blob: 22018d24252a2234e501cc12451c4f1211c484ec [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
/*
*
* (C) COPYRIGHT 2018-2023 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU license.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
*/
#include <mali_kbase.h>
#include <gpu/mali_kbase_gpu_fault.h>
#include <mali_kbase_reset_gpu.h>
#include "mali_kbase_csf.h"
#include "backend/gpu/mali_kbase_pm_internal.h"
#include <linux/export.h>
#include <linux/priority_control_manager.h>
#include <linux/shmem_fs.h>
#include <csf/mali_kbase_csf_registers.h>
#include "mali_kbase_csf_tiler_heap.h"
#include <mmu/mali_kbase_mmu.h>
#include "mali_kbase_csf_timeout.h"
#include <csf/ipa_control/mali_kbase_csf_ipa_control.h>
#include <mali_kbase_hwaccess_time.h>
#include "mali_kbase_csf_event.h"
#include <tl/mali_kbase_tracepoints.h>
#include "mali_kbase_csf_mcu_shared_reg.h"
#include <linux/version_compat_defs.h>
#define CS_REQ_EXCEPTION_MASK (CS_REQ_FAULT_MASK | CS_REQ_FATAL_MASK)
#define CS_ACK_EXCEPTION_MASK (CS_ACK_FAULT_MASK | CS_ACK_FATAL_MASK)
#define CS_RING_BUFFER_MAX_SIZE ((uint32_t)(1 << 31)) /* 2GiB */
#define CS_RING_BUFFER_MIN_SIZE ((uint32_t)4096)
#define PROTM_ALLOC_MAX_RETRIES ((u8)5)
const u8 kbasep_csf_queue_group_priority_to_relative[BASE_QUEUE_GROUP_PRIORITY_COUNT] = {
KBASE_QUEUE_GROUP_PRIORITY_HIGH,
KBASE_QUEUE_GROUP_PRIORITY_MEDIUM,
KBASE_QUEUE_GROUP_PRIORITY_LOW,
KBASE_QUEUE_GROUP_PRIORITY_REALTIME
};
const u8 kbasep_csf_relative_to_queue_group_priority[KBASE_QUEUE_GROUP_PRIORITY_COUNT] = {
BASE_QUEUE_GROUP_PRIORITY_REALTIME,
BASE_QUEUE_GROUP_PRIORITY_HIGH,
BASE_QUEUE_GROUP_PRIORITY_MEDIUM,
BASE_QUEUE_GROUP_PRIORITY_LOW
};
/*
* struct irq_idle_and_protm_track - Object that tracks the idle and protected mode
* request information in an interrupt case across
* groups.
*
* @protm_grp: Possibly schedulable group that requested protected mode in the interrupt.
* If NULL, no such case observed in the tracked interrupt case.
* @idle_seq: The highest priority group that notified idle. If no such instance in the
* interrupt case, marked with the largest field value: U32_MAX.
* @idle_slot: The slot number if @p idle_seq is valid in the given tracking case.
*/
struct irq_idle_and_protm_track {
struct kbase_queue_group *protm_grp;
u32 idle_seq;
s8 idle_slot;
};
/**
* kbasep_ctx_user_reg_page_mapping_term() - Terminate resources for USER Register Page.
*
* @kctx: Pointer to the kbase context
*/
static void kbasep_ctx_user_reg_page_mapping_term(struct kbase_context *kctx)
{
struct kbase_device *kbdev = kctx->kbdev;
if (unlikely(kctx->csf.user_reg.vma))
dev_err(kbdev->dev, "VMA for USER Register page exist on termination of ctx %d_%d",
kctx->tgid, kctx->id);
if (WARN_ON_ONCE(!list_empty(&kctx->csf.user_reg.link)))
list_del_init(&kctx->csf.user_reg.link);
}
/**
* kbasep_ctx_user_reg_page_mapping_init() - Initialize resources for USER Register Page.
*
* @kctx: Pointer to the kbase context
*
* @return: 0 on success.
*/
static int kbasep_ctx_user_reg_page_mapping_init(struct kbase_context *kctx)
{
INIT_LIST_HEAD(&kctx->csf.user_reg.link);
kctx->csf.user_reg.vma = NULL;
kctx->csf.user_reg.file_offset = 0;
return 0;
}
static void put_user_pages_mmap_handle(struct kbase_context *kctx,
struct kbase_queue *queue)
{
unsigned long cookie_nr;
lockdep_assert_held(&kctx->csf.lock);
if (queue->handle == BASEP_MEM_INVALID_HANDLE)
return;
cookie_nr =
PFN_DOWN(queue->handle - BASEP_MEM_CSF_USER_IO_PAGES_HANDLE);
if (!WARN_ON(kctx->csf.user_pages_info[cookie_nr] != queue)) {
/* free up cookie */
kctx->csf.user_pages_info[cookie_nr] = NULL;
bitmap_set(kctx->csf.cookies, cookie_nr, 1);
}
queue->handle = BASEP_MEM_INVALID_HANDLE;
}
/* Reserve a cookie, to be returned as a handle to userspace for creating
* the CPU mapping of the pair of input/output pages and Hw doorbell page.
* Will return 0 in case of success otherwise negative on failure.
*/
static int get_user_pages_mmap_handle(struct kbase_context *kctx,
struct kbase_queue *queue)
{
unsigned long cookie, cookie_nr;
lockdep_assert_held(&kctx->csf.lock);
if (bitmap_empty(kctx->csf.cookies,
KBASE_CSF_NUM_USER_IO_PAGES_HANDLE)) {
dev_err(kctx->kbdev->dev,
"No csf cookies available for allocation!");
return -ENOMEM;
}
/* allocate a cookie */
cookie_nr = find_first_bit(kctx->csf.cookies,
KBASE_CSF_NUM_USER_IO_PAGES_HANDLE);
if (kctx->csf.user_pages_info[cookie_nr]) {
dev_err(kctx->kbdev->dev,
"Inconsistent state of csf cookies!");
return -EINVAL;
}
kctx->csf.user_pages_info[cookie_nr] = queue;
bitmap_clear(kctx->csf.cookies, cookie_nr, 1);
/* relocate to correct base */
cookie = cookie_nr + PFN_DOWN(BASEP_MEM_CSF_USER_IO_PAGES_HANDLE);
cookie <<= PAGE_SHIFT;
queue->handle = (u64)cookie;
return 0;
}
static void init_user_io_pages(struct kbase_queue *queue)
{
u64 *input_addr = queue->user_io_addr;
u64 *output_addr64 = queue->user_io_addr + PAGE_SIZE / sizeof(u64);
u32 *output_addr32 = (u32 *)(queue->user_io_addr + PAGE_SIZE / sizeof(u64));
/*
* CS_INSERT and CS_EXTRACT registers contain 64-bit memory addresses which
* should be accessed atomically. Here we update them 32-bits at a time, but
* as this is initialisation code, non-atomic accesses are safe.
*/
input_addr[CS_INSERT_LO / sizeof(*input_addr)] = 0;
input_addr[CS_EXTRACT_INIT_LO / sizeof(*input_addr)] = 0;
output_addr64[CS_EXTRACT_LO / sizeof(*output_addr64)] = 0;
output_addr32[CS_ACTIVE / sizeof(*output_addr32)] = 0;
}
static void kernel_unmap_user_io_pages(struct kbase_context *kctx,
struct kbase_queue *queue)
{
kbase_gpu_vm_lock(kctx);
vunmap(queue->user_io_addr);
WARN_ON(atomic_read(&kctx->permanent_mapped_pages) < KBASEP_NUM_CS_USER_IO_PAGES);
atomic_sub(KBASEP_NUM_CS_USER_IO_PAGES, &kctx->permanent_mapped_pages);
kbase_gpu_vm_unlock(kctx);
}
static int kernel_map_user_io_pages(struct kbase_context *kctx,
struct kbase_queue *queue)
{
struct page *page_list[2];
pgprot_t cpu_map_prot;
unsigned long flags;
uint64_t *user_io_addr;
int ret = 0;
size_t i;
kbase_gpu_vm_lock(kctx);
if (ARRAY_SIZE(page_list) > (KBASE_PERMANENTLY_MAPPED_MEM_LIMIT_PAGES -
atomic_read(&kctx->permanent_mapped_pages))) {
ret = -ENOMEM;
goto unlock;
}
/* The pages are mapped to Userspace also, so use the same mapping
* attributes as used inside the CPU page fault handler.
*/
if (kctx->kbdev->system_coherency == COHERENCY_NONE)
cpu_map_prot = pgprot_writecombine(PAGE_KERNEL);
else
cpu_map_prot = PAGE_KERNEL;
for (i = 0; i < ARRAY_SIZE(page_list); i++)
page_list[i] = as_page(queue->phys[i]);
user_io_addr = vmap(page_list, ARRAY_SIZE(page_list), VM_MAP, cpu_map_prot);
if (!user_io_addr)
ret = -ENOMEM;
else
atomic_add(ARRAY_SIZE(page_list), &kctx->permanent_mapped_pages);
kbase_csf_scheduler_spin_lock(kctx->kbdev, &flags);
queue->user_io_addr = user_io_addr;
kbase_csf_scheduler_spin_unlock(kctx->kbdev, flags);
unlock:
kbase_gpu_vm_unlock(kctx);
return ret;
}
static void term_queue_group(struct kbase_queue_group *group);
static void get_queue(struct kbase_queue *queue);
static bool release_queue(struct kbase_queue *queue);
/**
* kbase_csf_free_command_stream_user_pages() - Free the resources allocated
* for a queue at the time of bind.
*
* @kctx: Address of the kbase context within which the queue was created.
* @queue: Pointer to the queue to be unlinked.
*
* This function will free the pair of physical pages allocated for a GPU
* command queue, and also release the hardware doorbell page, that were mapped
* into the process address space to enable direct submission of commands to
* the hardware. Also releases the reference taken on the queue when the mapping
* was created.
*
* This function will be called only when the mapping is being removed and
* so the resources for queue will not get freed up until the mapping is
* removed even though userspace could have terminated the queue.
* Kernel will ensure that the termination of Kbase context would only be
* triggered after the mapping is removed.
*
* If an explicit or implicit unbind was missed by the userspace then the
* mapping will persist. On process exit kernel itself will remove the mapping.
*/
void kbase_csf_free_command_stream_user_pages(struct kbase_context *kctx, struct kbase_queue *queue)
{
kernel_unmap_user_io_pages(kctx, queue);
kbase_mem_pool_free_pages(
&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_IO],
KBASEP_NUM_CS_USER_IO_PAGES, queue->phys, true, false);
kbase_process_page_usage_dec(kctx, KBASEP_NUM_CS_USER_IO_PAGES);
/* The user_io_gpu_va should have been unmapped inside the scheduler */
WARN_ONCE(queue->user_io_gpu_va, "Userio pages appears still have mapping");
/* If the queue has already been terminated by userspace
* then the ref count for queue object will drop to 0 here.
*/
release_queue(queue);
}
KBASE_EXPORT_TEST_API(kbase_csf_free_command_stream_user_pages);
int kbase_csf_alloc_command_stream_user_pages(struct kbase_context *kctx, struct kbase_queue *queue)
{
struct kbase_device *kbdev = kctx->kbdev;
int ret;
lockdep_assert_held(&kctx->csf.lock);
ret = kbase_mem_pool_alloc_pages(&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_IO],
KBASEP_NUM_CS_USER_IO_PAGES,
queue->phys, false, kctx->task);
if (ret != KBASEP_NUM_CS_USER_IO_PAGES) {
/* Marking both the phys to zero for indicating there is no phys allocated */
queue->phys[0].tagged_addr = 0;
queue->phys[1].tagged_addr = 0;
return -ENOMEM;
}
ret = kernel_map_user_io_pages(kctx, queue);
if (ret)
goto kernel_map_failed;
kbase_process_page_usage_inc(kctx, KBASEP_NUM_CS_USER_IO_PAGES);
init_user_io_pages(queue);
/* user_io_gpu_va is only mapped when scheduler decides to put the queue
* on slot at runtime. Initialize it to 0, signalling no mapping.
*/
queue->user_io_gpu_va = 0;
mutex_lock(&kbdev->csf.reg_lock);
if (kbdev->csf.db_file_offsets > (U32_MAX - BASEP_QUEUE_NR_MMAP_USER_PAGES + 1))
kbdev->csf.db_file_offsets = 0;
queue->db_file_offset = kbdev->csf.db_file_offsets;
kbdev->csf.db_file_offsets += BASEP_QUEUE_NR_MMAP_USER_PAGES;
WARN(kbase_refcount_read(&queue->refcount) != 1,
"Incorrect refcounting for queue object\n");
/* This is the second reference taken on the queue object and
* would be dropped only when the IO mapping is removed either
* explicitly by userspace or implicitly by kernel on process exit.
*/
get_queue(queue);
queue->bind_state = KBASE_CSF_QUEUE_BOUND;
mutex_unlock(&kbdev->csf.reg_lock);
return 0;
kernel_map_failed:
kbase_mem_pool_free_pages(&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_IO],
KBASEP_NUM_CS_USER_IO_PAGES, queue->phys, false, false);
/* Marking both the phys to zero for indicating there is no phys allocated */
queue->phys[0].tagged_addr = 0;
queue->phys[1].tagged_addr = 0;
return ret;
}
KBASE_EXPORT_TEST_API(kbase_csf_alloc_command_stream_user_pages);
static struct kbase_queue_group *find_queue_group(struct kbase_context *kctx,
u8 group_handle)
{
uint index = group_handle;
lockdep_assert_held(&kctx->csf.lock);
if (index < MAX_QUEUE_GROUP_NUM && kctx->csf.queue_groups[index]) {
if (WARN_ON(kctx->csf.queue_groups[index]->handle != index))
return NULL;
return kctx->csf.queue_groups[index];
}
return NULL;
}
struct kbase_queue_group *kbase_csf_find_queue_group(struct kbase_context *kctx, u8 group_handle)
{
return find_queue_group(kctx, group_handle);
}
KBASE_EXPORT_TEST_API(kbase_csf_find_queue_group);
int kbase_csf_queue_group_handle_is_valid(struct kbase_context *kctx,
u8 group_handle)
{
struct kbase_queue_group *group;
mutex_lock(&kctx->csf.lock);
group = find_queue_group(kctx, group_handle);
mutex_unlock(&kctx->csf.lock);
return group ? 0 : -EINVAL;
}
static struct kbase_queue *find_queue(struct kbase_context *kctx, u64 base_addr)
{
struct kbase_queue *queue;
lockdep_assert_held(&kctx->csf.lock);
list_for_each_entry(queue, &kctx->csf.queue_list, link) {
if (base_addr == queue->base_addr)
return queue;
}
return NULL;
}
static void get_queue(struct kbase_queue *queue)
{
WARN_ON(!kbase_refcount_inc_not_zero(&queue->refcount));
}
/**
* release_queue() - Release a reference to a GPU queue
*
* @queue: The queue to release.
*
* Return: true if the queue has been released.
*
* The queue will be released when its reference count reaches zero.
*/
static bool release_queue(struct kbase_queue *queue)
{
lockdep_assert_held(&queue->kctx->csf.lock);
if (kbase_refcount_dec_and_test(&queue->refcount)) {
/* The queue can't still be on the per context list. */
WARN_ON(!list_empty(&queue->link));
WARN_ON(queue->group);
dev_dbg(queue->kctx->kbdev->dev,
"Remove any pending command queue fatal from ctx %d_%d",
queue->kctx->tgid, queue->kctx->id);
kbase_csf_event_remove_error(queue->kctx, &queue->error);
/* After this the Userspace would be able to free the
* memory for GPU queue. In case the Userspace missed
* terminating the queue, the cleanup will happen on
* context termination where tear down of region tracker
* would free up the GPU queue memory.
*/
kbase_gpu_vm_lock(queue->kctx);
kbase_va_region_no_user_free_dec(queue->queue_reg);
kbase_gpu_vm_unlock(queue->kctx);
kfree(queue);
return true;
}
return false;
}
static void oom_event_worker(struct work_struct *data);
static void cs_error_worker(struct work_struct *data);
/* Between reg and reg_ex, one and only one must be null */
static int csf_queue_register_internal(struct kbase_context *kctx,
struct kbase_ioctl_cs_queue_register *reg,
struct kbase_ioctl_cs_queue_register_ex *reg_ex)
{
struct kbase_queue *queue;
int ret = 0;
struct kbase_va_region *region;
u64 queue_addr;
size_t queue_size;
/* Only one pointer expected, otherwise coding error */
if ((reg == NULL && reg_ex == NULL) || (reg && reg_ex)) {
dev_dbg(kctx->kbdev->dev,
"Error, one and only one param-ptr expected!");
return -EINVAL;
}
/* struct kbase_ioctl_cs_queue_register_ex contains a full
* struct kbase_ioctl_cs_queue_register at the start address. So
* the pointer can be safely cast to pointing to a
* kbase_ioctl_cs_queue_register object.
*/
if (reg_ex)
reg = (struct kbase_ioctl_cs_queue_register *)reg_ex;
/* Validate the queue priority */
if (reg->priority > BASE_QUEUE_MAX_PRIORITY)
return -EINVAL;
queue_addr = reg->buffer_gpu_addr;
queue_size = reg->buffer_size >> PAGE_SHIFT;
mutex_lock(&kctx->csf.lock);
/* Check if queue is already registered */
if (find_queue(kctx, queue_addr) != NULL) {
ret = -EINVAL;
goto out;
}
/* Check if the queue address is valid */
kbase_gpu_vm_lock(kctx);
region = kbase_region_tracker_find_region_enclosing_address(kctx,
queue_addr);
if (kbase_is_region_invalid_or_free(region) || kbase_is_region_shrinkable(region) ||
region->gpu_alloc->type != KBASE_MEM_TYPE_NATIVE) {
ret = -ENOENT;
goto out_unlock_vm;
}
if (queue_size > (region->nr_pages -
((queue_addr >> PAGE_SHIFT) - region->start_pfn))) {
ret = -EINVAL;
goto out_unlock_vm;
}
/* Check address validity on cs_trace buffer etc. Don't care
* if not enabled (i.e. when size is 0).
*/
if (reg_ex && reg_ex->ex_buffer_size) {
int buf_pages = (reg_ex->ex_buffer_size +
(1 << PAGE_SHIFT) - 1) >> PAGE_SHIFT;
struct kbase_va_region *region_ex =
kbase_region_tracker_find_region_enclosing_address(kctx,
reg_ex->ex_buffer_base);
if (kbase_is_region_invalid_or_free(region_ex)) {
ret = -ENOENT;
goto out_unlock_vm;
}
if (buf_pages > (region_ex->nr_pages -
((reg_ex->ex_buffer_base >> PAGE_SHIFT) - region_ex->start_pfn))) {
ret = -EINVAL;
goto out_unlock_vm;
}
region_ex = kbase_region_tracker_find_region_enclosing_address(
kctx, reg_ex->ex_offset_var_addr);
if (kbase_is_region_invalid_or_free(region_ex)) {
ret = -ENOENT;
goto out_unlock_vm;
}
}
queue = kzalloc(sizeof(struct kbase_queue), GFP_KERNEL);
if (!queue) {
ret = -ENOMEM;
goto out_unlock_vm;
}
queue->kctx = kctx;
queue->base_addr = queue_addr;
queue->queue_reg = region;
kbase_va_region_no_user_free_inc(region);
queue->size = (queue_size << PAGE_SHIFT);
queue->csi_index = KBASEP_IF_NR_INVALID;
queue->priority = reg->priority;
/* Default to a safe value, this would be updated on binding */
queue->group_priority = KBASE_QUEUE_GROUP_PRIORITY_LOW;
kbase_refcount_set(&queue->refcount, 1);
queue->bind_state = KBASE_CSF_QUEUE_UNBOUND;
queue->handle = BASEP_MEM_INVALID_HANDLE;
queue->doorbell_nr = KBASEP_USER_DB_NR_INVALID;
queue->blocked_reason = CS_STATUS_BLOCKED_REASON_REASON_UNBLOCKED;
INIT_LIST_HEAD(&queue->link);
atomic_set(&queue->pending_kick, 0);
INIT_LIST_HEAD(&queue->pending_kick_link);
INIT_LIST_HEAD(&queue->error.link);
INIT_WORK(&queue->oom_event_work, oom_event_worker);
INIT_WORK(&queue->cs_error_work, cs_error_worker);
list_add(&queue->link, &kctx->csf.queue_list);
region->user_data = queue;
/* Initialize the cs_trace configuration parameters, When buffer_size
* is 0, trace is disabled. Here we only update the fields when
* enabled, otherwise leave them as default zeros.
*/
if (reg_ex && reg_ex->ex_buffer_size) {
u32 cfg = CS_INSTR_CONFIG_EVENT_SIZE_SET(
0, reg_ex->ex_event_size);
cfg = CS_INSTR_CONFIG_EVENT_STATE_SET(
cfg, reg_ex->ex_event_state);
queue->trace_cfg = cfg;
queue->trace_buffer_size = reg_ex->ex_buffer_size;
queue->trace_buffer_base = reg_ex->ex_buffer_base;
queue->trace_offset_ptr = reg_ex->ex_offset_var_addr;
}
out_unlock_vm:
kbase_gpu_vm_unlock(kctx);
out:
mutex_unlock(&kctx->csf.lock);
return ret;
}
int kbase_csf_queue_register(struct kbase_context *kctx,
struct kbase_ioctl_cs_queue_register *reg)
{
/* Validate the ring buffer configuration parameters */
if (reg->buffer_size < CS_RING_BUFFER_MIN_SIZE ||
reg->buffer_size > CS_RING_BUFFER_MAX_SIZE ||
reg->buffer_size & (reg->buffer_size - 1) || !reg->buffer_gpu_addr ||
reg->buffer_gpu_addr & ~PAGE_MASK)
return -EINVAL;
return csf_queue_register_internal(kctx, reg, NULL);
}
int kbase_csf_queue_register_ex(struct kbase_context *kctx,
struct kbase_ioctl_cs_queue_register_ex *reg)
{
struct kbase_csf_global_iface const *const iface =
&kctx->kbdev->csf.global_iface;
u32 const glb_version = iface->version;
u32 instr = iface->instr_features;
u8 max_size = GLB_INSTR_FEATURES_EVENT_SIZE_MAX_GET(instr);
u32 min_buf_size = (1u << reg->ex_event_size) *
GLB_INSTR_FEATURES_OFFSET_UPDATE_RATE_GET(instr);
/* If cs_trace_command not supported, the call fails */
if (glb_version < kbase_csf_interface_version(1, 1, 0))
return -EINVAL;
/* Validate the ring buffer configuration parameters */
if (reg->buffer_size < CS_RING_BUFFER_MIN_SIZE ||
reg->buffer_size > CS_RING_BUFFER_MAX_SIZE ||
reg->buffer_size & (reg->buffer_size - 1) || !reg->buffer_gpu_addr ||
reg->buffer_gpu_addr & ~PAGE_MASK)
return -EINVAL;
/* Validate the cs_trace configuration parameters */
if (reg->ex_buffer_size &&
((reg->ex_event_size > max_size) ||
(reg->ex_buffer_size & (reg->ex_buffer_size - 1)) ||
(reg->ex_buffer_size < min_buf_size)))
return -EINVAL;
return csf_queue_register_internal(kctx, NULL, reg);
}
static void unbind_queue(struct kbase_context *kctx,
struct kbase_queue *queue);
static void wait_pending_queue_kick(struct kbase_queue *queue)
{
struct kbase_context *const kctx = queue->kctx;
lockdep_assert_held(&kctx->csf.lock);
/* Drain a pending queue kick if any. It should no longer be
* possible to issue further queue kicks at this point: either the
* queue has been unbound, or the context is being terminated.
*/
mutex_unlock(&kctx->csf.lock);
/* Signal kbase_csf_scheduler_kthread() to allow for the
* eventual completion of the current iteration. Once it's done the
* event_wait wait queue shall be signalled.
*/
complete(&kctx->kbdev->csf.scheduler.kthread_signal);
wait_event(kctx->kbdev->csf.event_wait, atomic_read(&queue->pending_kick) == 0);
mutex_lock(&kctx->csf.lock);
}
void kbase_csf_queue_terminate(struct kbase_context *kctx,
struct kbase_ioctl_cs_queue_terminate *term)
{
struct kbase_device *kbdev = kctx->kbdev;
struct kbase_queue *queue;
int err;
bool reset_prevented = false;
err = kbase_reset_gpu_prevent_and_wait(kbdev);
if (err)
dev_warn(
kbdev->dev,
"Unsuccessful GPU reset detected when terminating queue (buffer_addr=0x%.16llx), attempting to terminate regardless",
term->buffer_gpu_addr);
else
reset_prevented = true;
mutex_lock(&kctx->csf.lock);
queue = find_queue(kctx, term->buffer_gpu_addr);
if (queue) {
/* As the GPU queue has been terminated by the
* user space, undo the actions that were performed when the
* queue was registered i.e. remove the queue from the per
* context list & release the initial reference. The subsequent
* lookups for the queue in find_queue() would fail.
*/
list_del_init(&queue->link);
/* Stop the CSI to which queue was bound */
unbind_queue(kctx, queue);
kbase_gpu_vm_lock(kctx);
if (!WARN_ON(!queue->queue_reg))
queue->queue_reg->user_data = NULL;
kbase_gpu_vm_unlock(kctx);
wait_pending_queue_kick(queue);
release_queue(queue);
}
mutex_unlock(&kctx->csf.lock);
if (reset_prevented)
kbase_reset_gpu_allow(kbdev);
}
int kbase_csf_queue_bind(struct kbase_context *kctx, union kbase_ioctl_cs_queue_bind *bind)
{
struct kbase_queue *queue;
struct kbase_queue_group *group;
u8 max_streams;
int ret = -EINVAL;
mutex_lock(&kctx->csf.lock);
group = find_queue_group(kctx, bind->in.group_handle);
queue = find_queue(kctx, bind->in.buffer_gpu_addr);
if (!group || !queue)
goto out;
/* For the time being, all CSGs have the same number of CSs
* so we check CSG 0 for this number
*/
max_streams = kctx->kbdev->csf.global_iface.groups[0].stream_num;
if (bind->in.csi_index >= max_streams)
goto out;
if (group->run_state == KBASE_CSF_GROUP_TERMINATED)
goto out;
if (queue->group || group->bound_queues[bind->in.csi_index])
goto out;
ret = get_user_pages_mmap_handle(kctx, queue);
if (ret)
goto out;
bind->out.mmap_handle = queue->handle;
group->bound_queues[bind->in.csi_index] = queue;
queue->group = group;
queue->group_priority = group->priority;
queue->csi_index = bind->in.csi_index;
queue->bind_state = KBASE_CSF_QUEUE_BIND_IN_PROGRESS;
out:
mutex_unlock(&kctx->csf.lock);
return ret;
}
/**
* get_bound_queue_group - Get the group to which a queue was bound
*
* @queue: Pointer to the queue for this group
*
* Return: The group to which this queue was bound, or NULL on error.
*/
static struct kbase_queue_group *get_bound_queue_group(struct kbase_queue *queue)
{
struct kbase_context *kctx = queue->kctx;
struct kbase_queue_group *group;
lockdep_assert_held(&kctx->csf.lock);
if (queue->bind_state == KBASE_CSF_QUEUE_UNBOUND)
return NULL;
if (!queue->group)
return NULL;
if (queue->csi_index == KBASEP_IF_NR_INVALID) {
dev_warn(kctx->kbdev->dev, "CS interface index is incorrect\n");
return NULL;
}
group = queue->group;
if (group->bound_queues[queue->csi_index] != queue) {
dev_warn(kctx->kbdev->dev, "Incorrect mapping between queues & queue groups\n");
return NULL;
}
return group;
}
void kbase_csf_ring_csg_doorbell(struct kbase_device *kbdev, int slot)
{
if (WARN_ON(slot < 0))
return;
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
kbase_csf_ring_csg_slots_doorbell(kbdev, (u32) (1 << slot));
}
void kbase_csf_ring_csg_slots_doorbell(struct kbase_device *kbdev,
u32 slot_bitmap)
{
const struct kbase_csf_global_iface *const global_iface =
&kbdev->csf.global_iface;
const u32 allowed_bitmap =
(u32) ((1U << kbdev->csf.global_iface.group_num) - 1);
u32 value;
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
if (WARN_ON(slot_bitmap > allowed_bitmap))
return;
/* The access to GLB_DB_REQ/ACK needs to be ordered with respect to CSG_REQ/ACK and
* CSG_DB_REQ/ACK to avoid a scenario where a CSI request overlaps with a CSG request
* or 2 CSI requests overlap and FW ends up missing the 2nd request.
* Memory barrier is required, both on Host and FW side, to guarantee the ordering.
*
* 'osh' is used as CPU and GPU would be in the same Outer shareable domain.
*/
dmb(osh);
value = kbase_csf_firmware_global_output(global_iface, GLB_DB_ACK);
value ^= slot_bitmap;
kbase_csf_firmware_global_input_mask(global_iface, GLB_DB_REQ, value,
slot_bitmap);
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
}
void kbase_csf_ring_cs_user_doorbell(struct kbase_device *kbdev,
struct kbase_queue *queue)
{
mutex_lock(&kbdev->csf.reg_lock);
if (queue->doorbell_nr != KBASEP_USER_DB_NR_INVALID)
kbase_csf_ring_doorbell(kbdev, queue->doorbell_nr);
mutex_unlock(&kbdev->csf.reg_lock);
}
void kbase_csf_ring_cs_kernel_doorbell(struct kbase_device *kbdev,
int csi_index, int csg_nr,
bool ring_csg_doorbell)
{
struct kbase_csf_cmd_stream_group_info *ginfo;
u32 value;
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
if (WARN_ON(csg_nr < 0) ||
WARN_ON(csg_nr >= kbdev->csf.global_iface.group_num))
return;
ginfo = &kbdev->csf.global_iface.groups[csg_nr];
if (WARN_ON(csi_index < 0) ||
WARN_ON(csi_index >= ginfo->stream_num))
return;
/* The access to CSG_DB_REQ/ACK needs to be ordered with respect to
* CS_REQ/ACK to avoid a scenario where CSG_DB_REQ/ACK becomes visibleto
* FW before CS_REQ/ACK is set.
*
* 'osh' is used as CPU and GPU would be in the same outer shareable domain.
*/
dmb(osh);
value = kbase_csf_firmware_csg_output(ginfo, CSG_DB_ACK);
value ^= (1 << csi_index);
kbase_csf_firmware_csg_input_mask(ginfo, CSG_DB_REQ, value,
1 << csi_index);
if (likely(ring_csg_doorbell))
kbase_csf_ring_csg_doorbell(kbdev, csg_nr);
}
int kbase_csf_queue_kick(struct kbase_context *kctx,
struct kbase_ioctl_cs_queue_kick *kick)
{
struct kbase_device *kbdev = kctx->kbdev;
struct kbase_va_region *region;
int err = 0;
KBASE_TLSTREAM_TL_KBASE_GPUCMDQUEUE_KICK(kbdev, kctx->id, kick->buffer_gpu_addr);
/* GPU work submission happening asynchronously to prevent the contention with
* scheduler lock and as the result blocking application thread. For this reason,
* the vm_lock is used here to get the reference to the queue based on its buffer_gpu_addr
* from the context list of active va_regions.
* Once the target queue is found the pending flag is set to one atomically avoiding
* a race between submission ioctl thread and the work item.
*/
kbase_gpu_vm_lock(kctx);
region = kbase_region_tracker_find_region_enclosing_address(kctx, kick->buffer_gpu_addr);
if (!kbase_is_region_invalid_or_free(region)) {
struct kbase_queue *queue = region->user_data;
if (queue && (queue->bind_state == KBASE_CSF_QUEUE_BOUND)) {
spin_lock(&kbdev->csf.pending_gpuq_kicks_lock);
if (list_empty(&queue->pending_kick_link)) {
/* Queue termination shall block until this
* kick has been handled.
*/
atomic_inc(&queue->pending_kick);
list_add_tail(
&queue->pending_kick_link,
&kbdev->csf.pending_gpuq_kicks[queue->group_priority]);
complete(&kbdev->csf.scheduler.kthread_signal);
}
spin_unlock(&kbdev->csf.pending_gpuq_kicks_lock);
}
} else {
dev_dbg(kbdev->dev,
"Attempt to kick GPU queue without a valid command buffer region");
err = -EFAULT;
}
kbase_gpu_vm_unlock(kctx);
return err;
}
static void unbind_stopped_queue(struct kbase_context *kctx,
struct kbase_queue *queue)
{
lockdep_assert_held(&kctx->csf.lock);
if (WARN_ON(queue->csi_index < 0))
return;
if (queue->bind_state != KBASE_CSF_QUEUE_UNBOUND) {
unsigned long flags;
kbase_csf_scheduler_spin_lock(kctx->kbdev, &flags);
bitmap_clear(queue->group->protm_pending_bitmap,
queue->csi_index, 1);
KBASE_KTRACE_ADD_CSF_GRP_Q(kctx->kbdev, CSI_PROTM_PEND_CLEAR,
queue->group, queue, queue->group->protm_pending_bitmap[0]);
queue->group->bound_queues[queue->csi_index] = NULL;
queue->group = NULL;
kbase_csf_scheduler_spin_unlock(kctx->kbdev, flags);
put_user_pages_mmap_handle(kctx, queue);
WARN_ON_ONCE(queue->doorbell_nr != KBASEP_USER_DB_NR_INVALID);
queue->bind_state = KBASE_CSF_QUEUE_UNBOUND;
}
}
/**
* unbind_queue() - Remove the linkage between a GPU command queue and the group
* to which it was bound or being bound.
*
* @kctx: Address of the kbase context within which the queue was created.
* @queue: Pointer to the queue to be unlinked.
*
* This function will also send the stop request to firmware for the CS
* if the group to which the GPU command queue was bound is scheduled.
*
* This function would be called when :-
* - queue is being unbound. This would happen when the IO mapping
* created on bind is removed explicitly by userspace or the process
* is getting exited.
* - queue group is being terminated which still has queues bound
* to it. This could happen on an explicit terminate request from userspace
* or when the kbase context is being terminated.
* - queue is being terminated without completing the bind operation.
* This could happen if either the queue group is terminated
* after the CS_QUEUE_BIND ioctl but before the 2nd part of bind operation
* to create the IO mapping is initiated.
* - There is a failure in executing the 2nd part of bind operation, inside the
* mmap handler, which creates the IO mapping for queue.
*/
static void unbind_queue(struct kbase_context *kctx, struct kbase_queue *queue)
{
kbase_reset_gpu_assert_failed_or_prevented(kctx->kbdev);
lockdep_assert_held(&kctx->csf.lock);
if (queue->bind_state != KBASE_CSF_QUEUE_UNBOUND) {
if (queue->bind_state == KBASE_CSF_QUEUE_BOUND)
kbase_csf_scheduler_queue_stop(queue);
unbind_stopped_queue(kctx, queue);
}
}
static bool kbase_csf_queue_phys_allocated(struct kbase_queue *queue)
{
/* The queue's phys are zeroed when allocation fails. Both of them being
* zero is an impossible condition for a successful allocated set of phy pages.
*/
return (queue->phys[0].tagged_addr | queue->phys[1].tagged_addr);
}
void kbase_csf_queue_unbind(struct kbase_queue *queue, bool process_exit)
{
struct kbase_context *kctx = queue->kctx;
lockdep_assert_held(&kctx->csf.lock);
/* As the process itself is exiting, the termination of queue group can
* be done which would be much faster than stopping of individual
* queues. This would ensure a faster exit for the process especially
* in the case where CSI gets stuck.
* The CSI STOP request will wait for the in flight work to drain
* whereas CSG TERM request would result in an immediate abort or
* cancellation of the pending work.
*/
if (process_exit) {
struct kbase_queue_group *group = get_bound_queue_group(queue);
if (group)
term_queue_group(group);
WARN_ON(queue->bind_state != KBASE_CSF_QUEUE_UNBOUND);
} else {
unbind_queue(kctx, queue);
}
/* Free the resources, if allocated phys for this queue */
if (kbase_csf_queue_phys_allocated(queue))
kbase_csf_free_command_stream_user_pages(kctx, queue);
}
void kbase_csf_queue_unbind_stopped(struct kbase_queue *queue)
{
struct kbase_context *kctx = queue->kctx;
lockdep_assert_held(&kctx->csf.lock);
WARN_ON(queue->bind_state == KBASE_CSF_QUEUE_BOUND);
unbind_stopped_queue(kctx, queue);
/* Free the resources, if allocated phys for this queue */
if (kbase_csf_queue_phys_allocated(queue))
kbase_csf_free_command_stream_user_pages(kctx, queue);
}
/**
* find_free_group_handle() - Find a free handle for a queue group
*
* @kctx: Address of the kbase context within which the queue group
* is to be created.
*
* Return: a queue group handle on success, or a negative error code on failure.
*/
static int find_free_group_handle(struct kbase_context *const kctx)
{
/* find the available index in the array of CSGs per this context */
int idx, group_handle = -ENOMEM;
lockdep_assert_held(&kctx->csf.lock);
for (idx = 0;
(idx != MAX_QUEUE_GROUP_NUM) && (group_handle < 0);
idx++) {
if (!kctx->csf.queue_groups[idx])
group_handle = idx;
}
return group_handle;
}
/**
* iface_has_enough_streams() - Check that at least one CSG supports
* a given number of CS
*
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
* @cs_min: Minimum number of CSs required.
*
* Return: true if at least one CSG supports the given number
* of CSs (or more); otherwise false.
*/
static bool iface_has_enough_streams(struct kbase_device *const kbdev,
u32 const cs_min)
{
bool has_enough = false;
struct kbase_csf_cmd_stream_group_info *const groups =
kbdev->csf.global_iface.groups;
const u32 group_num = kbdev->csf.global_iface.group_num;
u32 i;
for (i = 0; (i < group_num) && !has_enough; i++) {
if (groups[i].stream_num >= cs_min)
has_enough = true;
}
return has_enough;
}
/**
* create_normal_suspend_buffer() - Create normal-mode suspend buffer per
* queue group
*
* @kctx: Pointer to kbase context where the queue group is created at
* @s_buf: Pointer to suspend buffer that is attached to queue group
*
* Return: 0 if phy-pages for the suspend buffer is successfully allocated.
* Otherwise -ENOMEM or error code.
*/
static int create_normal_suspend_buffer(struct kbase_context *const kctx,
struct kbase_normal_suspend_buffer *s_buf)
{
const size_t nr_pages =
PFN_UP(kctx->kbdev->csf.global_iface.groups[0].suspend_size);
int err;
lockdep_assert_held(&kctx->csf.lock);
/* The suspend buffer's mapping address is valid only when the CSG is to
* run on slot, initializing it 0, signalling the buffer is not mapped.
*/
s_buf->gpu_va = 0;
s_buf->phy = kcalloc(nr_pages, sizeof(*s_buf->phy), GFP_KERNEL);
if (!s_buf->phy)
return -ENOMEM;
/* Get physical page for a normal suspend buffer */
err = kbase_mem_pool_alloc_pages(&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], nr_pages,
&s_buf->phy[0], false, kctx->task);
if (err < 0) {
kfree(s_buf->phy);
return err;
}
kbase_process_page_usage_inc(kctx, nr_pages);
return 0;
}
static void timer_event_worker(struct work_struct *data);
static void protm_event_worker(struct work_struct *data);
static void term_normal_suspend_buffer(struct kbase_context *const kctx,
struct kbase_normal_suspend_buffer *s_buf);
/**
* create_suspend_buffers - Setup normal and protected mode
* suspend buffers.
*
* @kctx: Address of the kbase context within which the queue group
* is to be created.
* @group: Pointer to GPU command queue group data.
*
* Return: 0 if suspend buffers are successfully allocated. Otherwise -ENOMEM.
*/
static int create_suspend_buffers(struct kbase_context *const kctx,
struct kbase_queue_group * const group)
{
if (create_normal_suspend_buffer(kctx, &group->normal_suspend_buf)) {
dev_err(kctx->kbdev->dev, "Failed to create normal suspend buffer\n");
return -ENOMEM;
}
/* Protected suspend buffer, runtime binding so just initialize it */
group->protected_suspend_buf.gpu_va = 0;
group->protected_suspend_buf.pma = NULL;
group->protected_suspend_buf.alloc_retries = 0;
return 0;
}
/**
* generate_group_uid() - Makes an ID unique to all kernel base devices
* and contexts, for a queue group and CSG.
*
* Return: A unique ID in the form of an unsigned 32-bit integer
*/
static u32 generate_group_uid(void)
{
static atomic_t global_csg_uid = ATOMIC_INIT(0);
return (u32)atomic_inc_return(&global_csg_uid);
}
/**
* create_queue_group() - Create a queue group
*
* @kctx: Address of the kbase context within which the queue group
* is to be created.
* @create: Address of a structure which contains details of the
* queue group which is to be created.
*
* Return: a queue group handle on success, or a negative error code on failure.
*/
static int create_queue_group(struct kbase_context *const kctx,
union kbase_ioctl_cs_queue_group_create *const create)
{
int group_handle = find_free_group_handle(kctx);
if (group_handle < 0) {
dev_dbg(kctx->kbdev->dev,
"All queue group handles are already in use");
} else {
struct kbase_queue_group * const group =
kmalloc(sizeof(struct kbase_queue_group),
GFP_KERNEL);
lockdep_assert_held(&kctx->csf.lock);
if (!group) {
dev_err(kctx->kbdev->dev, "Failed to allocate a queue\n");
group_handle = -ENOMEM;
} else {
int err = 0;
group->kctx = kctx;
group->handle = group_handle;
group->csg_nr = KBASEP_CSG_NR_INVALID;
group->tiler_mask = create->in.tiler_mask;
group->fragment_mask = create->in.fragment_mask;
group->compute_mask = create->in.compute_mask;
group->tiler_max = create->in.tiler_max;
group->fragment_max = create->in.fragment_max;
group->compute_max = create->in.compute_max;
group->csi_handlers = create->in.csi_handlers;
group->priority = kbase_csf_priority_queue_group_priority_to_relative(
kbase_csf_priority_check(kctx->kbdev, create->in.priority));
group->doorbell_nr = KBASEP_USER_DB_NR_INVALID;
group->faulted = false;
group->cs_unrecoverable = false;
group->reevaluate_idle_status = false;
group->csg_reg = NULL;
group->csg_reg_bind_retries = 0;
group->dvs_buf = create->in.dvs_buf;
#if IS_ENABLED(CONFIG_DEBUG_FS)
group->deschedule_deferred_cnt = 0;
#endif
group->group_uid = generate_group_uid();
create->out.group_uid = group->group_uid;
INIT_LIST_HEAD(&group->link);
INIT_LIST_HEAD(&group->link_to_schedule);
INIT_LIST_HEAD(&group->error_fatal.link);
INIT_LIST_HEAD(&group->error_timeout.link);
INIT_LIST_HEAD(&group->error_tiler_oom.link);
INIT_WORK(&group->timer_event_work, timer_event_worker);
INIT_WORK(&group->protm_event_work, protm_event_worker);
bitmap_zero(group->protm_pending_bitmap,
MAX_SUPPORTED_STREAMS_PER_GROUP);
group->run_state = KBASE_CSF_GROUP_INACTIVE;
KBASE_KTRACE_ADD_CSF_GRP(group->kctx->kbdev, CSF_GROUP_INACTIVE, group,
group->run_state);
err = create_suspend_buffers(kctx, group);
if (err < 0) {
kfree(group);
group_handle = err;
} else {
int j;
kctx->csf.queue_groups[group_handle] = group;
for (j = 0; j < MAX_SUPPORTED_STREAMS_PER_GROUP;
j++)
group->bound_queues[j] = NULL;
}
}
}
return group_handle;
}
static bool dvs_supported(u32 csf_version)
{
if (GLB_VERSION_MAJOR_GET(csf_version) < 3)
return false;
if (GLB_VERSION_MAJOR_GET(csf_version) == 3)
if (GLB_VERSION_MINOR_GET(csf_version) < 2)
return false;
return true;
}
int kbase_csf_queue_group_create(struct kbase_context *const kctx,
union kbase_ioctl_cs_queue_group_create *const create)
{
int err = 0;
const u32 tiler_count = hweight64(create->in.tiler_mask);
const u32 fragment_count = hweight64(create->in.fragment_mask);
const u32 compute_count = hweight64(create->in.compute_mask);
size_t i;
for (i = 0; i < ARRAY_SIZE(create->in.padding); i++) {
if (create->in.padding[i] != 0) {
dev_warn(kctx->kbdev->dev, "Invalid padding not 0 in queue group create\n");
return -EINVAL;
}
}
mutex_lock(&kctx->csf.lock);
if ((create->in.tiler_max > tiler_count) || (create->in.fragment_max > fragment_count) ||
(create->in.compute_max > compute_count)) {
dev_dbg(kctx->kbdev->dev,
"Invalid maximum number of endpoints for a queue group");
err = -EINVAL;
} else if (create->in.priority >= BASE_QUEUE_GROUP_PRIORITY_COUNT) {
dev_dbg(kctx->kbdev->dev, "Invalid queue group priority %u",
(unsigned int)create->in.priority);
err = -EINVAL;
} else if (!iface_has_enough_streams(kctx->kbdev, create->in.cs_min)) {
dev_dbg(kctx->kbdev->dev,
"No CSG has at least %d CSs",
create->in.cs_min);
err = -EINVAL;
} else if (create->in.csi_handlers & ~BASE_CSF_EXCEPTION_HANDLER_FLAGS_MASK) {
dev_warn(kctx->kbdev->dev, "Unknown exception handler flags set: %u",
create->in.csi_handlers & ~BASE_CSF_EXCEPTION_HANDLER_FLAGS_MASK);
err = -EINVAL;
} else if (!dvs_supported(kctx->kbdev->csf.global_iface.version) && create->in.dvs_buf) {
dev_warn(
kctx->kbdev->dev,
"GPU does not support DVS but userspace is trying to use it");
err = -EINVAL;
} else if (dvs_supported(kctx->kbdev->csf.global_iface.version) &&
!CSG_DVS_BUF_BUFFER_POINTER_GET(create->in.dvs_buf) &&
CSG_DVS_BUF_BUFFER_SIZE_GET(create->in.dvs_buf)) {
dev_warn(kctx->kbdev->dev,
"DVS buffer pointer is null but size is not 0");
err = -EINVAL;
} else {
/* For the CSG which satisfies the condition for having
* the needed number of CSs, check whether it also conforms
* with the requirements for at least one of its CSs having
* the iterator of the needed type
* (note: for CSF v1.0 all CSs in a CSG will have access to
* the same iterators)
*/
const int group_handle = create_queue_group(kctx, create);
if (group_handle >= 0)
create->out.group_handle = group_handle;
else
err = group_handle;
}
mutex_unlock(&kctx->csf.lock);
return err;
}
/**
* term_normal_suspend_buffer() - Free normal-mode suspend buffer of queue group
*
* @kctx: Pointer to kbase context where queue group belongs to
* @s_buf: Pointer to queue group suspend buffer to be freed
*/
static void term_normal_suspend_buffer(struct kbase_context *const kctx,
struct kbase_normal_suspend_buffer *s_buf)
{
const size_t nr_pages = PFN_UP(kctx->kbdev->csf.global_iface.groups[0].suspend_size);
lockdep_assert_held(&kctx->csf.lock);
/* The group should not have a bind remaining on any suspend buf region */
WARN_ONCE(s_buf->gpu_va, "Suspend buffer address should be 0 at termination");
kbase_mem_pool_free_pages(&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], nr_pages,
&s_buf->phy[0], false, false);
kbase_process_page_usage_dec(kctx, nr_pages);
kfree(s_buf->phy);
s_buf->phy = NULL;
}
/**
* term_protected_suspend_buffer() - Free protected-mode suspend buffer of
* queue group
*
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
* @sbuf: Pointer to queue group suspend buffer to be freed
*/
static void term_protected_suspend_buffer(struct kbase_device *const kbdev,
struct kbase_protected_suspend_buffer *sbuf)
{
WARN_ONCE(sbuf->gpu_va, "Suspend buf should have been unmapped inside scheduler!");
if (sbuf->pma) {
const size_t nr_pages = PFN_UP(kbdev->csf.global_iface.groups[0].suspend_size);
kbase_csf_protected_memory_free(kbdev, sbuf->pma, nr_pages, true);
sbuf->pma = NULL;
}
}
void kbase_csf_term_descheduled_queue_group(struct kbase_queue_group *group)
{
struct kbase_context *kctx = group->kctx;
/* Currently each group supports the same number of CS */
u32 max_streams =
kctx->kbdev->csf.global_iface.groups[0].stream_num;
u32 i;
lockdep_assert_held(&kctx->csf.lock);
WARN_ON(group->run_state != KBASE_CSF_GROUP_INACTIVE &&
group->run_state != KBASE_CSF_GROUP_FAULT_EVICTED);
for (i = 0; i < max_streams; i++) {
struct kbase_queue *queue =
group->bound_queues[i];
/* The group is already being evicted from the scheduler */
if (queue)
unbind_stopped_queue(kctx, queue);
}
term_normal_suspend_buffer(kctx, &group->normal_suspend_buf);
if (kctx->kbdev->csf.pma_dev)
term_protected_suspend_buffer(kctx->kbdev,
&group->protected_suspend_buf);
group->run_state = KBASE_CSF_GROUP_TERMINATED;
KBASE_KTRACE_ADD_CSF_GRP(group->kctx->kbdev, CSF_GROUP_TERMINATED, group, group->run_state);
}
/**
* term_queue_group - Terminate a GPU command queue group.
*
* @group: Pointer to GPU command queue group data.
*
* Terminates a GPU command queue group. From the userspace perspective the
* group will still exist but it can't bind new queues to it. Userspace can
* still add work in queues bound to the group but it won't be executed. (This
* is because the IO mapping created upon binding such queues is still intact.)
*/
static void term_queue_group(struct kbase_queue_group *group)
{
struct kbase_context *kctx = group->kctx;
kbase_reset_gpu_assert_failed_or_prevented(kctx->kbdev);
lockdep_assert_held(&kctx->csf.lock);
/* Stop the group and evict it from the scheduler */
kbase_csf_scheduler_group_deschedule(group);
if (group->run_state == KBASE_CSF_GROUP_TERMINATED)
return;
dev_dbg(kctx->kbdev->dev, "group %d terminating", group->handle);
kbase_csf_term_descheduled_queue_group(group);
}
/**
* wait_group_deferred_deschedule_completion - Wait for refcount of the group to
* become 0 that was taken when the group deschedule had to be deferred.
*
* @group: Pointer to GPU command queue group that is being deleted.
*
* This function is called when Userspace deletes the group and after the group
* has been descheduled. The function synchronizes with the other threads that were
* also trying to deschedule the group whilst the dumping was going on for a fault.
* Please refer the documentation of wait_for_dump_complete_on_group_deschedule()
* for more details.
*/
static void wait_group_deferred_deschedule_completion(struct kbase_queue_group *group)
{
#if IS_ENABLED(CONFIG_DEBUG_FS)
struct kbase_context *kctx = group->kctx;
lockdep_assert_held(&kctx->csf.lock);
if (likely(!group->deschedule_deferred_cnt))
return;
mutex_unlock(&kctx->csf.lock);
wait_event(kctx->kbdev->csf.event_wait, !group->deschedule_deferred_cnt);
mutex_lock(&kctx->csf.lock);
#endif
}
static void cancel_queue_group_events(struct kbase_queue_group *group)
{
cancel_work_sync(&group->timer_event_work);
cancel_work_sync(&group->protm_event_work);
}
static void remove_pending_group_fatal_error(struct kbase_queue_group *group)
{
struct kbase_context *kctx = group->kctx;
dev_dbg(kctx->kbdev->dev,
"Remove any pending group fatal error from context %pK\n",
(void *)group->kctx);
kbase_csf_event_remove_error(kctx, &group->error_tiler_oom);
kbase_csf_event_remove_error(kctx, &group->error_timeout);
kbase_csf_event_remove_error(kctx, &group->error_fatal);
}
void kbase_csf_queue_group_terminate(struct kbase_context *kctx,
u8 group_handle)
{
struct kbase_queue_group *group;
int err;
bool reset_prevented = false;
struct kbase_device *const kbdev = kctx->kbdev;
err = kbase_reset_gpu_prevent_and_wait(kbdev);
if (err)
dev_warn(
kbdev->dev,
"Unsuccessful GPU reset detected when terminating group %d, attempting to terminate regardless",
group_handle);
else
reset_prevented = true;
mutex_lock(&kctx->csf.lock);
group = find_queue_group(kctx, group_handle);
if (group) {
kctx->csf.queue_groups[group_handle] = NULL;
/* Stop the running of the given group */
term_queue_group(group);
mutex_unlock(&kctx->csf.lock);
if (reset_prevented) {
/* Allow GPU reset before cancelling the group specific
* work item to avoid potential deadlock.
* Reset prevention isn't needed after group termination.
*/
kbase_reset_gpu_allow(kbdev);
reset_prevented = false;
}
/* Cancel any pending event callbacks. If one is in progress
* then this thread waits synchronously for it to complete (which
* is why we must unlock the context first). We already ensured
* that no more callbacks can be enqueued by terminating the group.
*/
cancel_queue_group_events(group);
mutex_lock(&kctx->csf.lock);
/* Clean up after the termination */
remove_pending_group_fatal_error(group);
wait_group_deferred_deschedule_completion(group);
}
mutex_unlock(&kctx->csf.lock);
if (reset_prevented)
kbase_reset_gpu_allow(kbdev);
kfree(group);
}
KBASE_EXPORT_TEST_API(kbase_csf_queue_group_terminate);
#if IS_ENABLED(CONFIG_MALI_VECTOR_DUMP) || MALI_UNIT_TEST
int kbase_csf_queue_group_suspend(struct kbase_context *kctx,
struct kbase_suspend_copy_buffer *sus_buf,
u8 group_handle)
{
struct kbase_device *const kbdev = kctx->kbdev;
int err;
struct kbase_queue_group *group;
err = kbase_reset_gpu_prevent_and_wait(kbdev);
if (err) {
dev_warn(
kbdev->dev,
"Unsuccessful GPU reset detected when suspending group %d",
group_handle);
return err;
}
mutex_lock(&kctx->csf.lock);
group = find_queue_group(kctx, group_handle);
if (group)
err = kbase_csf_scheduler_group_copy_suspend_buf(group,
sus_buf);
else
err = -EINVAL;
mutex_unlock(&kctx->csf.lock);
kbase_reset_gpu_allow(kbdev);
return err;
}
#endif
void kbase_csf_add_group_fatal_error(
struct kbase_queue_group *const group,
struct base_gpu_queue_group_error const *const err_payload)
{
struct base_csf_notification error;
if (WARN_ON(!group))
return;
if (WARN_ON(!err_payload))
return;
error = (struct base_csf_notification) {
.type = BASE_CSF_NOTIFICATION_GPU_QUEUE_GROUP_ERROR,
.payload = {
.csg_error = {
.handle = group->handle,
.error = *err_payload
}
}
};
kbase_csf_event_add_error(group->kctx, &group->error_fatal, &error);
}
void kbase_csf_active_queue_groups_reset(struct kbase_device *kbdev,
struct kbase_context *kctx)
{
struct list_head evicted_groups;
struct kbase_queue_group *group;
int i;
INIT_LIST_HEAD(&evicted_groups);
mutex_lock(&kctx->csf.lock);
kbase_csf_scheduler_evict_ctx_slots(kbdev, kctx, &evicted_groups);
while (!list_empty(&evicted_groups)) {
group = list_first_entry(&evicted_groups,
struct kbase_queue_group, link);
dev_dbg(kbdev->dev, "Context %d_%d active group %d terminated",
kctx->tgid, kctx->id, group->handle);
kbase_csf_term_descheduled_queue_group(group);
list_del_init(&group->link);
}
/* Acting on the queue groups that are pending to be terminated. */
for (i = 0; i < MAX_QUEUE_GROUP_NUM; i++) {
group = kctx->csf.queue_groups[i];
if (group &&
group->run_state == KBASE_CSF_GROUP_FAULT_EVICTED)
kbase_csf_term_descheduled_queue_group(group);
}
mutex_unlock(&kctx->csf.lock);
}
int kbase_csf_ctx_init(struct kbase_context *kctx)
{
int err = -ENOMEM;
INIT_LIST_HEAD(&kctx->csf.queue_list);
INIT_LIST_HEAD(&kctx->csf.link);
kbase_csf_event_init(kctx);
/* Mark all the cookies as 'free' */
bitmap_fill(kctx->csf.cookies, KBASE_CSF_NUM_USER_IO_PAGES_HANDLE);
kctx->csf.wq = alloc_workqueue("mali_kbase_csf_wq",
WQ_UNBOUND, 1);
if (likely(kctx->csf.wq)) {
err = kbase_csf_scheduler_context_init(kctx);
if (likely(!err)) {
err = kbase_csf_kcpu_queue_context_init(kctx);
if (likely(!err)) {
err = kbase_csf_tiler_heap_context_init(kctx);
if (likely(!err)) {
mutex_init(&kctx->csf.lock);
err = kbasep_ctx_user_reg_page_mapping_init(kctx);
if (unlikely(err))
kbase_csf_tiler_heap_context_term(kctx);
}
if (unlikely(err))
kbase_csf_kcpu_queue_context_term(kctx);
}
if (unlikely(err))
kbase_csf_scheduler_context_term(kctx);
}
if (unlikely(err))
destroy_workqueue(kctx->csf.wq);
}
return err;
}
void kbase_csf_ctx_handle_fault(struct kbase_context *kctx,
struct kbase_fault *fault)
{
int gr;
bool reported = false;
struct base_gpu_queue_group_error err_payload;
int err;
struct kbase_device *kbdev;
if (WARN_ON(!kctx))
return;
if (WARN_ON(!fault))
return;
kbdev = kctx->kbdev;
err = kbase_reset_gpu_try_prevent(kbdev);
/* Regardless of whether reset failed or is currently happening, exit
* early
*/
if (err)
return;
err_payload = (struct base_gpu_queue_group_error) {
.error_type = BASE_GPU_QUEUE_GROUP_ERROR_FATAL,
.payload = {
.fatal_group = {
.sideband = fault->addr,
.status = fault->status,
}
}
};
mutex_lock(&kctx->csf.lock);
for (gr = 0; gr < MAX_QUEUE_GROUP_NUM; gr++) {
struct kbase_queue_group *const group =
kctx->csf.queue_groups[gr];
if (group && group->run_state != KBASE_CSF_GROUP_TERMINATED) {
term_queue_group(group);
kbase_csf_add_group_fatal_error(group, &err_payload);
reported = true;
}
}
mutex_unlock(&kctx->csf.lock);
if (reported)
kbase_event_wakeup(kctx);
kbase_reset_gpu_allow(kbdev);
}
void kbase_csf_ctx_term(struct kbase_context *kctx)
{
struct kbase_device *kbdev = kctx->kbdev;
struct kbase_as *as = NULL;
unsigned long flags;
u32 i;
int err;
bool reset_prevented = false;
/* As the kbase context is terminating, its debugfs sub-directory would
* have been removed already and so would be the debugfs file created
* for queue groups & kcpu queues, hence no need to explicitly remove
* those debugfs files.
*/
/* Wait for a GPU reset if it is happening, prevent it if not happening */
err = kbase_reset_gpu_prevent_and_wait(kbdev);
if (err)
dev_warn(
kbdev->dev,
"Unsuccessful GPU reset detected when terminating csf context (%d_%d), attempting to terminate regardless",
kctx->tgid, kctx->id);
else
reset_prevented = true;
mutex_lock(&kctx->csf.lock);
/* Iterate through the queue groups that were not terminated by
* userspace and issue the term request to firmware for them.
*/
for (i = 0; i < MAX_QUEUE_GROUP_NUM; i++) {
struct kbase_queue_group *group = kctx->csf.queue_groups[i];
if (group) {
remove_pending_group_fatal_error(group);
term_queue_group(group);
}
}
mutex_unlock(&kctx->csf.lock);
if (reset_prevented)
kbase_reset_gpu_allow(kbdev);
/* Now that all queue groups have been terminated, there can be no
* more OoM or timer event interrupts but there can be inflight work
* items. Destroying the wq will implicitly flush those work items.
*/
destroy_workqueue(kctx->csf.wq);
/* Wait for the firmware error work item to also finish as it could
* be affecting this outgoing context also.
*/
flush_work(&kctx->kbdev->csf.fw_error_work);
/* A work item to handle page_fault/bus_fault/gpu_fault could be
* pending for the outgoing context. Flush the workqueue that will
* execute that work item.
*/
spin_lock_irqsave(&kctx->kbdev->hwaccess_lock, flags);
if (kctx->as_nr != KBASEP_AS_NR_INVALID)
as = &kctx->kbdev->as[kctx->as_nr];
spin_unlock_irqrestore(&kctx->kbdev->hwaccess_lock, flags);
if (as)
flush_workqueue(as->pf_wq);
mutex_lock(&kctx->csf.lock);
for (i = 0; i < MAX_QUEUE_GROUP_NUM; i++) {
kfree(kctx->csf.queue_groups[i]);
kctx->csf.queue_groups[i] = NULL;
}
/* Iterate through the queues that were not terminated by
* userspace and do the required cleanup for them.
*/
while (!list_empty(&kctx->csf.queue_list)) {
struct kbase_queue *queue;
queue = list_first_entry(&kctx->csf.queue_list,
struct kbase_queue, link);
list_del_init(&queue->link);
wait_pending_queue_kick(queue);
/* The reference held when the IO mapping was created on bind
* would have been dropped otherwise the termination of Kbase
* context itself wouldn't have kicked-in. So there shall be
* only one reference left that was taken when queue was
* registered.
*/
WARN_ON(kbase_refcount_read(&queue->refcount) != 1);
release_queue(queue);
}
mutex_unlock(&kctx->csf.lock);
kbasep_ctx_user_reg_page_mapping_term(kctx);
kbase_csf_tiler_heap_context_term(kctx);
kbase_csf_kcpu_queue_context_term(kctx);
kbase_csf_scheduler_context_term(kctx);
kbase_csf_event_term(kctx);
mutex_destroy(&kctx->csf.lock);
}
/**
* handle_oom_event - Handle the OoM event generated by the firmware for the
* CSI.
*
* @group: Pointer to the CSG group the oom-event belongs to.
* @stream: Pointer to the structure containing info provided by the firmware
* about the CSI.
*
* This function will handle the OoM event request from the firmware for the
* CS. It will retrieve the address of heap context and heap's
* statistics (like number of render passes in-flight) from the CS's kernel
* output page and pass them to the tiler heap function to allocate a
* new chunk.
* It will also update the CS's kernel input page with the address
* of a new chunk that was allocated.
*
* Return: 0 if successfully handled the request, otherwise a negative error
* code on failure.
*/
static int handle_oom_event(struct kbase_queue_group *const group,
struct kbase_csf_cmd_stream_info const *const stream)
{
struct kbase_context *const kctx = group->kctx;
u64 gpu_heap_va =
kbase_csf_firmware_cs_output(stream, CS_HEAP_ADDRESS_LO) |
((u64)kbase_csf_firmware_cs_output(stream, CS_HEAP_ADDRESS_HI) << 32);
const u32 vt_start =
kbase_csf_firmware_cs_output(stream, CS_HEAP_VT_START);
const u32 vt_end =
kbase_csf_firmware_cs_output(stream, CS_HEAP_VT_END);
const u32 frag_end =
kbase_csf_firmware_cs_output(stream, CS_HEAP_FRAG_END);
u32 renderpasses_in_flight;
u32 pending_frag_count;
u64 new_chunk_ptr;
int err;
if ((frag_end > vt_end) || (vt_end >= vt_start)) {
dev_warn(kctx->kbdev->dev, "Invalid Heap statistics provided by firmware: vt_start %d, vt_end %d, frag_end %d\n",
vt_start, vt_end, frag_end);
return -EINVAL;
}
renderpasses_in_flight = vt_start - frag_end;
pending_frag_count = vt_end - frag_end;
err = kbase_csf_tiler_heap_alloc_new_chunk(kctx,
gpu_heap_va, renderpasses_in_flight, pending_frag_count, &new_chunk_ptr);
if ((group->csi_handlers & BASE_CSF_TILER_OOM_EXCEPTION_FLAG) &&
(pending_frag_count == 0) && (err == -ENOMEM || err == -EBUSY)) {
/* The group allows incremental rendering, trigger it */
new_chunk_ptr = 0;
dev_dbg(kctx->kbdev->dev, "Group-%d (slot-%d) enter incremental render\n",
group->handle, group->csg_nr);
} else if (err == -EBUSY) {
/* Acknowledge with a NULL chunk (firmware will then wait for
* the fragment jobs to complete and release chunks)
*/
new_chunk_ptr = 0;
} else if (err)
return err;
kbase_csf_firmware_cs_input(stream, CS_TILER_HEAP_START_LO,
new_chunk_ptr & 0xFFFFFFFF);
kbase_csf_firmware_cs_input(stream, CS_TILER_HEAP_START_HI,
new_chunk_ptr >> 32);
kbase_csf_firmware_cs_input(stream, CS_TILER_HEAP_END_LO,
new_chunk_ptr & 0xFFFFFFFF);
kbase_csf_firmware_cs_input(stream, CS_TILER_HEAP_END_HI,
new_chunk_ptr >> 32);
return 0;
}
/**
* report_tiler_oom_error - Report a CSG error due to a tiler heap OOM event
*
* @group: Pointer to the GPU command queue group that encountered the error
*/
static void report_tiler_oom_error(struct kbase_queue_group *group)
{
struct base_csf_notification const
error = { .type = BASE_CSF_NOTIFICATION_GPU_QUEUE_GROUP_ERROR,
.payload = {
.csg_error = {
.handle = group->handle,
.error = {
.error_type =
BASE_GPU_QUEUE_GROUP_ERROR_TILER_HEAP_OOM,
} } } };
kbase_csf_event_add_error(group->kctx,
&group->error_tiler_oom,
&error);
kbase_event_wakeup(group->kctx);
}
static void flush_gpu_cache_on_fatal_error(struct kbase_device *kbdev)
{
kbase_pm_lock(kbdev);
/* With the advent of partial cache flush, dirty cache lines could
* be left in the GPU L2 caches by terminating the queue group here
* without waiting for proper cache maintenance. A full cache flush
* here will prevent these dirty cache lines from being arbitrarily
* evicted later and possible causing memory corruption.
*/
if (kbdev->pm.backend.gpu_powered) {
kbase_gpu_start_cache_clean(kbdev, GPU_COMMAND_CACHE_CLN_INV_L2_LSC);
if (kbase_gpu_wait_cache_clean_timeout(kbdev,
kbdev->mmu_or_gpu_cache_op_wait_time_ms))
dev_warn(
kbdev->dev,
"[%llu] Timeout waiting for CACHE_CLN_INV_L2_LSC to complete after fatal error",
kbase_backend_get_cycle_cnt(kbdev));
}
kbase_pm_unlock(kbdev);
}
/**
* kbase_queue_oom_event - Handle tiler out-of-memory for a GPU command queue.
*
* @queue: Pointer to queue for which out-of-memory event was received.
*
* Called with the CSF locked for the affected GPU virtual address space.
* Do not call in interrupt context.
*
* Handles tiler out-of-memory for a GPU command queue and then clears the
* notification to allow the firmware to report out-of-memory again in future.
* If the out-of-memory condition was successfully handled then this function
* rings the relevant doorbell to notify the firmware; otherwise, it terminates
* the GPU command queue group to which the queue is bound and notify a waiting
* user space client of the failure.
*/
static void kbase_queue_oom_event(struct kbase_queue *const queue)
{
struct kbase_context *const kctx = queue->kctx;
struct kbase_device *const kbdev = kctx->kbdev;
struct kbase_queue_group *group;
int slot_num, err;
struct kbase_csf_cmd_stream_group_info const *ginfo;
struct kbase_csf_cmd_stream_info const *stream;
int csi_index = queue->csi_index;
u32 cs_oom_ack, cs_oom_req;
unsigned long flags;
lockdep_assert_held(&kctx->csf.lock);
group = get_bound_queue_group(queue);
if (!group) {
dev_warn(kctx->kbdev->dev, "queue not bound\n");
return;
}
kbase_csf_scheduler_lock(kbdev);
slot_num = kbase_csf_scheduler_group_get_slot(group);
/* The group could have gone off slot before this work item got
* a chance to execute.
*/
if (slot_num < 0)
goto unlock;
/* If the bound group is on slot yet the kctx is marked with disabled
* on address-space fault, the group is pending to be killed. So skip
* the inflight oom operation.
*/
if (kbase_ctx_flag(kctx, KCTX_AS_DISABLED_ON_FAULT))
goto unlock;
ginfo = &kbdev->csf.global_iface.groups[slot_num];
stream = &ginfo->streams[csi_index];
cs_oom_ack = kbase_csf_firmware_cs_output(stream, CS_ACK) &
CS_ACK_TILER_OOM_MASK;
cs_oom_req = kbase_csf_firmware_cs_input_read(stream, CS_REQ) &
CS_REQ_TILER_OOM_MASK;
/* The group could have already undergone suspend-resume cycle before
* this work item got a chance to execute. On CSG resume the CS_ACK
* register is set by firmware to reflect the CS_REQ register, which
* implies that all events signaled before suspension are implicitly
* acknowledged.
* A new OoM event is expected to be generated after resume.
*/
if (cs_oom_ack == cs_oom_req)
goto unlock;
err = handle_oom_event(group, stream);
kbase_csf_scheduler_spin_lock(kbdev, &flags);
kbase_csf_firmware_cs_input_mask(stream, CS_REQ, cs_oom_ack,
CS_REQ_TILER_OOM_MASK);
kbase_csf_ring_cs_kernel_doorbell(kbdev, csi_index, slot_num, true);
kbase_csf_scheduler_spin_unlock(kbdev, flags);
if (unlikely(err)) {
dev_warn(
kbdev->dev,
"Queue group to be terminated, couldn't handle the OoM event\n");
kbase_debug_csf_fault_notify(kbdev, kctx, DF_TILER_OOM);
kbase_csf_scheduler_unlock(kbdev);
term_queue_group(group);
flush_gpu_cache_on_fatal_error(kbdev);
report_tiler_oom_error(group);
return;
}
unlock:
kbase_csf_scheduler_unlock(kbdev);
}
/**
* oom_event_worker - Tiler out-of-memory handler called from a workqueue.
*
* @data: Pointer to a work_struct embedded in GPU command queue data.
*
* Handles a tiler out-of-memory condition for a GPU command queue and then
* releases a reference that was added to prevent the queue being destroyed
* while this work item was pending on a workqueue.
*/
static void oom_event_worker(struct work_struct *data)
{
struct kbase_queue *queue =
container_of(data, struct kbase_queue, oom_event_work);
struct kbase_context *kctx = queue->kctx;
struct kbase_device *const kbdev = kctx->kbdev;
int err = kbase_reset_gpu_try_prevent(kbdev);
/* Regardless of whether reset failed or is currently happening, exit
* early
*/
if (err)
return;
mutex_lock(&kctx->csf.lock);
kbase_queue_oom_event(queue);
release_queue(queue);
mutex_unlock(&kctx->csf.lock);
kbase_reset_gpu_allow(kbdev);
}
/**
* report_group_timeout_error - Report the timeout error for the group to userspace.
*
* @group: Pointer to the group for which timeout error occurred
*/
static void report_group_timeout_error(struct kbase_queue_group *const group)
{
struct base_csf_notification const
error = { .type = BASE_CSF_NOTIFICATION_GPU_QUEUE_GROUP_ERROR,
.payload = {
.csg_error = {
.handle = group->handle,
.error = {
.error_type =
BASE_GPU_QUEUE_GROUP_ERROR_TIMEOUT,
} } } };
dev_warn(group->kctx->kbdev->dev,
"Notify the event notification thread, forward progress timeout (%llu cycles)\n",
kbase_csf_timeout_get(group->kctx->kbdev));
kbase_csf_event_add_error(group->kctx, &group->error_timeout, &error);
kbase_event_wakeup(group->kctx);
}
/**
* timer_event_worker - Handle the progress timeout error for the group
*
* @data: Pointer to a work_struct embedded in GPU command queue group data.
*
* Terminate the CSG and report the error to userspace
*/
static void timer_event_worker(struct work_struct *data)
{
struct kbase_queue_group *const group =
container_of(data, struct kbase_queue_group, timer_event_work);
struct kbase_context *const kctx = group->kctx;
struct kbase_device *const kbdev = kctx->kbdev;
bool reset_prevented = false;
int err = kbase_reset_gpu_prevent_and_wait(kbdev);
if (err)
dev_warn(
kbdev->dev,
"Unsuccessful GPU reset detected when terminating group %d on progress timeout, attempting to terminate regardless",
group->handle);
else
reset_prevented = true;
mutex_lock(&kctx->csf.lock);
term_queue_group(group);
flush_gpu_cache_on_fatal_error(kbdev);
report_group_timeout_error(group);
mutex_unlock(&kctx->csf.lock);
if (reset_prevented)
kbase_reset_gpu_allow(kbdev);
}
/**
* handle_progress_timer_event - Progress timer timeout event handler.
*
* @group: Pointer to GPU queue group for which the timeout event is received.
*
* Notify a waiting user space client of the timeout.
* Enqueue a work item to terminate the group and notify the event notification
* thread of progress timeout fault for the GPU command queue group.
*/
static void handle_progress_timer_event(struct kbase_queue_group *const group)
{
kbase_debug_csf_fault_notify(group->kctx->kbdev, group->kctx,
DF_PROGRESS_TIMER_TIMEOUT);
queue_work(group->kctx->csf.wq, &group->timer_event_work);
}
/**
* alloc_grp_protected_suspend_buffer_pages() - Allocate physical pages from the protected
* memory for the protected mode suspend buffer.
* @group: Pointer to the GPU queue group.
*
* Return: 0 if suspend buffer allocation is successful or if its already allocated, otherwise
* negative error value.
*/
static int alloc_grp_protected_suspend_buffer_pages(struct kbase_queue_group *const group)
{
struct kbase_device *const kbdev = group->kctx->kbdev;
struct kbase_context *kctx = group->kctx;
struct tagged_addr *phys = NULL;
struct kbase_protected_suspend_buffer *sbuf = &group->protected_suspend_buf;
size_t nr_pages;
int err = 0;
if (likely(sbuf->pma))
return 0;
nr_pages = PFN_UP(kbdev->csf.global_iface.groups[0].suspend_size);
phys = kcalloc(nr_pages, sizeof(*phys), GFP_KERNEL);
if (unlikely(!phys)) {
err = -ENOMEM;
goto phys_free;
}
mutex_lock(&kctx->csf.lock);
kbase_csf_scheduler_lock(kbdev);
if (unlikely(!group->csg_reg)) {
/* The only chance of the bound csg_reg is removed from the group is
* that it has been put off slot by the scheduler and the csg_reg resource
* is contended by other groups. In this case, it needs another occasion for
* mapping the pma, which needs a bound csg_reg. Since the group is already
* off-slot, returning no error is harmless as the scheduler, when place the
* group back on-slot again would do the required MMU map operation on the
* allocated and retained pma.
*/
WARN_ON(group->csg_nr >= 0);
dev_dbg(kbdev->dev, "No bound csg_reg for group_%d_%d_%d to enter protected mode",
group->kctx->tgid, group->kctx->id, group->handle);
goto unlock;
}
/* Allocate the protected mode pages */
sbuf->pma = kbase_csf_protected_memory_alloc(kbdev, phys, nr_pages, true);
if (unlikely(!sbuf->pma)) {
err = -ENOMEM;
goto unlock;
}
/* Map the bound susp_reg to the just allocated pma pages */
err = kbase_csf_mcu_shared_group_update_pmode_map(kbdev, group);
unlock:
kbase_csf_scheduler_unlock(kbdev);
mutex_unlock(&kctx->csf.lock);
phys_free:
kfree(phys);
return err;
}
static void report_group_fatal_error(struct kbase_queue_group *const group)
{
struct base_gpu_queue_group_error const
err_payload = { .error_type = BASE_GPU_QUEUE_GROUP_ERROR_FATAL,
.payload = { .fatal_group = {
.status = GPU_EXCEPTION_TYPE_SW_FAULT_0,
} } };
kbase_csf_add_group_fatal_error(group, &err_payload);
kbase_event_wakeup(group->kctx);
}
/**
* protm_event_worker - Protected mode switch request event handler
* called from a workqueue.
*
* @data: Pointer to a work_struct embedded in GPU command queue group data.
*
* Request to switch to protected mode.
*/
static void protm_event_worker(struct work_struct *data)
{
struct kbase_queue_group *const group =
container_of(data, struct kbase_queue_group, protm_event_work);
struct kbase_protected_suspend_buffer *sbuf = &group->protected_suspend_buf;
int err = 0;
KBASE_KTRACE_ADD_CSF_GRP(group->kctx->kbdev, PROTM_EVENT_WORKER_START,
group, 0u);
err = alloc_grp_protected_suspend_buffer_pages(group);
if (!err) {
kbase_csf_scheduler_group_protm_enter(group);
} else if (err == -ENOMEM && sbuf->alloc_retries <= PROTM_ALLOC_MAX_RETRIES) {
sbuf->alloc_retries++;
/* try again to allocate pages */
queue_work(group->kctx->csf.wq, &group->protm_event_work);
} else if (sbuf->alloc_retries >= PROTM_ALLOC_MAX_RETRIES || err != -ENOMEM) {
dev_err(group->kctx->kbdev->dev,
"Failed to allocate physical pages for Protected mode suspend buffer for the group %d of context %d_%d",
group->handle, group->kctx->tgid, group->kctx->id);
report_group_fatal_error(group);
}
KBASE_KTRACE_ADD_CSF_GRP(group->kctx->kbdev, PROTM_EVENT_WORKER_END,
group, 0u);
}
/**
* handle_fault_event - Handler for CS fault.
*
* @queue: Pointer to queue for which fault event was received.
* @cs_ack: Value of the CS_ACK register in the CS kernel input page used for
* the queue.
*
* Print required information about the CS fault and notify the user space client
* about the fault.
*/
static void
handle_fault_event(struct kbase_queue *const queue, const u32 cs_ack)
{
struct kbase_device *const kbdev = queue->kctx->kbdev;
struct kbase_csf_cmd_stream_group_info const *ginfo =
&kbdev->csf.global_iface.groups[queue->group->csg_nr];
struct kbase_csf_cmd_stream_info const *stream =
&ginfo->streams[queue->csi_index];
const u32 cs_fault = kbase_csf_firmware_cs_output(stream, CS_FAULT);
const u64 cs_fault_info =
kbase_csf_firmware_cs_output(stream, CS_FAULT_INFO_LO) |
((u64)kbase_csf_firmware_cs_output(stream, CS_FAULT_INFO_HI)
<< 32);
const u8 cs_fault_exception_type =
CS_FAULT_EXCEPTION_TYPE_GET(cs_fault);
const u32 cs_fault_exception_data =
CS_FAULT_EXCEPTION_DATA_GET(cs_fault);
const u64 cs_fault_info_exception_data =
CS_FAULT_INFO_EXCEPTION_DATA_GET(cs_fault_info);
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
dev_warn(kbdev->dev,
"Ctx %d_%d Group %d CSG %d CSI: %d\n"
"CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
"CS_FAULT.EXCEPTION_DATA: 0x%x\n"
"CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
queue->kctx->tgid, queue->kctx->id, queue->group->handle,
queue->group->csg_nr, queue->csi_index,
cs_fault_exception_type,
kbase_gpu_exception_name(cs_fault_exception_type),
cs_fault_exception_data, cs_fault_info_exception_data);
#if IS_ENABLED(CONFIG_DEBUG_FS)
/* CS_RESOURCE_TERMINATED type fault event can be ignored from the
* standpoint of dump on error. It is used to report fault for the CSIs
* that are associated with the same CSG as the CSI for which the actual
* fault was reported by the Iterator.
* Dumping would be triggered when the actual fault is reported.
*
* CS_INHERIT_FAULT can also be ignored. It could happen due to the error
* in other types of queues (cpu/kcpu). If a fault had occurred in some
* other GPU queue then the dump would have been performed anyways when
* that fault was reported.
*/
if ((cs_fault_exception_type != CS_FAULT_EXCEPTION_TYPE_CS_INHERIT_FAULT) &&
(cs_fault_exception_type != CS_FAULT_EXCEPTION_TYPE_CS_RESOURCE_TERMINATED)) {
if (unlikely(kbase_debug_csf_fault_notify(kbdev, queue->kctx, DF_CS_FAULT))) {
get_queue(queue);
queue->cs_error = cs_fault;
queue->cs_error_info = cs_fault_info;
queue->cs_error_fatal = false;
if (!queue_work(queue->kctx->csf.wq, &queue->cs_error_work))
release_queue(queue);
return;
}
}
#endif
kbase_csf_firmware_cs_input_mask(stream, CS_REQ, cs_ack,
CS_REQ_FAULT_MASK);
kbase_csf_ring_cs_kernel_doorbell(kbdev, queue->csi_index, queue->group->csg_nr, true);
}
static void report_queue_fatal_error(struct kbase_queue *const queue,
u32 cs_fatal, u64 cs_fatal_info,
u8 group_handle)
{
struct base_csf_notification error = {
.type = BASE_CSF_NOTIFICATION_GPU_QUEUE_GROUP_ERROR,
.payload = {
.csg_error = {
.handle = group_handle,
.error = {
.error_type =
BASE_GPU_QUEUE_GROUP_QUEUE_ERROR_FATAL,
.payload = {
.fatal_queue = {
.sideband = cs_fatal_info,
.status = cs_fatal,
.csi_index = queue->csi_index,
}
}
}
}
}
};
kbase_csf_event_add_error(queue->kctx, &queue->error, &error);
kbase_event_wakeup(queue->kctx);
}
/**
* fatal_event_worker - Handle the CS_FATAL/CS_FAULT error for the GPU queue
*
* @data: Pointer to a work_struct embedded in GPU command queue.
*
* Terminate the CSG and report the error to userspace.
*/
static void cs_error_worker(struct work_struct *const data)
{
struct kbase_queue *const queue =
container_of(data, struct kbase_queue, cs_error_work);
struct kbase_context *const kctx = queue->kctx;
struct kbase_device *const kbdev = kctx->kbdev;
struct kbase_queue_group *group;
u8 group_handle;
bool reset_prevented = false;
int err;
kbase_debug_csf_fault_wait_completion(kbdev);
err = kbase_reset_gpu_prevent_and_wait(kbdev);
if (err)
dev_warn(
kbdev->dev,
"Unsuccessful GPU reset detected when terminating group to handle fatal event, attempting to terminate regardless");
else
reset_prevented = true;
mutex_lock(&kctx->csf.lock);
group = get_bound_queue_group(queue);
if (!group) {
dev_warn(kbdev->dev, "queue not bound when handling fatal event");
goto unlock;
}
#if IS_ENABLED(CONFIG_DEBUG_FS)
if (!queue->cs_error_fatal) {
unsigned long flags;
int slot_num;
kbase_csf_scheduler_spin_lock(kbdev, &flags);
slot_num = kbase_csf_scheduler_group_get_slot_locked(group);
if (slot_num >= 0) {
struct kbase_csf_cmd_stream_group_info const *ginfo =
&kbdev->csf.global_iface.groups[slot_num];
struct kbase_csf_cmd_stream_info const *stream =
&ginfo->streams[queue->csi_index];
u32 const cs_ack =
kbase_csf_firmware_cs_output(stream, CS_ACK);
kbase_csf_firmware_cs_input_mask(stream, CS_REQ, cs_ack,
CS_REQ_FAULT_MASK);
kbase_csf_ring_cs_kernel_doorbell(kbdev, queue->csi_index,
slot_num, true);
}
kbase_csf_scheduler_spin_unlock(kbdev, flags);
goto unlock;
}
#endif
group_handle = group->handle;
term_queue_group(group);
flush_gpu_cache_on_fatal_error(kbdev);
report_queue_fatal_error(queue, queue->cs_error, queue->cs_error_info,
group_handle);
unlock:
release_queue(queue);
mutex_unlock(&kctx->csf.lock);
if (reset_prevented)
kbase_reset_gpu_allow(kbdev);
}
/**
* handle_fatal_event - Handler for CS fatal.
*
* @queue: Pointer to queue for which fatal event was received.
* @stream: Pointer to the structure containing info provided by the
* firmware about the CSI.
* @cs_ack: Value of the CS_ACK register in the CS kernel input page used for
* the queue.
*
* Notify a waiting user space client of the CS fatal and prints meaningful
* information.
* Enqueue a work item to terminate the group and report the fatal error
* to user space.
*/
static void
handle_fatal_event(struct kbase_queue *const queue,
struct kbase_csf_cmd_stream_info const *const stream,
u32 cs_ack)
{
const u32 cs_fatal = kbase_csf_firmware_cs_output(stream, CS_FATAL);
const u64 cs_fatal_info =
kbase_csf_firmware_cs_output(stream, CS_FATAL_INFO_LO) |
((u64)kbase_csf_firmware_cs_output(stream, CS_FATAL_INFO_HI)
<< 32);
const u32 cs_fatal_exception_type =
CS_FATAL_EXCEPTION_TYPE_GET(cs_fatal);
const u32 cs_fatal_exception_data =
CS_FATAL_EXCEPTION_DATA_GET(cs_fatal);
const u64 cs_fatal_info_exception_data =
CS_FATAL_INFO_EXCEPTION_DATA_GET(cs_fatal_info);
struct kbase_device *const kbdev = queue->kctx->kbdev;
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
dev_warn(kbdev->dev,
"Ctx %d_%d Group %d CSG %d CSI: %d\n"
"CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
"CS_FATAL.EXCEPTION_DATA: 0x%x\n"
"CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
queue->kctx->tgid, queue->kctx->id, queue->group->handle,
queue->group->csg_nr, queue->csi_index,
cs_fatal_exception_type,
kbase_gpu_exception_name(cs_fatal_exception_type),
cs_fatal_exception_data, cs_fatal_info_exception_data);
if (cs_fatal_exception_type ==
CS_FATAL_EXCEPTION_TYPE_FIRMWARE_INTERNAL_ERROR) {
kbase_debug_csf_fault_notify(kbdev, queue->kctx, DF_FW_INTERNAL_ERROR);
queue_work(system_wq, &kbdev->csf.fw_error_work);
} else {
kbase_debug_csf_fault_notify(kbdev, queue->kctx, DF_CS_FATAL);
if (cs_fatal_exception_type == CS_FATAL_EXCEPTION_TYPE_CS_UNRECOVERABLE) {
queue->group->cs_unrecoverable = true;
if (kbase_prepare_to_reset_gpu(queue->kctx->kbdev, RESET_FLAGS_NONE))
kbase_reset_gpu(queue->kctx->kbdev);
}
get_queue(queue);
queue->cs_error = cs_fatal;
queue->cs_error_info = cs_fatal_info;
queue->cs_error_fatal = true;
if (!queue_work(queue->kctx->csf.wq, &queue->cs_error_work))
release_queue(queue);
}
kbase_csf_firmware_cs_input_mask(stream, CS_REQ, cs_ack,
CS_REQ_FATAL_MASK);
}
/**
* process_cs_interrupts - Process interrupts for a CS.
*
* @group: Pointer to GPU command queue group data.
* @ginfo: The CSG interface provided by the firmware.
* @irqreq: CSG's IRQ request bitmask (one bit per CS).
* @irqack: CSG's IRQ acknowledge bitmask (one bit per CS).
* @track: Pointer that tracks the highest scanout priority idle CSG
* and any newly potentially viable protected mode requesting
* CSG in current IRQ context.
*
* If the interrupt request bitmask differs from the acknowledge bitmask
* then the firmware is notifying the host of an event concerning those
* CSs indicated by bits whose value differs. The actions required
* are then determined by examining which notification flags differ between
* the request and acknowledge registers for the individual CS(s).
*/
static void process_cs_interrupts(struct kbase_queue_group *const group,
struct kbase_csf_cmd_stream_group_info const *const ginfo,
u32 const irqreq, u32 const irqack,
struct irq_idle_and_protm_track *track)
{
struct kbase_device *const kbdev = group->kctx->kbdev;
u32 remaining = irqreq ^ irqack;
bool protm_pend = false;
const bool group_suspending =
!kbase_csf_scheduler_group_events_enabled(kbdev, group);
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
while (remaining != 0) {
int const i = ffs(remaining) - 1;
struct kbase_queue *const queue = group->bound_queues[i];
remaining &= ~(1 << i);
/* The queue pointer can be NULL, but if it isn't NULL then it
* cannot disappear since scheduler spinlock is held and before
* freeing a bound queue it has to be first unbound which
* requires scheduler spinlock.
*/
if (queue && !WARN_ON(queue->csi_index != i)) {
struct kbase_csf_cmd_stream_info const *const stream =
&ginfo->streams[i];
u32 const cs_req = kbase_csf_firmware_cs_input_read(
stream, CS_REQ);
u32 const cs_ack =
kbase_csf_firmware_cs_output(stream, CS_ACK);
struct workqueue_struct *wq = group->kctx->csf.wq;
if ((cs_ack & CS_ACK_FATAL_MASK) != (cs_req & CS_REQ_FATAL_MASK)) {
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, CSI_INTERRUPT_FAULT,
group, queue, cs_req ^ cs_ack);
handle_fatal_event(queue, stream, cs_ack);
}
if ((cs_ack & CS_ACK_FAULT_MASK) != (cs_req & CS_REQ_FAULT_MASK)) {
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, CSI_INTERRUPT_FAULT,
group, queue, cs_req ^ cs_ack);
handle_fault_event(queue, cs_ack);
}
/* PROTM_PEND and TILER_OOM can be safely ignored
* because they will be raised again if the group
* is assigned a CSG slot in future.
*/
if (group_suspending) {
u32 const cs_req_remain = cs_req & ~CS_REQ_EXCEPTION_MASK;
u32 const cs_ack_remain = cs_ack & ~CS_ACK_EXCEPTION_MASK;
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev,
CSI_INTERRUPT_GROUP_SUSPENDS_IGNORED,
group, queue,
cs_req_remain ^ cs_ack_remain);
continue;
}
if (((cs_req & CS_REQ_TILER_OOM_MASK) ^
(cs_ack & CS_ACK_TILER_OOM_MASK))) {
get_queue(queue);
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, CSI_INTERRUPT_TILER_OOM,
group, queue, cs_req ^ cs_ack);
if (!queue_work(wq, &queue->oom_event_work)) {
/* The work item shall not have been
* already queued, there can be only
* one pending OoM event for a
* queue.
*/
dev_warn(
kbdev->dev,
"Tiler OOM work pending: queue %d group %d (ctx %d_%d)",
queue->csi_index, group->handle, queue->kctx->tgid,
queue->kctx->id);
release_queue(queue);
}
}
if ((cs_req & CS_REQ_PROTM_PEND_MASK) ^
(cs_ack & CS_ACK_PROTM_PEND_MASK)) {
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, CSI_INTERRUPT_PROTM_PEND,
group, queue, cs_req ^ cs_ack);
dev_dbg(kbdev->dev,
"Protected mode entry request for queue on csi %d bound to group-%d on slot %d",
queue->csi_index, group->handle,
group->csg_nr);
bitmap_set(group->protm_pending_bitmap, i, 1);
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, CSI_PROTM_PEND_SET, group, queue,
group->protm_pending_bitmap[0]);
protm_pend = true;
}
}
}
if (protm_pend) {
struct kbase_csf_scheduler *scheduler = &kbdev->csf.scheduler;
if (scheduler->tick_protm_pending_seq > group->scan_seq_num) {
scheduler->tick_protm_pending_seq = group->scan_seq_num;
track->protm_grp = group;
}
if (!group->protected_suspend_buf.pma)
queue_work(group->kctx->csf.wq, &group->protm_event_work);
if (test_bit(group->csg_nr, scheduler->csg_slots_idle_mask)) {
clear_bit(group->csg_nr,
scheduler->csg_slots_idle_mask);
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_SLOT_IDLE_CLEAR, group,
scheduler->csg_slots_idle_mask[0]);
dev_dbg(kbdev->dev,
"Group-%d on slot %d de-idled by protm request",
group->handle, group->csg_nr);
}
}
}
/**
* process_csg_interrupts - Process interrupts for a CSG.
*
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
* @csg_nr: CSG number.
* @track: Pointer that tracks the highest idle CSG and the newly possible viable
* protected mode requesting group, in current IRQ context.
*
* Handles interrupts for a CSG and for CSs within it.
*
* If the CSG's request register value differs from its acknowledge register
* then the firmware is notifying the host of an event concerning the whole
* group. The actions required are then determined by examining which
* notification flags differ between those two register values.
*
* See process_cs_interrupts() for details of per-stream interrupt handling.
*/
static void process_csg_interrupts(struct kbase_device *const kbdev, int const csg_nr,
struct irq_idle_and_protm_track *track)
{
struct kbase_csf_cmd_stream_group_info *ginfo;
struct kbase_queue_group *group = NULL;
u32 req, ack, irqreq, irqack;
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
if (WARN_ON(csg_nr >= kbdev->csf.global_iface.group_num))
return;
ginfo = &kbdev->csf.global_iface.groups[csg_nr];
req = kbase_csf_firmware_csg_input_read(ginfo, CSG_REQ);
ack = kbase_csf_firmware_csg_output(ginfo, CSG_ACK);
irqreq = kbase_csf_firmware_csg_output(ginfo, CSG_IRQ_REQ);
irqack = kbase_csf_firmware_csg_input_read(ginfo, CSG_IRQ_ACK);
/* There may not be any pending CSG/CS interrupts to process */
if ((req == ack) && (irqreq == irqack))
return;
/* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
* examining the CS_ACK & CS_REQ bits. This would ensure that Host
* doesn't misses an interrupt for the CS in the race scenario where
* whilst Host is servicing an interrupt for the CS, firmware sends
* another interrupt for that CS.
*/
kbase_csf_firmware_csg_input(ginfo, CSG_IRQ_ACK, irqreq);
group = kbase_csf_scheduler_get_group_on_slot(kbdev, csg_nr);
/* The group pointer can be NULL here if interrupts for the group
* (like SYNC_UPDATE, IDLE notification) were delayed and arrived
* just after the suspension of group completed. However if not NULL
* then the group pointer cannot disappear even if User tries to
* terminate the group whilst this loop is running as scheduler
* spinlock is held and for freeing a group that is resident on a CSG
* slot scheduler spinlock is required.
*/
if (!group)
return;
if (WARN_ON(kbase_csf_scheduler_group_get_slot_locked(group) != csg_nr))
return;
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_INTERRUPT_PROCESS_START, group, csg_nr);
if ((req ^ ack) & CSG_REQ_SYNC_UPDATE_MASK) {
kbase_csf_firmware_csg_input_mask(ginfo,
CSG_REQ, ack, CSG_REQ_SYNC_UPDATE_MASK);
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_INTERRUPT_SYNC_UPDATE, group, req ^ ack);
/* SYNC_UPDATE events shall invalidate GPU idle event */
atomic_set(&kbdev->csf.scheduler.gpu_no_longer_idle, true);
kbase_csf_event_signal_cpu_only(group->kctx);
}
if ((req ^ ack) & CSG_REQ_IDLE_MASK) {
struct kbase_csf_scheduler *scheduler = &kbdev->csf.scheduler;
KBASE_TLSTREAM_TL_KBASE_DEVICE_CSG_IDLE(
kbdev, kbdev->gpu_props.props.raw_props.gpu_id, csg_nr);
kbase_csf_firmware_csg_input_mask(ginfo, CSG_REQ, ack,
CSG_REQ_IDLE_MASK);
set_bit(csg_nr, scheduler->csg_slots_idle_mask);
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_SLOT_IDLE_SET, group,
scheduler->csg_slots_idle_mask[0]);
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_INTERRUPT_IDLE, group, req ^ ack);
dev_dbg(kbdev->dev, "Idle notification received for Group %u on slot %d\n",
group->handle, csg_nr);
if (atomic_read(&scheduler->non_idle_offslot_grps)) {
/* If there are non-idle CSGs waiting for a slot, fire
* a tock for a replacement.
*/
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_INTERRUPT_NON_IDLE_GROUPS,
group, req ^ ack);
kbase_csf_scheduler_invoke_tock(kbdev);
} else {
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_INTERRUPT_NO_NON_IDLE_GROUPS,
group, req ^ ack);
}
if (group->scan_seq_num < track->idle_seq) {
track->idle_seq = group->scan_seq_num;
track->idle_slot = csg_nr;
}
}
if ((req ^ ack) & CSG_REQ_PROGRESS_TIMER_EVENT_MASK) {
kbase_csf_firmware_csg_input_mask(ginfo, CSG_REQ, ack,
CSG_REQ_PROGRESS_TIMER_EVENT_MASK);
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_INTERRUPT_PROGRESS_TIMER_EVENT, group,
req ^ ack);
dev_info(
kbdev->dev,
"[%llu] Iterator PROGRESS_TIMER timeout notification received for group %u of ctx %d_%d on slot %d\n",
kbase_backend_get_cycle_cnt(kbdev), group->handle, group->kctx->tgid,
group->kctx->id, csg_nr);
handle_progress_timer_event(group);
}
process_cs_interrupts(group, ginfo, irqreq, irqack, track);
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_INTERRUPT_PROCESS_END, group,
((u64)req ^ ack) | (((u64)irqreq ^ irqack) << 32));
}
/**
* process_prfcnt_interrupts - Process performance counter interrupts.
*
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
* @glb_req: Global request register value.
* @glb_ack: Global acknowledge register value.
*
* Handles interrupts issued by the firmware that relate to the performance
* counters. For example, on completion of a performance counter sample. It is
* expected that the scheduler spinlock is already held on calling this
* function.
*/
static void process_prfcnt_interrupts(struct kbase_device *kbdev, u32 glb_req,
u32 glb_ack)
{
const struct kbase_csf_global_iface *const global_iface =
&kbdev->csf.global_iface;
lockdep_assert_held(&kbdev->csf.scheduler.interrupt_lock);
/* Process PRFCNT_SAMPLE interrupt. */
if (kbdev->csf.hwcnt.request_pending &&
((glb_req & GLB_REQ_PRFCNT_SAMPLE_MASK) ==
(glb_ack & GLB_REQ_PRFCNT_SAMPLE_MASK))) {
kbdev->csf.hwcnt.request_pending = false;
dev_dbg(kbdev->dev, "PRFCNT_SAMPLE done interrupt received.");
kbase_hwcnt_backend_csf_on_prfcnt_sample(
&kbdev->hwcnt_gpu_iface);
}
/* Process PRFCNT_ENABLE interrupt. */
if (kbdev->csf.hwcnt.enable_pending &&
((glb_req & GLB_REQ_PRFCNT_ENABLE_MASK) ==
(glb_ack & GLB_REQ_PRFCNT_ENABLE_MASK))) {
kbdev->csf.hwcnt.enable_pending = false;
dev_dbg(kbdev->dev,
"PRFCNT_ENABLE status changed interrupt received.");
if (glb_ack & GLB_REQ_PRFCNT_ENABLE_MASK)
kbase_hwcnt_backend_csf_on_prfcnt_enable(
&kbdev->hwcnt_gpu_iface);
else
kbase_hwcnt_backend_csf_on_prfcnt_disable(
&kbdev->hwcnt_gpu_iface);
}
/* Process PRFCNT_THRESHOLD interrupt. */
if ((glb_req ^ glb_ack) & GLB_REQ_PRFCNT_THRESHOLD_MASK) {
dev_dbg(kbdev->dev, "PRFCNT_THRESHOLD interrupt received.");
kbase_hwcnt_backend_csf_on_prfcnt_threshold(
&kbdev->hwcnt_gpu_iface);
/* Set the GLB_REQ.PRFCNT_THRESHOLD flag back to
* the same value as GLB_ACK.PRFCNT_THRESHOLD
* flag in order to enable reporting of another
* PRFCNT_THRESHOLD event.
*/
kbase_csf_firmware_global_input_mask(
global_iface, GLB_REQ, glb_ack,
GLB_REQ_PRFCNT_THRESHOLD_MASK);
}
/* Process PRFCNT_OVERFLOW interrupt. */
if ((glb_req ^ glb_ack) & GLB_REQ_PRFCNT_OVERFLOW_MASK) {
dev_dbg(kbdev->dev, "PRFCNT_OVERFLOW interrupt received.");
kbase_hwcnt_backend_csf_on_prfcnt_overflow(
&kbdev->hwcnt_gpu_iface);
/* Set the GLB_REQ.PRFCNT_OVERFLOW flag back to
* the same value as GLB_ACK.PRFCNT_OVERFLOW
* flag in order to enable reporting of another
* PRFCNT_OVERFLOW event.
*/
kbase_csf_firmware_global_input_mask(
global_iface, GLB_REQ, glb_ack,
GLB_REQ_PRFCNT_OVERFLOW_MASK);
}
}
/**
* check_protm_enter_req_complete - Check if PROTM_ENTER request completed
*
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
* @glb_req: Global request register value.
* @glb_ack: Global acknowledge register value.
*
* This function checks if the PROTM_ENTER Global request had completed and
* appropriately sends notification about the protected mode entry to components
* like IPA, HWC, IPA_CONTROL.
*/
static inline void check_protm_enter_req_complete(struct kbase_device *kbdev,
u32 glb_req, u32 glb_ack)
{
lockdep_assert_held(&kbdev->hwaccess_lock);
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
if (likely(!kbdev->csf.scheduler.active_protm_grp))
return;
if (kbdev->protected_mode)
return;
if ((glb_req & GLB_REQ_PROTM_ENTER_MASK) !=
(glb_ack & GLB_REQ_PROTM_ENTER_MASK))
return;
dev_dbg(kbdev->dev, "Protected mode entry interrupt received");
kbdev->protected_mode = true;
kbase_ipa_protection_mode_switch_event(kbdev);
kbase_ipa_control_protm_entered(kbdev);
kbase_hwcnt_backend_csf_protm_entered(&kbdev->hwcnt_gpu_iface);
}
/**
* process_protm_exit - Handle the protected mode exit interrupt
*
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
* @glb_ack: Global acknowledge register value.
*
* This function handles the PROTM_EXIT interrupt and sends notification
* about the protected mode exit to components like HWC, IPA_CONTROL.
*/
static inline void process_protm_exit(struct kbase_device *kbdev, u32 glb_ack)
{
const struct kbase_csf_global_iface *const global_iface =
&kbdev->csf.global_iface;
struct kbase_csf_scheduler *scheduler = &kbdev->csf.scheduler;
lockdep_assert_held(&kbdev->hwaccess_lock);
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
dev_dbg(kbdev->dev, "Protected mode exit interrupt received");
kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ, glb_ack,
GLB_REQ_PROTM_EXIT_MASK);
if (likely(scheduler->active_protm_grp)) {
KBASE_KTRACE_ADD_CSF_GRP(kbdev, SCHEDULER_PROTM_EXIT,
scheduler->active_protm_grp, 0u);
scheduler->active_protm_grp = NULL;
} else {
dev_warn(kbdev->dev, "PROTM_EXIT interrupt after no pmode group");
}
if (!WARN_ON(!kbdev->protected_mode)) {
kbdev->protected_mode = false;
kbase_ipa_control_protm_exited(kbdev);
kbase_hwcnt_backend_csf_protm_exited(&kbdev->hwcnt_gpu_iface);
}
#if IS_ENABLED(CONFIG_MALI_CORESIGHT)
kbase_debug_coresight_csf_enable_pmode_exit(kbdev);
#endif /* IS_ENABLED(CONFIG_MALI_CORESIGHT) */
}
static inline void process_tracked_info_for_protm(struct kbase_device *kbdev,
struct irq_idle_and_protm_track *track)
{
struct kbase_csf_scheduler *scheduler = &kbdev->csf.scheduler;
struct kbase_queue_group *group = track->protm_grp;
u32 current_protm_pending_seq = scheduler->tick_protm_pending_seq;
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
if (likely(current_protm_pending_seq == KBASEP_TICK_PROTM_PEND_SCAN_SEQ_NR_INVALID))
return;
/* Handle protm from the tracked information */
if (track->idle_seq < current_protm_pending_seq) {
/* If the protm enter was prevented due to groups priority, then fire a tock
* for the scheduler to re-examine the case.
*/
dev_dbg(kbdev->dev, "Attempt pending protm from idle slot %d\n", track->idle_slot);
kbase_csf_scheduler_invoke_tock(kbdev);
} else if (group) {
u32 i, num_groups = kbdev->csf.global_iface.group_num;
struct kbase_queue_group *grp;
bool tock_triggered = false;
/* A new protm request, and track->idle_seq is not sufficient, check across
* previously notified idle CSGs in the current tick/tock cycle.
*/
for_each_set_bit(i, scheduler->csg_slots_idle_mask, num_groups) {
if (i == track->idle_slot)
continue;
grp = kbase_csf_scheduler_get_group_on_slot(kbdev, i);
/* If not NULL then the group pointer cannot disappear as the
* scheduler spinlock is held.
*/
if (grp == NULL)
continue;
if (grp->scan_seq_num < current_protm_pending_seq) {
tock_triggered = true;
dev_dbg(kbdev->dev,
"Attempt new protm from tick/tock idle slot %d\n", i);
kbase_csf_scheduler_invoke_tock(kbdev);
break;
}
}
if (!tock_triggered) {
dev_dbg(kbdev->dev, "Group-%d on slot-%d start protm work\n",
group->handle, group->csg_nr);
queue_work(group->kctx->csf.wq, &group->protm_event_work);
}
}
}
static void order_job_irq_clear_with_iface_mem_read(void)
{
/* Ensure that write to the JOB_IRQ_CLEAR is ordered with regards to the
* read from interface memory. The ordering is needed considering the way
* FW & Kbase writes to the JOB_IRQ_RAWSTAT and JOB_IRQ_CLEAR registers
* without any synchronization. Without the barrier there is no guarantee
* about the ordering, the write to IRQ_CLEAR can take effect after the read
* from interface memory and that could cause a problem for the scenario where
* FW sends back to back notifications for the same CSG for events like
* SYNC_UPDATE and IDLE, but Kbase gets a single IRQ and observes only the
* first event. Similar thing can happen with glb events like CFG_ALLOC_EN
* acknowledgment and GPU idle notification.
*
* MCU CPU
* --------------- ----------------
* Update interface memory Write to IRQ_CLEAR to clear current IRQ
* <barrier> <barrier>
* Write to IRQ_RAWSTAT to raise new IRQ Read interface memory
*/
/* CPU and GPU would be in the same Outer shareable domain */
dmb(osh);
}
void kbase_csf_interrupt(struct kbase_device *kbdev, u32 val)
{
bool deferred_handling_glb_idle_irq = false;
lockdep_assert_held(&kbdev->hwaccess_lock);
KBASE_KTRACE_ADD(kbdev, CSF_INTERRUPT_START, NULL, val);
do {
unsigned long flags;
u32 csg_interrupts = val & ~JOB_IRQ_GLOBAL_IF;
struct irq_idle_and_protm_track track = { .protm_grp = NULL, .idle_seq = U32_MAX };
bool glb_idle_irq_received = false;
kbase_reg_write(kbdev, JOB_CONTROL_REG(JOB_IRQ_CLEAR), val);
order_job_irq_clear_with_iface_mem_read();
if (csg_interrupts != 0) {
kbase_csf_scheduler_spin_lock(kbdev, &flags);
/* Looping through and track the highest idle and protm groups */
while (csg_interrupts != 0) {
int const csg_nr = ffs(csg_interrupts) - 1;
process_csg_interrupts(kbdev, csg_nr, &track);
csg_interrupts &= ~(1 << csg_nr);
}
/* Handle protm from the tracked information */
process_tracked_info_for_protm(kbdev, &track);
kbase_csf_scheduler_spin_unlock(kbdev, flags);
}
if (val & JOB_IRQ_GLOBAL_IF) {
const struct kbase_csf_global_iface *const global_iface =
&kbdev->csf.global_iface;
kbdev->csf.interrupt_received = true;
if (!kbdev->csf.firmware_reloaded)
kbase_csf_firmware_reload_completed(kbdev);
else if (global_iface->output) {
u32 glb_req, glb_ack;
kbase_csf_scheduler_spin_lock(kbdev, &flags);
glb_req =
kbase_csf_firmware_global_input_read(global_iface, GLB_REQ);
glb_ack = kbase_csf_firmware_global_output(global_iface, GLB_ACK);
KBASE_KTRACE_ADD(kbdev, CSF_INTERRUPT_GLB_REQ_ACK, NULL,
glb_req ^ glb_ack);
check_protm_enter_req_complete(kbdev, glb_req, glb_ack);
if ((glb_req ^ glb_ack) & GLB_REQ_PROTM_EXIT_MASK)
process_protm_exit(kbdev, glb_ack);
/* Handle IDLE Hysteresis notification event */
if ((glb_req ^ glb_ack) & GLB_REQ_IDLE_EVENT_MASK) {
dev_dbg(kbdev->dev, "Idle-hysteresis event flagged");
kbase_csf_firmware_global_input_mask(
global_iface, GLB_REQ, glb_ack,
GLB_REQ_IDLE_EVENT_MASK);
glb_idle_irq_received = true;
/* Defer handling this IRQ to account for a race condition
* where the idle worker could be executed before we have
* finished handling all pending IRQs (including CSG IDLE
* IRQs).
*/
deferred_handling_glb_idle_irq = true;
}
process_prfcnt_interrupts(kbdev, glb_req, glb_ack);
kbase_csf_scheduler_spin_unlock(kbdev, flags);
/* Invoke the MCU state machine as a state transition
* might have completed.
*/
kbase_pm_update_state(kbdev);
}
}
if (!glb_idle_irq_received)
break;
/* Attempt to serve potential IRQs that might have occurred
* whilst handling the previous IRQ. In case we have observed
* the GLB IDLE IRQ without all CSGs having been marked as
* idle, the GPU would be treated as no longer idle and left
* powered on.
*/
val = kbase_reg_read(kbdev, JOB_CONTROL_REG(JOB_IRQ_STATUS));
} while (val);
if (deferred_handling_glb_idle_irq) {
unsigned long flags;
kbase_csf_scheduler_spin_lock(kbdev, &flags);
kbase_csf_scheduler_process_gpu_idle_event(kbdev);
kbase_csf_scheduler_spin_unlock(kbdev, flags);
}
wake_up_all(&kbdev->csf.event_wait);
KBASE_KTRACE_ADD(kbdev, CSF_INTERRUPT_END, NULL, val);
}
void kbase_csf_doorbell_mapping_term(struct kbase_device *kbdev)
{
if (kbdev->csf.db_filp) {
struct page *page = as_page(kbdev->csf.dummy_db_page);
kbase_mem_pool_free(
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
page, false);
fput(kbdev->csf.db_filp);
}
}
int kbase_csf_doorbell_mapping_init(struct kbase_device *kbdev)
{
struct tagged_addr phys;
struct file *filp;
int ret;
filp = shmem_file_setup("mali csf db", MAX_LFS_FILESIZE, VM_NORESERVE);
if (IS_ERR(filp))
return PTR_ERR(filp);
ret = kbase_mem_pool_alloc_pages(&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], 1, &phys,
false, NULL);
if (ret <= 0) {
fput(filp);
return ret;
}
kbdev->csf.db_filp = filp;
kbdev->csf.dummy_db_page = phys;
kbdev->csf.db_file_offsets = 0;
return 0;
}
void kbase_csf_pending_gpuq_kicks_init(struct kbase_device *kbdev)
{
size_t i;
for (i = 0; i != ARRAY_SIZE(kbdev->csf.pending_gpuq_kicks); ++i)
INIT_LIST_HEAD(&kbdev->csf.pending_gpuq_kicks[i]);
spin_lock_init(&kbdev->csf.pending_gpuq_kicks_lock);
}
void kbase_csf_pending_gpuq_kicks_term(struct kbase_device *kbdev)
{
size_t i;
spin_lock(&kbdev->csf.pending_gpuq_kicks_lock);
for (i = 0; i != ARRAY_SIZE(kbdev->csf.pending_gpuq_kicks); ++i) {
if (!list_empty(&kbdev->csf.pending_gpuq_kicks[i]))
dev_warn(kbdev->dev,
"Some GPU queue kicks for priority %zu were not handled", i);
}
spin_unlock(&kbdev->csf.pending_gpuq_kicks_lock);
}
void kbase_csf_free_dummy_user_reg_page(struct kbase_device *kbdev)
{
if (kbdev->csf.user_reg.filp) {
struct page *page = as_page(kbdev->csf.user_reg.dummy_page);
kbase_mem_pool_free(&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], page, false);
fput(kbdev->csf.user_reg.filp);
}
}
int kbase_csf_setup_dummy_user_reg_page(struct kbase_device *kbdev)
{
struct tagged_addr phys;
struct file *filp;
struct page *page;
u32 *addr;
kbdev->csf.user_reg.filp = NULL;
filp = shmem_file_setup("mali csf user_reg", MAX_LFS_FILESIZE, VM_NORESERVE);
if (IS_ERR(filp)) {
dev_err(kbdev->dev, "failed to get an unlinked file for user_reg");
return PTR_ERR(filp);
}
if (kbase_mem_pool_alloc_pages(&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], 1, &phys,
false, NULL) <= 0) {
fput(filp);
return -ENOMEM;
}
page = as_page(phys);
addr = kbase_kmap_atomic(page);
/* Write a special value for the latest flush register inside the
* dummy page
*/
addr[LATEST_FLUSH / sizeof(u32)] = POWER_DOWN_LATEST_FLUSH_VALUE;
kbase_sync_single_for_device(kbdev, kbase_dma_addr(page) + LATEST_FLUSH, sizeof(u32),
DMA_BIDIRECTIONAL);
kbase_kunmap_atomic(addr);
kbdev->csf.user_reg.filp = filp;
kbdev->csf.user_reg.dummy_page = phys;
kbdev->csf.user_reg.file_offset = 0;
return 0;
}
u8 kbase_csf_priority_check(struct kbase_device *kbdev, u8 req_priority)
{
struct priority_control_manager_device *pcm_device = kbdev->pcm_dev;
u8 out_priority = req_priority;
if (pcm_device) {
req_priority = kbase_csf_priority_queue_group_priority_to_relative(req_priority);
out_priority = pcm_device->ops.pcm_scheduler_priority_check(pcm_device, current, req_priority);
out_priority = kbase_csf_priority_relative_to_queue_group_priority(out_priority);
}
return out_priority;
}
void kbase_csf_process_queue_kick(struct kbase_queue *queue)
{
struct kbase_context *kctx = queue->kctx;
struct kbase_device *kbdev = kctx->kbdev;
bool retry_kick = false;
int err = kbase_reset_gpu_prevent_and_wait(kbdev);
if (err) {
dev_err(kbdev->dev, "Unsuccessful GPU reset detected when kicking queue");
goto out_release_queue;
}
mutex_lock(&kctx->csf.lock);
if (queue->bind_state != KBASE_CSF_QUEUE_BOUND)
goto out_allow_gpu_reset;
err = kbase_csf_scheduler_queue_start(queue);
if (unlikely(err)) {
dev_dbg(kbdev->dev, "Failed to start queue");
if (err == -EBUSY) {
retry_kick = true;
spin_lock(&kbdev->csf.pending_gpuq_kicks_lock);
if (list_empty(&queue->pending_kick_link)) {
/* A failed queue kick shall be pushed to the
* back of the queue to avoid potential abuse.
*/
list_add_tail(
&queue->pending_kick_link,
&kbdev->csf.pending_gpuq_kicks[queue->group_priority]);
spin_unlock(&kbdev->csf.pending_gpuq_kicks_lock);
} else {
spin_unlock(&kbdev->csf.pending_gpuq_kicks_lock);
WARN_ON(atomic_read(&queue->pending_kick) == 0);
}
complete(&kbdev->csf.scheduler.kthread_signal);
}
}
out_allow_gpu_reset:
if (likely(!retry_kick)) {
WARN_ON(atomic_read(&queue->pending_kick) == 0);
atomic_dec(&queue->pending_kick);
}
mutex_unlock(&kctx->csf.lock);
kbase_reset_gpu_allow(kbdev);
return;
out_release_queue:
WARN_ON(atomic_read(&queue->pending_kick) == 0);
atomic_dec(&queue->pending_kick);
}