blob: 0c62c4cac31aea3f637ca553109704daf65528f7 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <functional>
#include <memory>
#include "nss.h"
#include "pk11pub.h"
#include "prerror.h"
#include "secerr.h"
#include "ssl.h"
#include "sslerr.h"
extern "C" {
#include "sslimpl.h"
#include "selfencrypt.h"
}
#include "databuffer.h"
#include "gtest_utils.h"
#include "nss_scoped_ptrs.h"
namespace nss_test {
static const uint8_t kAesKey1Buf[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f};
static const DataBuffer kAesKey1(kAesKey1Buf, sizeof(kAesKey1Buf));
static const uint8_t kAesKey2Buf[] = {0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f};
static const DataBuffer kAesKey2(kAesKey2Buf, sizeof(kAesKey2Buf));
static const uint8_t kHmacKey1Buf[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f};
static const DataBuffer kHmacKey1(kHmacKey1Buf, sizeof(kHmacKey1Buf));
static const uint8_t kHmacKey2Buf[] = {
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a,
0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f};
static const DataBuffer kHmacKey2(kHmacKey2Buf, sizeof(kHmacKey2Buf));
static const uint8_t* kKeyName1 =
reinterpret_cast<const unsigned char*>("KEY1KEY1KEY1KEY1");
static const uint8_t* kKeyName2 =
reinterpret_cast<const uint8_t*>("KEY2KEY2KEY2KEY2");
static void ImportKey(const DataBuffer& key, PK11SlotInfo* slot,
CK_MECHANISM_TYPE mech, CK_ATTRIBUTE_TYPE cka,
ScopedPK11SymKey* to) {
SECItem key_item = {siBuffer, const_cast<uint8_t*>(key.data()),
static_cast<unsigned int>(key.len())};
PK11SymKey* inner =
PK11_ImportSymKey(slot, mech, PK11_OriginUnwrap, cka, &key_item, nullptr);
ASSERT_NE(nullptr, inner);
to->reset(inner);
}
extern "C" {
extern char ssl_trace;
extern FILE* ssl_trace_iob;
}
class SelfEncryptTestBase : public ::testing::Test {
public:
SelfEncryptTestBase(size_t message_size)
: aes1_(),
aes2_(),
hmac1_(),
hmac2_(),
message_(),
slot_(PK11_GetInternalSlot()) {
EXPECT_NE(nullptr, slot_);
char* ev = getenv("SSLTRACE");
if (ev && ev[0]) {
ssl_trace = atoi(ev);
ssl_trace_iob = stderr;
}
message_.Allocate(message_size);
for (size_t i = 0; i < message_.len(); ++i) {
message_.data()[i] = i;
}
}
void SetUp() {
message_.Allocate(100);
for (size_t i = 0; i < 100; ++i) {
message_.data()[i] = i;
}
ImportKey(kAesKey1, slot_.get(), CKM_AES_CBC, CKA_ENCRYPT, &aes1_);
ImportKey(kAesKey2, slot_.get(), CKM_AES_CBC, CKA_ENCRYPT, &aes2_);
ImportKey(kHmacKey1, slot_.get(), CKM_SHA256_HMAC, CKA_SIGN, &hmac1_);
ImportKey(kHmacKey2, slot_.get(), CKM_SHA256_HMAC, CKA_SIGN, &hmac2_);
}
void SelfTest(
const uint8_t* writeKeyName, const ScopedPK11SymKey& writeAes,
const ScopedPK11SymKey& writeHmac, const uint8_t* readKeyName,
const ScopedPK11SymKey& readAes, const ScopedPK11SymKey& readHmac,
PRErrorCode protect_error_code = 0, PRErrorCode unprotect_error_code = 0,
std::function<void(uint8_t* ciphertext, unsigned int* ciphertext_len)>
mutate = nullptr) {
uint8_t ciphertext[1000];
unsigned int ciphertext_len;
uint8_t plaintext[1000];
unsigned int plaintext_len;
SECStatus rv = ssl_SelfEncryptProtectInt(
writeAes.get(), writeHmac.get(), writeKeyName, message_.data(),
message_.len(), ciphertext, &ciphertext_len, sizeof(ciphertext));
if (rv != SECSuccess) {
std::cerr << "Error: " << PORT_ErrorToName(PORT_GetError()) << std::endl;
}
if (protect_error_code) {
ASSERT_EQ(protect_error_code, PORT_GetError());
return;
}
ASSERT_EQ(SECSuccess, rv);
if (mutate) {
mutate(ciphertext, &ciphertext_len);
}
rv = ssl_SelfEncryptUnprotectInt(readAes.get(), readHmac.get(), readKeyName,
ciphertext, ciphertext_len, plaintext,
&plaintext_len, sizeof(plaintext));
if (rv != SECSuccess) {
std::cerr << "Error: " << PORT_ErrorToName(PORT_GetError()) << std::endl;
}
if (!unprotect_error_code) {
ASSERT_EQ(SECSuccess, rv);
EXPECT_EQ(message_.len(), plaintext_len);
EXPECT_EQ(0, memcmp(message_.data(), plaintext, message_.len()));
} else {
ASSERT_EQ(SECFailure, rv);
EXPECT_EQ(unprotect_error_code, PORT_GetError());
}
}
protected:
ScopedPK11SymKey aes1_;
ScopedPK11SymKey aes2_;
ScopedPK11SymKey hmac1_;
ScopedPK11SymKey hmac2_;
DataBuffer message_;
private:
ScopedPK11SlotInfo slot_;
};
class SelfEncryptTestVariable : public SelfEncryptTestBase,
public ::testing::WithParamInterface<size_t> {
public:
SelfEncryptTestVariable() : SelfEncryptTestBase(GetParam()) {}
};
class SelfEncryptTest128 : public SelfEncryptTestBase {
public:
SelfEncryptTest128() : SelfEncryptTestBase(128) {}
};
TEST_P(SelfEncryptTestVariable, SuccessCase) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_);
}
TEST_P(SelfEncryptTestVariable, WrongMacKey) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac2_, 0,
SEC_ERROR_BAD_DATA);
}
TEST_P(SelfEncryptTestVariable, WrongKeyName) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName2, aes1_, hmac1_, 0,
SEC_ERROR_NOT_A_RECIPIENT);
}
TEST_P(SelfEncryptTestVariable, AddAByte) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_, 0,
SEC_ERROR_BAD_DATA,
[](uint8_t* ciphertext, unsigned int* ciphertext_len) {
(*ciphertext_len)++;
});
}
TEST_P(SelfEncryptTestVariable, SubtractAByte) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_, 0,
SEC_ERROR_BAD_DATA,
[](uint8_t* ciphertext, unsigned int* ciphertext_len) {
(*ciphertext_len)--;
});
}
TEST_P(SelfEncryptTestVariable, BogusIv) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_, 0,
SEC_ERROR_BAD_DATA,
[](uint8_t* ciphertext, unsigned int* ciphertext_len) {
ciphertext[16]++;
});
}
TEST_P(SelfEncryptTestVariable, BogusCiphertext) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_, 0,
SEC_ERROR_BAD_DATA,
[](uint8_t* ciphertext, unsigned int* ciphertext_len) {
ciphertext[32]++;
});
}
TEST_P(SelfEncryptTestVariable, BadMac) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_, 0,
SEC_ERROR_BAD_DATA,
[](uint8_t* ciphertext, unsigned int* ciphertext_len) {
ciphertext[*ciphertext_len - 1]++;
});
}
TEST_F(SelfEncryptTest128, DISABLED_BadPadding) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes2_, hmac1_, 0,
SEC_ERROR_BAD_DATA);
}
TEST_F(SelfEncryptTest128, ShortKeyName) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_, 0,
SEC_ERROR_BAD_DATA,
[](uint8_t* ciphertext, unsigned int* ciphertext_len) {
*ciphertext_len = 15;
});
}
TEST_F(SelfEncryptTest128, ShortIv) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_, 0,
SEC_ERROR_BAD_DATA,
[](uint8_t* ciphertext, unsigned int* ciphertext_len) {
*ciphertext_len = 31;
});
}
TEST_F(SelfEncryptTest128, ShortCiphertextLen) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_, 0,
SEC_ERROR_BAD_DATA,
[](uint8_t* ciphertext, unsigned int* ciphertext_len) {
*ciphertext_len = 32;
});
}
TEST_F(SelfEncryptTest128, ShortCiphertext) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, hmac1_, 0,
SEC_ERROR_BAD_DATA,
[](uint8_t* ciphertext, unsigned int* ciphertext_len) {
*ciphertext_len -= 17;
});
}
TEST_F(SelfEncryptTest128, MacWithAESKeyEncrypt) {
SelfTest(kKeyName1, aes1_, aes1_, kKeyName1, aes1_, hmac1_,
SEC_ERROR_LIBRARY_FAILURE);
}
TEST_F(SelfEncryptTest128, AESWithMacKeyEncrypt) {
SelfTest(kKeyName1, hmac1_, hmac1_, kKeyName1, aes1_, hmac1_,
SEC_ERROR_INVALID_KEY);
}
TEST_F(SelfEncryptTest128, MacWithAESKeyDecrypt) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, aes1_, aes1_, 0,
SEC_ERROR_LIBRARY_FAILURE);
}
TEST_F(SelfEncryptTest128, AESWithMacKeyDecrypt) {
SelfTest(kKeyName1, aes1_, hmac1_, kKeyName1, hmac1_, hmac1_, 0,
SEC_ERROR_INVALID_KEY);
}
INSTANTIATE_TEST_CASE_P(VariousSizes, SelfEncryptTestVariable,
::testing::Values(0, 15, 16, 31, 255, 256, 257));
} // namespace nss_test