (v) & 0xFF)
#define WRITE_U16(v) do { WRITE_U8(v); WRITE_U8((v) >> 8); } while (0)
#define WRITE_U32(v) do { WRITE_U16(v); WRITE_U16((v) >> 16); } while (0)
#define WRITE_U64(v) do { WRITE_U32(v); WRITE_U32((v) >> 32); } while (0)
for (i = 0; i < count; i++) {
u32 type = gpu_property_mapping[i].type;
u8 type_size;
const size_t offset = gpu_property_mapping[i].offset;
const u64 dummy_backwards_compat_value = (u64)0;
const void *field;
if (likely(offset < sizeof(struct base_gpu_props)))
field = ((const u8 *)props) + offset;
else
field = &dummy_backwards_compat_value;
switch (gpu_property_mapping[i].size) {
case 1:
type_size = KBASE_GPUPROP_VALUE_SIZE_U8;
break;
case 2:
type_size = KBASE_GPUPROP_VALUE_SIZE_U16;
break;
case 4:
type_size = KBASE_GPUPROP_VALUE_SIZE_U32;
break;
case 8:
type_size = KBASE_GPUPROP_VALUE_SIZE_U64;
break;
default:
dev_err(kbdev->dev,
"Invalid gpu_property_mapping type=%d size=%d",
type, gpu_property_mapping[i].size);
return -EINVAL;
}
WRITE_U32((type<<2) | type_size);
switch (type_size) {
case KBASE_GPUPROP_VALUE_SIZE_U8:
WRITE_U8(*((const u8 *)field));
break;
case KBASE_GPUPROP_VALUE_SIZE_U16:
WRITE_U16(*((const u16 *)field));
break;
case KBASE_GPUPROP_VALUE_SIZE_U32:
WRITE_U32(*((const u32 *)field));
break;
case KBASE_GPUPROP_VALUE_SIZE_U64:
WRITE_U64(*((const u64 *)field));
break;
default: /* Cannot be reached */
WARN_ON(1);
return -EINVAL;
}
}
return 0;
}
void kbase_gpuprops_free_user_buffer(struct kbase_device *kbdev)
{
kfree(kbdev->gpu_props.prop_buffer);
}
int kbase_device_populate_max_freq(struct kbase_device *kbdev)
{
struct mali_base_gpu_core_props *core_props;
/* obtain max configured gpu frequency, if devfreq is enabled then
* this will be overridden by the highest operating point found
*/
core_props = &(kbdev->gpu_props.props.core_props);
#ifdef GPU_FREQ_KHZ_MAX
core_props->gpu_freq_khz_max = GPU_FREQ_KHZ_MAX;
#else
core_props->gpu_freq_khz_max = DEFAULT_GPU_FREQ_KHZ_MAX;
#endif
return 0;
}