blob: ae904e29b8f9f736508b18613a9357b41b572d41 [file] [log] [blame]
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* vtables (and methods that call through them) for the 4 types of
* SSLSockets supported. Only one type is still supported.
* Various other functions.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "seccomon.h"
#include "cert.h"
#include "keyhi.h"
#include "ssl.h"
#include "sslexp.h"
#include "sslimpl.h"
#include "sslproto.h"
#include "nspr.h"
#include "private/pprio.h"
#include "nss.h"
#include "pk11pqg.h"
#include "pk11pub.h"
#include "tls13esni.h"
static const sslSocketOps ssl_default_ops = { /* No SSL. */
ssl_DefConnect,
NULL,
ssl_DefBind,
ssl_DefListen,
ssl_DefShutdown,
ssl_DefClose,
ssl_DefRecv,
ssl_DefSend,
ssl_DefRead,
ssl_DefWrite,
ssl_DefGetpeername,
ssl_DefGetsockname
};
static const sslSocketOps ssl_secure_ops = { /* SSL. */
ssl_SecureConnect,
NULL,
ssl_DefBind,
ssl_DefListen,
ssl_SecureShutdown,
ssl_SecureClose,
ssl_SecureRecv,
ssl_SecureSend,
ssl_SecureRead,
ssl_SecureWrite,
ssl_DefGetpeername,
ssl_DefGetsockname
};
/*
** default settings for socket enables
*/
static sslOptions ssl_defaults = {
.nextProtoNego = { siBuffer, NULL, 0 },
.maxEarlyDataSize = 1 << 16,
.recordSizeLimit = MAX_FRAGMENT_LENGTH + 1,
.useSecurity = PR_TRUE,
.useSocks = PR_FALSE,
.requestCertificate = PR_FALSE,
.requireCertificate = SSL_REQUIRE_FIRST_HANDSHAKE,
.handshakeAsClient = PR_FALSE,
.handshakeAsServer = PR_FALSE,
.noCache = PR_FALSE,
.fdx = PR_FALSE,
.detectRollBack = PR_TRUE,
.noLocks = PR_FALSE,
.enableSessionTickets = PR_FALSE,
.enableDeflate = PR_FALSE,
.enableRenegotiation = SSL_RENEGOTIATE_REQUIRES_XTN,
.requireSafeNegotiation = PR_FALSE,
.enableFalseStart = PR_FALSE,
.cbcRandomIV = PR_TRUE,
.enableOCSPStapling = PR_FALSE,
.enableALPN = PR_TRUE,
.reuseServerECDHEKey = PR_TRUE,
.enableFallbackSCSV = PR_FALSE,
.enableServerDhe = PR_TRUE,
.enableExtendedMS = PR_FALSE,
.enableSignedCertTimestamps = PR_FALSE,
.requireDHENamedGroups = PR_FALSE,
.enable0RttData = PR_FALSE,
.enableTls13CompatMode = PR_FALSE,
.enableDtlsShortHeader = PR_FALSE,
.enableHelloDowngradeCheck = PR_FALSE,
.enableV2CompatibleHello = PR_FALSE
};
/*
* default range of enabled SSL/TLS protocols
*/
static SSLVersionRange versions_defaults_stream = {
SSL_LIBRARY_VERSION_TLS_1_0,
SSL_LIBRARY_VERSION_TLS_1_2
};
static SSLVersionRange versions_defaults_datagram = {
SSL_LIBRARY_VERSION_TLS_1_1,
SSL_LIBRARY_VERSION_TLS_1_2
};
#define VERSIONS_DEFAULTS(variant) \
(variant == ssl_variant_stream ? &versions_defaults_stream : &versions_defaults_datagram)
#define VERSIONS_POLICY_MIN(variant) \
(variant == ssl_variant_stream ? NSS_TLS_VERSION_MIN_POLICY : NSS_DTLS_VERSION_MIN_POLICY)
#define VERSIONS_POLICY_MAX(variant) \
(variant == ssl_variant_stream ? NSS_TLS_VERSION_MAX_POLICY : NSS_DTLS_VERSION_MAX_POLICY)
sslSessionIDLookupFunc ssl_sid_lookup;
static PRDescIdentity ssl_layer_id;
PRBool locksEverDisabled; /* implicitly PR_FALSE */
PRBool ssl_force_locks; /* implicitly PR_FALSE */
int ssl_lock_readers = 1; /* default true. */
char ssl_debug;
char ssl_trace;
FILE *ssl_trace_iob;
#ifdef NSS_ALLOW_SSLKEYLOGFILE
FILE *ssl_keylog_iob;
PZLock *ssl_keylog_lock;
#endif
char lockStatus[] = "Locks are ENABLED. ";
#define LOCKSTATUS_OFFSET 10 /* offset of ENABLED */
/* SRTP_NULL_HMAC_SHA1_80 and SRTP_NULL_HMAC_SHA1_32 are not implemented. */
static const PRUint16 srtpCiphers[] = {
SRTP_AES128_CM_HMAC_SHA1_80,
SRTP_AES128_CM_HMAC_SHA1_32,
0
};
/* This list is in preference order. Note that while some smaller groups appear
* early in the list, smaller groups are generally ignored when iterating
* through this list. ffdhe_custom must not appear in this list. */
#define ECGROUP(name, size, oid, assumeSupported) \
{ \
ssl_grp_ec_##name, size, ssl_kea_ecdh, \
SEC_OID_SECG_EC_##oid, assumeSupported \
}
#define FFGROUP(size) \
{ \
ssl_grp_ffdhe_##size, size, ssl_kea_dh, \
SEC_OID_TLS_FFDHE_##size, PR_TRUE \
}
const sslNamedGroupDef ssl_named_groups[] = {
/* Note that 256 for 25519 is a lie, but we only use it for checking bit
* security and expect 256 bits there (not 255). */
{ ssl_grp_ec_curve25519, 256, ssl_kea_ecdh, SEC_OID_CURVE25519, PR_TRUE },
ECGROUP(secp256r1, 256, SECP256R1, PR_TRUE),
ECGROUP(secp384r1, 384, SECP384R1, PR_TRUE),
ECGROUP(secp521r1, 521, SECP521R1, PR_TRUE),
FFGROUP(2048),
FFGROUP(3072),
FFGROUP(4096),
FFGROUP(6144),
FFGROUP(8192),
ECGROUP(secp192r1, 192, SECP192R1, PR_FALSE),
ECGROUP(secp160r2, 160, SECP160R2, PR_FALSE),
ECGROUP(secp160k1, 160, SECP160K1, PR_FALSE),
ECGROUP(secp160r1, 160, SECP160R1, PR_FALSE),
ECGROUP(sect163k1, 163, SECT163K1, PR_FALSE),
ECGROUP(sect163r1, 163, SECT163R1, PR_FALSE),
ECGROUP(sect163r2, 163, SECT163R2, PR_FALSE),
ECGROUP(secp192k1, 192, SECP192K1, PR_FALSE),
ECGROUP(sect193r1, 193, SECT193R1, PR_FALSE),
ECGROUP(sect193r2, 193, SECT193R2, PR_FALSE),
ECGROUP(secp224r1, 224, SECP224R1, PR_FALSE),
ECGROUP(secp224k1, 224, SECP224K1, PR_FALSE),
ECGROUP(sect233k1, 233, SECT233K1, PR_FALSE),
ECGROUP(sect233r1, 233, SECT233R1, PR_FALSE),
ECGROUP(sect239k1, 239, SECT239K1, PR_FALSE),
ECGROUP(secp256k1, 256, SECP256K1, PR_FALSE),
ECGROUP(sect283k1, 283, SECT283K1, PR_FALSE),
ECGROUP(sect283r1, 283, SECT283R1, PR_FALSE),
ECGROUP(sect409k1, 409, SECT409K1, PR_FALSE),
ECGROUP(sect409r1, 409, SECT409R1, PR_FALSE),
ECGROUP(sect571k1, 571, SECT571K1, PR_FALSE),
ECGROUP(sect571r1, 571, SECT571R1, PR_FALSE),
};
PR_STATIC_ASSERT(SSL_NAMED_GROUP_COUNT == PR_ARRAY_SIZE(ssl_named_groups));
#undef ECGROUP
#undef FFGROUP
/* forward declarations. */
static sslSocket *ssl_NewSocket(PRBool makeLocks, SSLProtocolVariant variant);
static SECStatus ssl_MakeLocks(sslSocket *ss);
static void ssl_SetDefaultsFromEnvironment(void);
static PRStatus ssl_PushIOLayer(sslSocket *ns, PRFileDesc *stack,
PRDescIdentity id);
/************************************************************************/
/*
** Lookup a socket structure from a file descriptor.
** Only functions called through the PRIOMethods table should use this.
** Other app-callable functions should use ssl_FindSocket.
*/
static sslSocket *
ssl_GetPrivate(PRFileDesc *fd)
{
sslSocket *ss;
PORT_Assert(fd != NULL);
PORT_Assert(fd->methods->file_type == PR_DESC_LAYERED);
PORT_Assert(fd->identity == ssl_layer_id);
if (fd->methods->file_type != PR_DESC_LAYERED ||
fd->identity != ssl_layer_id) {
PORT_SetError(PR_BAD_DESCRIPTOR_ERROR);
return NULL;
}
ss = (sslSocket *)fd->secret;
/* Set ss->fd lazily. We can't rely on the value of ss->fd set by
* ssl_PushIOLayer because another PR_PushIOLayer call will switch the
* contents of the PRFileDesc pointed by ss->fd and the new layer.
* See bug 807250.
*/
ss->fd = fd;
return ss;
}
/* This function tries to find the SSL layer in the stack.
* It searches for the first SSL layer at or below the argument fd,
* and failing that, it searches for the nearest SSL layer above the
* argument fd. It returns the private sslSocket from the found layer.
*/
sslSocket *
ssl_FindSocket(PRFileDesc *fd)
{
PRFileDesc *layer;
sslSocket *ss;
PORT_Assert(fd != NULL);
PORT_Assert(ssl_layer_id != 0);
layer = PR_GetIdentitiesLayer(fd, ssl_layer_id);
if (layer == NULL) {
PORT_SetError(PR_BAD_DESCRIPTOR_ERROR);
return NULL;
}
ss = (sslSocket *)layer->secret;
/* Set ss->fd lazily. We can't rely on the value of ss->fd set by
* ssl_PushIOLayer because another PR_PushIOLayer call will switch the
* contents of the PRFileDesc pointed by ss->fd and the new layer.
* See bug 807250.
*/
ss->fd = layer;
return ss;
}
static sslSocket *
ssl_DupSocket(sslSocket *os)
{
sslSocket *ss;
SECStatus rv;
ss = ssl_NewSocket((PRBool)(!os->opt.noLocks), os->protocolVariant);
if (!ss) {
return NULL;
}
ss->opt = os->opt;
ss->opt.useSocks = PR_FALSE;
rv = SECITEM_CopyItem(NULL, &ss->opt.nextProtoNego, &os->opt.nextProtoNego);
if (rv != SECSuccess) {
goto loser;
}
ss->vrange = os->vrange;
ss->peerID = !os->peerID ? NULL : PORT_Strdup(os->peerID);
ss->url = !os->url ? NULL : PORT_Strdup(os->url);
ss->ops = os->ops;
ss->rTimeout = os->rTimeout;
ss->wTimeout = os->wTimeout;
ss->cTimeout = os->cTimeout;
ss->dbHandle = os->dbHandle;
/* copy ssl2&3 policy & prefs, even if it's not selected (yet) */
PORT_Memcpy(ss->cipherSuites, os->cipherSuites, sizeof os->cipherSuites);
PORT_Memcpy(ss->ssl3.dtlsSRTPCiphers, os->ssl3.dtlsSRTPCiphers,
sizeof(PRUint16) * os->ssl3.dtlsSRTPCipherCount);
ss->ssl3.dtlsSRTPCipherCount = os->ssl3.dtlsSRTPCipherCount;
PORT_Memcpy(ss->ssl3.signatureSchemes, os->ssl3.signatureSchemes,
sizeof(ss->ssl3.signatureSchemes[0]) *
os->ssl3.signatureSchemeCount);
ss->ssl3.signatureSchemeCount = os->ssl3.signatureSchemeCount;
ss->ssl3.downgradeCheckVersion = os->ssl3.downgradeCheckVersion;
ss->ssl3.dheWeakGroupEnabled = os->ssl3.dheWeakGroupEnabled;
if (ss->opt.useSecurity) {
PRCList *cursor;
for (cursor = PR_NEXT_LINK(&os->serverCerts);
cursor != &os->serverCerts;
cursor = PR_NEXT_LINK(cursor)) {
sslServerCert *sc = ssl_CopyServerCert((sslServerCert *)cursor);
if (!sc)
goto loser;
PR_APPEND_LINK(&sc->link, &ss->serverCerts);
}
for (cursor = PR_NEXT_LINK(&os->ephemeralKeyPairs);
cursor != &os->ephemeralKeyPairs;
cursor = PR_NEXT_LINK(cursor)) {
sslEphemeralKeyPair *okp = (sslEphemeralKeyPair *)cursor;
sslEphemeralKeyPair *skp = ssl_CopyEphemeralKeyPair(okp);
if (!skp)
goto loser;
PR_APPEND_LINK(&skp->link, &ss->ephemeralKeyPairs);
}
for (cursor = PR_NEXT_LINK(&os->extensionHooks);
cursor != &os->extensionHooks;
cursor = PR_NEXT_LINK(cursor)) {
sslCustomExtensionHooks *oh = (sslCustomExtensionHooks *)cursor;
sslCustomExtensionHooks *sh = PORT_ZNew(sslCustomExtensionHooks);
if (!sh) {
goto loser;
}
*sh = *oh;
PR_APPEND_LINK(&sh->link, &ss->extensionHooks);
}
/*
* XXX the preceding CERT_ and SECKEY_ functions can fail and return NULL.
* XXX We should detect this, and not just march on with NULL pointers.
*/
ss->authCertificate = os->authCertificate;
ss->authCertificateArg = os->authCertificateArg;
ss->getClientAuthData = os->getClientAuthData;
ss->getClientAuthDataArg = os->getClientAuthDataArg;
ss->sniSocketConfig = os->sniSocketConfig;
ss->sniSocketConfigArg = os->sniSocketConfigArg;
ss->alertReceivedCallback = os->alertReceivedCallback;
ss->alertReceivedCallbackArg = os->alertReceivedCallbackArg;
ss->alertSentCallback = os->alertSentCallback;
ss->alertSentCallbackArg = os->alertSentCallbackArg;
ss->handleBadCert = os->handleBadCert;
ss->badCertArg = os->badCertArg;
ss->handshakeCallback = os->handshakeCallback;
ss->handshakeCallbackData = os->handshakeCallbackData;
ss->canFalseStartCallback = os->canFalseStartCallback;
ss->canFalseStartCallbackData = os->canFalseStartCallbackData;
ss->pkcs11PinArg = os->pkcs11PinArg;
ss->nextProtoCallback = os->nextProtoCallback;
ss->nextProtoArg = os->nextProtoArg;
PORT_Memcpy((void *)ss->namedGroupPreferences,
os->namedGroupPreferences,
sizeof(ss->namedGroupPreferences));
ss->additionalShares = os->additionalShares;
ss->resumptionTokenCallback = os->resumptionTokenCallback;
ss->resumptionTokenContext = os->resumptionTokenContext;
if (os->esniKeys) {
ss->esniKeys = tls13_CopyESNIKeys(os->esniKeys);
if (!ss->esniKeys) {
goto loser;
}
}
/* Create security data */
rv = ssl_CopySecurityInfo(ss, os);
if (rv != SECSuccess) {
goto loser;
}
}
return ss;
loser:
ssl_FreeSocket(ss);
return NULL;
}
static void
ssl_DestroyLocks(sslSocket *ss)
{
/* Destroy locks. */
if (ss->firstHandshakeLock) {
PZ_DestroyMonitor(ss->firstHandshakeLock);
ss->firstHandshakeLock = NULL;
}
if (ss->ssl3HandshakeLock) {
PZ_DestroyMonitor(ss->ssl3HandshakeLock);
ss->ssl3HandshakeLock = NULL;
}
if (ss->specLock) {
NSSRWLock_Destroy(ss->specLock);
ss->specLock = NULL;
}
if (ss->recvLock) {
PZ_DestroyLock(ss->recvLock);
ss->recvLock = NULL;
}
if (ss->sendLock) {
PZ_DestroyLock(ss->sendLock);
ss->sendLock = NULL;
}
if (ss->xmitBufLock) {
PZ_DestroyMonitor(ss->xmitBufLock);
ss->xmitBufLock = NULL;
}
if (ss->recvBufLock) {
PZ_DestroyMonitor(ss->recvBufLock);
ss->recvBufLock = NULL;
}
}
/* Caller holds any relevant locks */
static void
ssl_DestroySocketContents(sslSocket *ss)
{
PRCList *cursor;
/* Free up socket */
ssl_DestroySecurityInfo(&ss->sec);
ssl3_DestroySSL3Info(ss);
PORT_Free(ss->saveBuf.buf);
PORT_Free(ss->pendingBuf.buf);
ssl3_DestroyGather(&ss->gs);
if (ss->peerID != NULL)
PORT_Free(ss->peerID);
if (ss->url != NULL)
PORT_Free((void *)ss->url); /* CONST */
/* Clean up server certificates and sundries. */
while (!PR_CLIST_IS_EMPTY(&ss->serverCerts)) {
cursor = PR_LIST_TAIL(&ss->serverCerts);
PR_REMOVE_LINK(cursor);
ssl_FreeServerCert((sslServerCert *)cursor);
}
/* Remove extension handlers. */
ssl_ClearPRCList(&ss->extensionHooks, NULL);
ssl_FreeEphemeralKeyPairs(ss);
SECITEM_FreeItem(&ss->opt.nextProtoNego, PR_FALSE);
ssl3_FreeSniNameArray(&ss->xtnData);
ssl_ClearPRCList(&ss->ssl3.hs.dtlsSentHandshake, NULL);
ssl_ClearPRCList(&ss->ssl3.hs.dtlsRcvdHandshake, NULL);
tls13_DestroyESNIKeys(ss->esniKeys);
}
/*
* free an sslSocket struct, and all the stuff that hangs off of it
*/
void
ssl_FreeSocket(sslSocket *ss)
{
/* Get every lock you can imagine!
** Caller already holds these:
** SSL_LOCK_READER(ss);
** SSL_LOCK_WRITER(ss);
*/
ssl_Get1stHandshakeLock(ss);
ssl_GetRecvBufLock(ss);
ssl_GetSSL3HandshakeLock(ss);
ssl_GetXmitBufLock(ss);
ssl_GetSpecWriteLock(ss);
ssl_DestroySocketContents(ss);
/* Release all the locks acquired above. */
SSL_UNLOCK_READER(ss);
SSL_UNLOCK_WRITER(ss);
ssl_Release1stHandshakeLock(ss);
ssl_ReleaseRecvBufLock(ss);
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_ReleaseXmitBufLock(ss);
ssl_ReleaseSpecWriteLock(ss);
ssl_DestroyLocks(ss);
#ifdef DEBUG
PORT_Memset(ss, 0x1f, sizeof *ss);
#endif
PORT_Free(ss);
return;
}
/************************************************************************/
SECStatus
ssl_EnableNagleDelay(sslSocket *ss, PRBool enabled)
{
PRFileDesc *osfd = ss->fd->lower;
SECStatus rv = SECFailure;
PRSocketOptionData opt;
opt.option = PR_SockOpt_NoDelay;
opt.value.no_delay = (PRBool)!enabled;
if (osfd->methods->setsocketoption) {
rv = (SECStatus)osfd->methods->setsocketoption(osfd, &opt);
} else {
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
}
return rv;
}
static void
ssl_ChooseOps(sslSocket *ss)
{
ss->ops = ss->opt.useSecurity ? &ssl_secure_ops : &ssl_default_ops;
}
/* Called from SSL_Enable (immediately below) */
static SECStatus
PrepareSocket(sslSocket *ss)
{
SECStatus rv = SECSuccess;
ssl_ChooseOps(ss);
return rv;
}
SECStatus
SSL_Enable(PRFileDesc *fd, int which, PRIntn on)
{
return SSL_OptionSet(fd, which, on);
}
static PRBool ssl_VersionIsSupportedByPolicy(
SSLProtocolVariant protocolVariant, SSL3ProtocolVersion version);
/* Implements the semantics for SSL_OptionSet(SSL_ENABLE_TLS, on) described in
* ssl.h in the section "SSL version range setting API".
*/
static void
ssl_EnableTLS(SSLVersionRange *vrange, PRIntn enable)
{
if (enable) {
/* don't turn it on if tls1.0 disallowed by by policy */
if (!ssl_VersionIsSupportedByPolicy(ssl_variant_stream,
SSL_LIBRARY_VERSION_TLS_1_0)) {
return;
}
}
if (SSL_ALL_VERSIONS_DISABLED(vrange)) {
if (enable) {
vrange->min = SSL_LIBRARY_VERSION_TLS_1_0;
vrange->max = SSL_LIBRARY_VERSION_TLS_1_0;
} /* else don't change anything */
return;
}
if (enable) {
/* Expand the range of enabled version to include TLS 1.0 */
vrange->min = PR_MIN(vrange->min, SSL_LIBRARY_VERSION_TLS_1_0);
vrange->max = PR_MAX(vrange->max, SSL_LIBRARY_VERSION_TLS_1_0);
} else {
/* Disable all TLS versions, leaving only SSL 3.0 if it was enabled */
if (vrange->min == SSL_LIBRARY_VERSION_3_0) {
vrange->max = SSL_LIBRARY_VERSION_3_0;
} else {
/* Only TLS was enabled, so now no versions are. */
vrange->min = SSL_LIBRARY_VERSION_NONE;
vrange->max = SSL_LIBRARY_VERSION_NONE;
}
}
}
/* Implements the semantics for SSL_OptionSet(SSL_ENABLE_SSL3, on) described in
* ssl.h in the section "SSL version range setting API".
*/
static void
ssl_EnableSSL3(SSLVersionRange *vrange, PRIntn enable)
{
if (enable) {
/* don't turn it on if ssl3 disallowed by by policy */
if (!ssl_VersionIsSupportedByPolicy(ssl_variant_stream,
SSL_LIBRARY_VERSION_3_0)) {
return;
}
}
if (SSL_ALL_VERSIONS_DISABLED(vrange)) {
if (enable) {
vrange->min = SSL_LIBRARY_VERSION_3_0;
vrange->max = SSL_LIBRARY_VERSION_3_0;
} /* else don't change anything */
return;
}
if (enable) {
/* Expand the range of enabled versions to include SSL 3.0. We know
* SSL 3.0 or some version of TLS is already enabled at this point, so
* we don't need to change vrange->max.
*/
vrange->min = SSL_LIBRARY_VERSION_3_0;
} else {
/* Disable SSL 3.0, leaving TLS unaffected. */
if (vrange->max > SSL_LIBRARY_VERSION_3_0) {
vrange->min = PR_MAX(vrange->min, SSL_LIBRARY_VERSION_TLS_1_0);
} else {
/* Only SSL 3.0 was enabled, so now no versions are. */
vrange->min = SSL_LIBRARY_VERSION_NONE;
vrange->max = SSL_LIBRARY_VERSION_NONE;
}
}
}
SECStatus
SSL_OptionSet(PRFileDesc *fd, PRInt32 which, PRIntn val)
{
sslSocket *ss = ssl_FindSocket(fd);
SECStatus rv = SECSuccess;
PRBool holdingLocks;
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in Enable", SSL_GETPID(), fd));
return SECFailure;
}
holdingLocks = (!ss->opt.noLocks);
ssl_Get1stHandshakeLock(ss);
ssl_GetSSL3HandshakeLock(ss);
switch (which) {
case SSL_SOCKS:
ss->opt.useSocks = PR_FALSE;
rv = PrepareSocket(ss);
if (val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
}
break;
case SSL_SECURITY:
ss->opt.useSecurity = val;
rv = PrepareSocket(ss);
break;
case SSL_REQUEST_CERTIFICATE:
ss->opt.requestCertificate = val;
break;
case SSL_REQUIRE_CERTIFICATE:
ss->opt.requireCertificate = val;
break;
case SSL_HANDSHAKE_AS_CLIENT:
if (ss->opt.handshakeAsServer && val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
break;
}
ss->opt.handshakeAsClient = val;
break;
case SSL_HANDSHAKE_AS_SERVER:
if (ss->opt.handshakeAsClient && val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
break;
}
ss->opt.handshakeAsServer = val;
break;
case SSL_ENABLE_TLS:
if (IS_DTLS(ss)) {
if (val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure; /* not allowed */
}
break;
}
ssl_EnableTLS(&ss->vrange, val);
break;
case SSL_ENABLE_SSL3:
if (IS_DTLS(ss)) {
if (val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure; /* not allowed */
}
break;
}
ssl_EnableSSL3(&ss->vrange, val);
break;
case SSL_ENABLE_SSL2:
case SSL_V2_COMPATIBLE_HELLO:
/* We no longer support SSL v2.
* However, if an old application requests to disable SSL v2,
* we shouldn't fail.
*/
if (val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
}
break;
case SSL_NO_CACHE:
ss->opt.noCache = val;
break;
case SSL_ENABLE_FDX:
if (val && ss->opt.noLocks) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
}
ss->opt.fdx = val;
break;
case SSL_ROLLBACK_DETECTION:
ss->opt.detectRollBack = val;
break;
case SSL_NO_STEP_DOWN:
break;
case SSL_BYPASS_PKCS11:
break;
case SSL_NO_LOCKS:
if (val && ss->opt.fdx) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
}
if (val && ssl_force_locks)
val = PR_FALSE; /* silent override */
ss->opt.noLocks = val;
if (val) {
locksEverDisabled = PR_TRUE;
strcpy(lockStatus + LOCKSTATUS_OFFSET, "DISABLED.");
} else if (!holdingLocks) {
rv = ssl_MakeLocks(ss);
if (rv != SECSuccess) {
ss->opt.noLocks = PR_TRUE;
}
}
break;
case SSL_ENABLE_SESSION_TICKETS:
ss->opt.enableSessionTickets = val;
break;
case SSL_ENABLE_DEFLATE:
ss->opt.enableDeflate = val;
break;
case SSL_ENABLE_RENEGOTIATION:
if (IS_DTLS(ss) && val != SSL_RENEGOTIATE_NEVER) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
break;
}
ss->opt.enableRenegotiation = val;
break;
case SSL_REQUIRE_SAFE_NEGOTIATION:
ss->opt.requireSafeNegotiation = val;
break;
case SSL_ENABLE_FALSE_START:
ss->opt.enableFalseStart = val;
break;
case SSL_CBC_RANDOM_IV:
ss->opt.cbcRandomIV = val;
break;
case SSL_ENABLE_OCSP_STAPLING:
ss->opt.enableOCSPStapling = val;
break;
case SSL_ENABLE_NPN:
break;
case SSL_ENABLE_ALPN:
ss->opt.enableALPN = val;
break;
case SSL_REUSE_SERVER_ECDHE_KEY:
ss->opt.reuseServerECDHEKey = val;
break;
case SSL_ENABLE_FALLBACK_SCSV:
ss->opt.enableFallbackSCSV = val;
break;
case SSL_ENABLE_SERVER_DHE:
ss->opt.enableServerDhe = val;
break;
case SSL_ENABLE_EXTENDED_MASTER_SECRET:
ss->opt.enableExtendedMS = val;
break;
case SSL_ENABLE_SIGNED_CERT_TIMESTAMPS:
ss->opt.enableSignedCertTimestamps = val;
break;
case SSL_REQUIRE_DH_NAMED_GROUPS:
ss->opt.requireDHENamedGroups = val;
break;
case SSL_ENABLE_0RTT_DATA:
ss->opt.enable0RttData = val;
break;
case SSL_RECORD_SIZE_LIMIT:
if (val < 64 || val > (MAX_FRAGMENT_LENGTH + 1)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
} else {
ss->opt.recordSizeLimit = val;
}
break;
case SSL_ENABLE_TLS13_COMPAT_MODE:
ss->opt.enableTls13CompatMode = val;
break;
case SSL_ENABLE_DTLS_SHORT_HEADER:
ss->opt.enableDtlsShortHeader = val;
break;
case SSL_ENABLE_HELLO_DOWNGRADE_CHECK:
ss->opt.enableHelloDowngradeCheck = val;
break;
case SSL_ENABLE_V2_COMPATIBLE_HELLO:
ss->opt.enableV2CompatibleHello = val;
break;
default:
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
}
/* We can't use the macros for releasing the locks here,
* because ss->opt.noLocks might have changed just above.
* We must release these locks (monitors) here, if we aquired them above,
* regardless of the current value of ss->opt.noLocks.
*/
if (holdingLocks) {
PZ_ExitMonitor((ss)->ssl3HandshakeLock);
PZ_ExitMonitor((ss)->firstHandshakeLock);
}
return rv;
}
SECStatus
SSL_OptionGet(PRFileDesc *fd, PRInt32 which, PRIntn *pVal)
{
sslSocket *ss = ssl_FindSocket(fd);
SECStatus rv = SECSuccess;
PRIntn val = PR_FALSE;
if (!pVal) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in Enable", SSL_GETPID(), fd));
*pVal = PR_FALSE;
return SECFailure;
}
ssl_Get1stHandshakeLock(ss);
ssl_GetSSL3HandshakeLock(ss);
switch (which) {
case SSL_SOCKS:
val = PR_FALSE;
break;
case SSL_SECURITY:
val = ss->opt.useSecurity;
break;
case SSL_REQUEST_CERTIFICATE:
val = ss->opt.requestCertificate;
break;
case SSL_REQUIRE_CERTIFICATE:
val = ss->opt.requireCertificate;
break;
case SSL_HANDSHAKE_AS_CLIENT:
val = ss->opt.handshakeAsClient;
break;
case SSL_HANDSHAKE_AS_SERVER:
val = ss->opt.handshakeAsServer;
break;
case SSL_ENABLE_TLS:
val = ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_0;
break;
case SSL_ENABLE_SSL3:
val = ss->vrange.min == SSL_LIBRARY_VERSION_3_0;
break;
case SSL_ENABLE_SSL2:
case SSL_V2_COMPATIBLE_HELLO:
val = PR_FALSE;
break;
case SSL_NO_CACHE:
val = ss->opt.noCache;
break;
case SSL_ENABLE_FDX:
val = ss->opt.fdx;
break;
case SSL_ROLLBACK_DETECTION:
val = ss->opt.detectRollBack;
break;
case SSL_NO_STEP_DOWN:
val = PR_FALSE;
break;
case SSL_BYPASS_PKCS11:
val = PR_FALSE;
break;
case SSL_NO_LOCKS:
val = ss->opt.noLocks;
break;
case SSL_ENABLE_SESSION_TICKETS:
val = ss->opt.enableSessionTickets;
break;
case SSL_ENABLE_DEFLATE:
val = ss->opt.enableDeflate;
break;
case SSL_ENABLE_RENEGOTIATION:
val = ss->opt.enableRenegotiation;
break;
case SSL_REQUIRE_SAFE_NEGOTIATION:
val = ss->opt.requireSafeNegotiation;
break;
case SSL_ENABLE_FALSE_START:
val = ss->opt.enableFalseStart;
break;
case SSL_CBC_RANDOM_IV:
val = ss->opt.cbcRandomIV;
break;
case SSL_ENABLE_OCSP_STAPLING:
val = ss->opt.enableOCSPStapling;
break;
case SSL_ENABLE_NPN:
val = PR_FALSE;
break;
case SSL_ENABLE_ALPN:
val = ss->opt.enableALPN;
break;
case SSL_REUSE_SERVER_ECDHE_KEY:
val = ss->opt.reuseServerECDHEKey;
break;
case SSL_ENABLE_FALLBACK_SCSV:
val = ss->opt.enableFallbackSCSV;
break;
case SSL_ENABLE_SERVER_DHE:
val = ss->opt.enableServerDhe;
break;
case SSL_ENABLE_EXTENDED_MASTER_SECRET:
val = ss->opt.enableExtendedMS;
break;
case SSL_ENABLE_SIGNED_CERT_TIMESTAMPS:
val = ss->opt.enableSignedCertTimestamps;
break;
case SSL_REQUIRE_DH_NAMED_GROUPS:
val = ss->opt.requireDHENamedGroups;
break;
case SSL_ENABLE_0RTT_DATA:
val = ss->opt.enable0RttData;
break;
case SSL_RECORD_SIZE_LIMIT:
val = ss->opt.recordSizeLimit;
break;
case SSL_ENABLE_TLS13_COMPAT_MODE:
val = ss->opt.enableTls13CompatMode;
break;
case SSL_ENABLE_DTLS_SHORT_HEADER:
val = ss->opt.enableDtlsShortHeader;
break;
case SSL_ENABLE_HELLO_DOWNGRADE_CHECK:
val = ss->opt.enableHelloDowngradeCheck;
break;
case SSL_ENABLE_V2_COMPATIBLE_HELLO:
val = ss->opt.enableV2CompatibleHello;
break;
default:
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
}
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_Release1stHandshakeLock(ss);
*pVal = val;
return rv;
}
SECStatus
SSL_OptionGetDefault(PRInt32 which, PRIntn *pVal)
{
SECStatus rv = SECSuccess;
PRIntn val = PR_FALSE;
if (!pVal) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ssl_SetDefaultsFromEnvironment();
switch (which) {
case SSL_SOCKS:
val = PR_FALSE;
break;
case SSL_SECURITY:
val = ssl_defaults.useSecurity;
break;
case SSL_REQUEST_CERTIFICATE:
val = ssl_defaults.requestCertificate;
break;
case SSL_REQUIRE_CERTIFICATE:
val = ssl_defaults.requireCertificate;
break;
case SSL_HANDSHAKE_AS_CLIENT:
val = ssl_defaults.handshakeAsClient;
break;
case SSL_HANDSHAKE_AS_SERVER:
val = ssl_defaults.handshakeAsServer;
break;
case SSL_ENABLE_TLS:
val = versions_defaults_stream.max >= SSL_LIBRARY_VERSION_TLS_1_0;
break;
case SSL_ENABLE_SSL3:
val = versions_defaults_stream.min == SSL_LIBRARY_VERSION_3_0;
break;
case SSL_ENABLE_SSL2:
case SSL_V2_COMPATIBLE_HELLO:
val = PR_FALSE;
break;
case SSL_NO_CACHE:
val = ssl_defaults.noCache;
break;
case SSL_ENABLE_FDX:
val = ssl_defaults.fdx;
break;
case SSL_ROLLBACK_DETECTION:
val = ssl_defaults.detectRollBack;
break;
case SSL_NO_STEP_DOWN:
val = PR_FALSE;
break;
case SSL_BYPASS_PKCS11:
val = PR_FALSE;
break;
case SSL_NO_LOCKS:
val = ssl_defaults.noLocks;
break;
case SSL_ENABLE_SESSION_TICKETS:
val = ssl_defaults.enableSessionTickets;
break;
case SSL_ENABLE_DEFLATE:
val = ssl_defaults.enableDeflate;
break;
case SSL_ENABLE_RENEGOTIATION:
val = ssl_defaults.enableRenegotiation;
break;
case SSL_REQUIRE_SAFE_NEGOTIATION:
val = ssl_defaults.requireSafeNegotiation;
break;
case SSL_ENABLE_FALSE_START:
val = ssl_defaults.enableFalseStart;
break;
case SSL_CBC_RANDOM_IV:
val = ssl_defaults.cbcRandomIV;
break;
case SSL_ENABLE_OCSP_STAPLING:
val = ssl_defaults.enableOCSPStapling;
break;
case SSL_ENABLE_NPN:
val = PR_FALSE;
break;
case SSL_ENABLE_ALPN:
val = ssl_defaults.enableALPN;
break;
case SSL_REUSE_SERVER_ECDHE_KEY:
val = ssl_defaults.reuseServerECDHEKey;
break;
case SSL_ENABLE_FALLBACK_SCSV:
val = ssl_defaults.enableFallbackSCSV;
break;
case SSL_ENABLE_SERVER_DHE:
val = ssl_defaults.enableServerDhe;
break;
case SSL_ENABLE_EXTENDED_MASTER_SECRET:
val = ssl_defaults.enableExtendedMS;
break;
case SSL_ENABLE_SIGNED_CERT_TIMESTAMPS:
val = ssl_defaults.enableSignedCertTimestamps;
break;
case SSL_ENABLE_0RTT_DATA:
val = ssl_defaults.enable0RttData;
break;
case SSL_RECORD_SIZE_LIMIT:
val = ssl_defaults.recordSizeLimit;
break;
case SSL_ENABLE_TLS13_COMPAT_MODE:
val = ssl_defaults.enableTls13CompatMode;
break;
case SSL_ENABLE_DTLS_SHORT_HEADER:
val = ssl_defaults.enableDtlsShortHeader;
break;
case SSL_ENABLE_HELLO_DOWNGRADE_CHECK:
val = ssl_defaults.enableHelloDowngradeCheck;
break;
case SSL_ENABLE_V2_COMPATIBLE_HELLO:
val = ssl_defaults.enableV2CompatibleHello;
break;
default:
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
}
*pVal = val;
return rv;
}
/* XXX Use Global Lock to protect this stuff. */
SECStatus
SSL_EnableDefault(int which, PRIntn val)
{
return SSL_OptionSetDefault(which, val);
}
SECStatus
SSL_OptionSetDefault(PRInt32 which, PRIntn val)
{
SECStatus status = ssl_Init();
if (status != SECSuccess) {
return status;
}
ssl_SetDefaultsFromEnvironment();
switch (which) {
case SSL_SOCKS:
ssl_defaults.useSocks = PR_FALSE;
if (val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
break;
case SSL_SECURITY:
ssl_defaults.useSecurity = val;
break;
case SSL_REQUEST_CERTIFICATE:
ssl_defaults.requestCertificate = val;
break;
case SSL_REQUIRE_CERTIFICATE:
ssl_defaults.requireCertificate = val;
break;
case SSL_HANDSHAKE_AS_CLIENT:
if (ssl_defaults.handshakeAsServer && val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ssl_defaults.handshakeAsClient = val;
break;
case SSL_HANDSHAKE_AS_SERVER:
if (ssl_defaults.handshakeAsClient && val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ssl_defaults.handshakeAsServer = val;
break;
case SSL_ENABLE_TLS:
ssl_EnableTLS(&versions_defaults_stream, val);
break;
case SSL_ENABLE_SSL3:
ssl_EnableSSL3(&versions_defaults_stream, val);
break;
case SSL_ENABLE_SSL2:
case SSL_V2_COMPATIBLE_HELLO:
/* We no longer support SSL v2.
* However, if an old application requests to disable SSL v2,
* we shouldn't fail.
*/
if (val) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
break;
case SSL_NO_CACHE:
ssl_defaults.noCache = val;
break;
case SSL_ENABLE_FDX:
if (val && ssl_defaults.noLocks) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ssl_defaults.fdx = val;
break;
case SSL_ROLLBACK_DETECTION:
ssl_defaults.detectRollBack = val;
break;
case SSL_NO_STEP_DOWN:
break;
case SSL_BYPASS_PKCS11:
break;
case SSL_NO_LOCKS:
if (val && ssl_defaults.fdx) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (val && ssl_force_locks)
val = PR_FALSE; /* silent override */
ssl_defaults.noLocks = val;
if (val) {
locksEverDisabled = PR_TRUE;
strcpy(lockStatus + LOCKSTATUS_OFFSET, "DISABLED.");
}
break;
case SSL_ENABLE_SESSION_TICKETS:
ssl_defaults.enableSessionTickets = val;
break;
case SSL_ENABLE_DEFLATE:
ssl_defaults.enableDeflate = val;
break;
case SSL_ENABLE_RENEGOTIATION:
ssl_defaults.enableRenegotiation = val;
break;
case SSL_REQUIRE_SAFE_NEGOTIATION:
ssl_defaults.requireSafeNegotiation = val;
break;
case SSL_ENABLE_FALSE_START:
ssl_defaults.enableFalseStart = val;
break;
case SSL_CBC_RANDOM_IV:
ssl_defaults.cbcRandomIV = val;
break;
case SSL_ENABLE_OCSP_STAPLING:
ssl_defaults.enableOCSPStapling = val;
break;
case SSL_ENABLE_NPN:
break;
case SSL_ENABLE_ALPN:
ssl_defaults.enableALPN = val;
break;
case SSL_REUSE_SERVER_ECDHE_KEY:
ssl_defaults.reuseServerECDHEKey = val;
break;
case SSL_ENABLE_FALLBACK_SCSV:
ssl_defaults.enableFallbackSCSV = val;
break;
case SSL_ENABLE_SERVER_DHE:
ssl_defaults.enableServerDhe = val;
break;
case SSL_ENABLE_EXTENDED_MASTER_SECRET:
ssl_defaults.enableExtendedMS = val;
break;
case SSL_ENABLE_SIGNED_CERT_TIMESTAMPS:
ssl_defaults.enableSignedCertTimestamps = val;
break;
case SSL_ENABLE_0RTT_DATA:
ssl_defaults.enable0RttData = val;
break;
case SSL_RECORD_SIZE_LIMIT:
if (val < 64 || val > (MAX_FRAGMENT_LENGTH + 1)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ssl_defaults.recordSizeLimit = val;
break;
case SSL_ENABLE_TLS13_COMPAT_MODE:
ssl_defaults.enableTls13CompatMode = val;
break;
case SSL_ENABLE_DTLS_SHORT_HEADER:
ssl_defaults.enableDtlsShortHeader = val;
break;
case SSL_ENABLE_HELLO_DOWNGRADE_CHECK:
ssl_defaults.enableHelloDowngradeCheck = val;
break;
case SSL_ENABLE_V2_COMPATIBLE_HELLO:
ssl_defaults.enableV2CompatibleHello = val;
break;
default:
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
return SECSuccess;
}
SECStatus
SSLExp_SetMaxEarlyDataSize(PRFileDesc *fd, PRUint32 size)
{
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
return SECFailure; /* Error code already set. */
}
ss->opt.maxEarlyDataSize = size;
return SECSuccess;
}
/* function tells us if the cipher suite is one that we no longer support. */
static PRBool
ssl_IsRemovedCipherSuite(PRInt32 suite)
{
switch (suite) {
case SSL_FORTEZZA_DMS_WITH_NULL_SHA:
case SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA:
case SSL_FORTEZZA_DMS_WITH_RC4_128_SHA:
return PR_TRUE;
default:
return PR_FALSE;
}
}
/* Part of the public NSS API.
* Since this is a global (not per-socket) setting, we cannot use the
* HandshakeLock to protect this. Probably want a global lock.
*/
SECStatus
SSL_SetPolicy(long which, int policy)
{
if (ssl_IsRemovedCipherSuite(which))
return SECSuccess;
return SSL_CipherPolicySet(which, policy);
}
SECStatus
ssl_CipherPolicySet(PRInt32 which, PRInt32 policy)
{
SECStatus rv = SECSuccess;
if (ssl_IsRemovedCipherSuite(which)) {
rv = SECSuccess;
} else {
rv = ssl3_SetPolicy((ssl3CipherSuite)which, policy);
}
return rv;
}
SECStatus
SSL_CipherPolicySet(PRInt32 which, PRInt32 policy)
{
SECStatus rv = ssl_Init();
if (rv != SECSuccess) {
return rv;
}
return ssl_CipherPolicySet(which, policy);
}
SECStatus
SSL_CipherPolicyGet(PRInt32 which, PRInt32 *oPolicy)
{
SECStatus rv;
if (!oPolicy) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (ssl_IsRemovedCipherSuite(which)) {
*oPolicy = SSL_NOT_ALLOWED;
rv = SECSuccess;
} else {
rv = ssl3_GetPolicy((ssl3CipherSuite)which, oPolicy);
}
return rv;
}
/* Part of the public NSS API.
* Since this is a global (not per-socket) setting, we cannot use the
* HandshakeLock to protect this. Probably want a global lock.
* These changes have no effect on any sslSockets already created.
*/
SECStatus
SSL_EnableCipher(long which, PRBool enabled)
{
if (ssl_IsRemovedCipherSuite(which))
return SECSuccess;
return SSL_CipherPrefSetDefault(which, enabled);
}
SECStatus
ssl_CipherPrefSetDefault(PRInt32 which, PRBool enabled)
{
if (ssl_IsRemovedCipherSuite(which))
return SECSuccess;
return ssl3_CipherPrefSetDefault((ssl3CipherSuite)which, enabled);
}
SECStatus
SSL_CipherPrefSetDefault(PRInt32 which, PRBool enabled)
{
SECStatus rv = ssl_Init();
if (rv != SECSuccess) {
return rv;
}
return ssl_CipherPrefSetDefault(which, enabled);
}
SECStatus
SSL_CipherPrefGetDefault(PRInt32 which, PRBool *enabled)
{
SECStatus rv;
if (!enabled) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (ssl_IsRemovedCipherSuite(which)) {
*enabled = PR_FALSE;
rv = SECSuccess;
} else {
rv = ssl3_CipherPrefGetDefault((ssl3CipherSuite)which, enabled);
}
return rv;
}
SECStatus
SSL_CipherPrefSet(PRFileDesc *fd, PRInt32 which, PRBool enabled)
{
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in CipherPrefSet", SSL_GETPID(), fd));
return SECFailure;
}
if (ssl_IsRemovedCipherSuite(which))
return SECSuccess;
return ssl3_CipherPrefSet(ss, (ssl3CipherSuite)which, enabled);
}
SECStatus
SSL_CipherPrefGet(PRFileDesc *fd, PRInt32 which, PRBool *enabled)
{
SECStatus rv;
sslSocket *ss = ssl_FindSocket(fd);
if (!enabled) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in CipherPrefGet", SSL_GETPID(), fd));
*enabled = PR_FALSE;
return SECFailure;
}
if (ssl_IsRemovedCipherSuite(which)) {
*enabled = PR_FALSE;
rv = SECSuccess;
} else {
rv = ssl3_CipherPrefGet(ss, (ssl3CipherSuite)which, enabled);
}
return rv;
}
SECStatus
NSS_SetDomesticPolicy(void)
{
SECStatus status = SECSuccess;
const PRUint16 *cipher;
SECStatus rv;
PRUint32 policy;
/* If we've already defined some policy oids, skip changing them */
rv = NSS_GetAlgorithmPolicy(SEC_OID_APPLY_SSL_POLICY, &policy);
if ((rv == SECSuccess) && (policy & NSS_USE_POLICY_IN_SSL)) {
return ssl_Init(); /* make sure the policies have bee loaded */
}
for (cipher = SSL_ImplementedCiphers; *cipher != 0; ++cipher) {
status = SSL_SetPolicy(*cipher, SSL_ALLOWED);
if (status != SECSuccess)
break;
}
return status;
}
SECStatus
NSS_SetExportPolicy(void)
{
return NSS_SetDomesticPolicy();
}
SECStatus
NSS_SetFrancePolicy(void)
{
return NSS_SetDomesticPolicy();
}
SECStatus
SSL_NamedGroupConfig(PRFileDesc *fd, const SSLNamedGroup *groups,
unsigned int numGroups)
{
unsigned int i;
unsigned int j = 0;
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
PORT_SetError(SEC_ERROR_NOT_INITIALIZED);
return SECFailure;
}
if (!groups) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (numGroups > SSL_NAMED_GROUP_COUNT) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
memset((void *)ss->namedGroupPreferences, 0,
sizeof(ss->namedGroupPreferences));
for (i = 0; i < numGroups; ++i) {
const sslNamedGroupDef *groupDef = ssl_LookupNamedGroup(groups[i]);
if (!ssl_NamedGroupEnabled(ss, groupDef)) {
ss->namedGroupPreferences[j++] = groupDef;
}
}
return SECSuccess;
}
SECStatus
SSL_DHEGroupPrefSet(PRFileDesc *fd, const SSLDHEGroupType *groups,
PRUint16 num_groups)
{
sslSocket *ss;
const SSLDHEGroupType *list;
unsigned int count;
int i, k, j;
const sslNamedGroupDef *enabled[SSL_NAMED_GROUP_COUNT] = { 0 };
static const SSLDHEGroupType default_dhe_groups[] = {
ssl_ff_dhe_2048_group
};
if ((num_groups && !groups) || (!num_groups && groups) ||
num_groups > SSL_NAMED_GROUP_COUNT) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_DHEGroupPrefSet", SSL_GETPID(), fd));
return SECFailure;
}
if (groups) {
list = groups;
count = num_groups;
} else {
list = default_dhe_groups;
count = PR_ARRAY_SIZE(default_dhe_groups);
}
/* save enabled ec groups and clear ss->namedGroupPreferences */
k = 0;
for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) {
if (ss->namedGroupPreferences[i] &&
ss->namedGroupPreferences[i]->keaType != ssl_kea_dh) {
enabled[k++] = ss->namedGroupPreferences[i];
}
ss->namedGroupPreferences[i] = NULL;
}
ss->ssl3.dhePreferredGroup = NULL;
for (i = 0; i < count; ++i) {
PRBool duplicate = PR_FALSE;
SSLNamedGroup name;
const sslNamedGroupDef *groupDef;
switch (list[i]) {
case ssl_ff_dhe_2048_group:
name = ssl_grp_ffdhe_2048;
break;
case ssl_ff_dhe_3072_group:
name = ssl_grp_ffdhe_3072;
break;
case ssl_ff_dhe_4096_group:
name = ssl_grp_ffdhe_4096;
break;
case ssl_ff_dhe_6144_group:
name = ssl_grp_ffdhe_6144;
break;
case ssl_ff_dhe_8192_group:
name = ssl_grp_ffdhe_8192;
break;
default:
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
groupDef = ssl_LookupNamedGroup(name);
PORT_Assert(groupDef);
if (!ss->ssl3.dhePreferredGroup) {
ss->ssl3.dhePreferredGroup = groupDef;
}
PORT_Assert(k < SSL_NAMED_GROUP_COUNT);
for (j = 0; j < k; ++j) {
/* skip duplicates */
if (enabled[j] == groupDef) {
duplicate = PR_TRUE;
break;
}
}
if (!duplicate) {
enabled[k++] = groupDef;
}
}
for (i = 0; i < k; ++i) {
ss->namedGroupPreferences[i] = enabled[i];
}
return SECSuccess;
}
PRCallOnceType gWeakDHParamsRegisterOnce;
int gWeakDHParamsRegisterError;
PRCallOnceType gWeakDHParamsOnce;
int gWeakDHParamsError;
/* As our code allocates type PQGParams, we'll keep it around,
* even though we only make use of it's parameters through gWeakDHParam. */
static PQGParams *gWeakParamsPQG;
static ssl3DHParams *gWeakDHParams;
#define WEAK_DHE_SIZE 1024
static PRStatus
ssl3_CreateWeakDHParams(void)
{
PQGVerify *vfy;
SECStatus rv, passed;
PORT_Assert(!gWeakDHParams && !gWeakParamsPQG);
rv = PK11_PQG_ParamGenV2(WEAK_DHE_SIZE, 160, 64 /*maximum seed that will work*/,
&gWeakParamsPQG, &vfy);
if (rv != SECSuccess) {
gWeakDHParamsError = PORT_GetError();
return PR_FAILURE;
}
rv = PK11_PQG_VerifyParams(gWeakParamsPQG, vfy, &passed);
if (rv != SECSuccess || passed != SECSuccess) {
SSL_DBG(("%d: PK11_PQG_VerifyParams failed in ssl3_CreateWeakDHParams",
SSL_GETPID()));
gWeakDHParamsError = PORT_GetError();
return PR_FAILURE;
}
gWeakDHParams = PORT_ArenaNew(gWeakParamsPQG->arena, ssl3DHParams);
if (!gWeakDHParams) {
gWeakDHParamsError = PORT_GetError();
return PR_FAILURE;
}
gWeakDHParams->name = ssl_grp_ffdhe_custom;
gWeakDHParams->prime.data = gWeakParamsPQG->prime.data;
gWeakDHParams->prime.len = gWeakParamsPQG->prime.len;
gWeakDHParams->base.data = gWeakParamsPQG->base.data;
gWeakDHParams->base.len = gWeakParamsPQG->base.len;
PK11_PQG_DestroyVerify(vfy);
return PR_SUCCESS;
}
static SECStatus
ssl3_WeakDHParamsShutdown(void *appData, void *nssData)
{
if (gWeakParamsPQG) {
PK11_PQG_DestroyParams(gWeakParamsPQG);
gWeakParamsPQG = NULL;
gWeakDHParams = NULL;
}
return SECSuccess;
}
static PRStatus
ssl3_WeakDHParamsRegisterShutdown(void)
{
SECStatus rv;
rv = NSS_RegisterShutdown(ssl3_WeakDHParamsShutdown, NULL);
if (rv != SECSuccess) {
gWeakDHParamsRegisterError = PORT_GetError();
}
return (PRStatus)rv;
}
/* global init strategy inspired by ssl3_CreateECDHEphemeralKeys */
SECStatus
SSL_EnableWeakDHEPrimeGroup(PRFileDesc *fd, PRBool enabled)
{
sslSocket *ss;
PRStatus status;
if (enabled) {
status = PR_CallOnce(&gWeakDHParamsRegisterOnce,
ssl3_WeakDHParamsRegisterShutdown);
if (status != PR_SUCCESS) {
PORT_SetError(gWeakDHParamsRegisterError);
return SECFailure;
}
status = PR_CallOnce(&gWeakDHParamsOnce, ssl3_CreateWeakDHParams);
if (status != PR_SUCCESS) {
PORT_SetError(gWeakDHParamsError);
return SECFailure;
}
}
if (!fd)
return SECSuccess;
ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_DHEGroupPrefSet", SSL_GETPID(), fd));
return SECFailure;
}
ss->ssl3.dheWeakGroupEnabled = enabled;
return SECSuccess;
}
#include "dhe-param.c"
const ssl3DHParams *
ssl_GetDHEParams(const sslNamedGroupDef *groupDef)
{
switch (groupDef->name) {
case ssl_grp_ffdhe_2048:
return &ff_dhe_2048_params;
case ssl_grp_ffdhe_3072:
return &ff_dhe_3072_params;
case ssl_grp_ffdhe_4096:
return &ff_dhe_4096_params;
case ssl_grp_ffdhe_6144:
return &ff_dhe_6144_params;
case ssl_grp_ffdhe_8192:
return &ff_dhe_8192_params;
case ssl_grp_ffdhe_custom:
PORT_Assert(gWeakDHParams);
return gWeakDHParams;
default:
PORT_Assert(0);
}
return NULL;
}
/* This validates dh_Ys against the group prime. */
PRBool
ssl_IsValidDHEShare(const SECItem *dh_p, const SECItem *dh_Ys)
{
unsigned int size_p = SECKEY_BigIntegerBitLength(dh_p);
unsigned int size_y = SECKEY_BigIntegerBitLength(dh_Ys);
unsigned int commonPart;
int cmp;
if (dh_p->len == 0 || dh_Ys->len == 0) {
return PR_FALSE;
}
/* Check that the prime is at least odd. */
if ((dh_p->data[dh_p->len - 1] & 0x01) == 0) {
return PR_FALSE;
}
/* dh_Ys can't be 1, or bigger than dh_p. */
if (size_y <= 1 || size_y > size_p) {
return PR_FALSE;
}
/* If dh_Ys is shorter, then it's definitely smaller than p-1. */
if (size_y < size_p) {
return PR_TRUE;
}
/* Compare the common part of each, minus the final octet. */
commonPart = (size_p + 7) / 8;
PORT_Assert(commonPart <= dh_Ys->len);
PORT_Assert(commonPart <= dh_p->len);
cmp = PORT_Memcmp(dh_Ys->data + dh_Ys->len - commonPart,
dh_p->data + dh_p->len - commonPart, commonPart - 1);
if (cmp < 0) {
return PR_TRUE;
}
if (cmp > 0) {
return PR_FALSE;
}
/* The last octet of the prime is the only thing that is different and that
* has to be two greater than the share, otherwise we have Ys == p - 1,
* and that means small subgroups. */
if (dh_Ys->data[dh_Ys->len - 1] >= (dh_p->data[dh_p->len - 1] - 1)) {
return PR_FALSE;
}
return PR_TRUE;
}
/* Checks that the provided DH parameters match those in one of the named groups
* that we have enabled. The groups are defined in dhe-param.c and are those
* defined in Appendix A of draft-ietf-tls-negotiated-ff-dhe.
*
* |groupDef| and |dhParams| are optional outparams that identify the group and
* its parameters respectively (if this is successful). */
SECStatus
ssl_ValidateDHENamedGroup(sslSocket *ss,
const SECItem *dh_p,
const SECItem *dh_g,
const sslNamedGroupDef **groupDef,
const ssl3DHParams **dhParams)
{
unsigned int i;
for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) {
const ssl3DHParams *params;
if (!ss->namedGroupPreferences[i]) {
continue;
}
if (ss->namedGroupPreferences[i]->keaType != ssl_kea_dh) {
continue;
}
params = ssl_GetDHEParams(ss->namedGroupPreferences[i]);
PORT_Assert(params);
if (SECITEM_ItemsAreEqual(&params->prime, dh_p)) {
if (!SECITEM_ItemsAreEqual(&params->base, dh_g)) {
return SECFailure;
}
if (groupDef)
*groupDef = ss->namedGroupPreferences[i];
if (dhParams)
*dhParams = params;
return SECSuccess;
}
}
return SECFailure;
}
/* Ensure DH parameters have been selected. This just picks the first enabled
* FFDHE group in ssl_named_groups, or the weak one if it was enabled. */
SECStatus
ssl_SelectDHEGroup(sslSocket *ss, const sslNamedGroupDef **groupDef)
{
unsigned int i;
static const sslNamedGroupDef weak_group_def = {
ssl_grp_ffdhe_custom, WEAK_DHE_SIZE, ssl_kea_dh,
SEC_OID_TLS_DHE_CUSTOM, PR_TRUE
};
/* Only select weak groups in TLS 1.2 and earlier, but not if the client has
* indicated that it supports an FFDHE named group. */
if (ss->ssl3.dheWeakGroupEnabled &&
ss->version < SSL_LIBRARY_VERSION_TLS_1_3 &&
!ss->xtnData.peerSupportsFfdheGroups) {
*groupDef = &weak_group_def;
return SECSuccess;
}
if (ss->ssl3.dhePreferredGroup &&
ssl_NamedGroupEnabled(ss, ss->ssl3.dhePreferredGroup)) {
*groupDef = ss->ssl3.dhePreferredGroup;
return SECSuccess;
}
for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) {
if (ss->namedGroupPreferences[i] &&
ss->namedGroupPreferences[i]->keaType == ssl_kea_dh) {
*groupDef = ss->namedGroupPreferences[i];
return SECSuccess;
}
}
*groupDef = NULL;
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
return SECFailure;
}
/* LOCKS ??? XXX */
static PRFileDesc *
ssl_ImportFD(PRFileDesc *model, PRFileDesc *fd, SSLProtocolVariant variant)
{
sslSocket *ns = NULL;
PRStatus rv;
PRNetAddr addr;
SECStatus status = ssl_Init();
if (status != SECSuccess) {
return NULL;
}
if (model == NULL) {
/* Just create a default socket if we're given NULL for the model */
ns = ssl_NewSocket((PRBool)(!ssl_defaults.noLocks), variant);
} else {
sslSocket *ss = ssl_FindSocket(model);
if (ss == NULL || ss->protocolVariant != variant) {
SSL_DBG(("%d: SSL[%d]: bad model socket in ssl_ImportFD",
SSL_GETPID(), model));
return NULL;
}
ns = ssl_DupSocket(ss);
}
if (ns == NULL)
return NULL;
rv = ssl_PushIOLayer(ns, fd, PR_TOP_IO_LAYER);
if (rv != PR_SUCCESS) {
ssl_FreeSocket(ns);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return NULL;
}
#if defined(DEBUG) || defined(FORCE_PR_ASSERT)
{
sslSocket *ss = ssl_FindSocket(fd);
PORT_Assert(ss == ns);
}
#endif
ns->TCPconnected = (PR_SUCCESS == ssl_DefGetpeername(ns, &addr));
return fd;
}
PRFileDesc *
SSL_ImportFD(PRFileDesc *model, PRFileDesc *fd)
{
return ssl_ImportFD(model, fd, ssl_variant_stream);
}
PRFileDesc *
DTLS_ImportFD(PRFileDesc *model, PRFileDesc *fd)
{
return ssl_ImportFD(model, fd, ssl_variant_datagram);
}
/* SSL_SetNextProtoCallback is used to select an application protocol
* for ALPN. */
SECStatus
SSL_SetNextProtoCallback(PRFileDesc *fd, SSLNextProtoCallback callback,
void *arg)
{
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SetNextProtoCallback", SSL_GETPID(),
fd));
return SECFailure;
}
ssl_GetSSL3HandshakeLock(ss);
ss->nextProtoCallback = callback;
ss->nextProtoArg = arg;
ssl_ReleaseSSL3HandshakeLock(ss);
return SECSuccess;
}
/* ssl_NextProtoNegoCallback is set as an ALPN callback when
* SSL_SetNextProtoNego is used.
*/
static SECStatus
ssl_NextProtoNegoCallback(void *arg, PRFileDesc *fd,
const unsigned char *protos, unsigned int protos_len,
unsigned char *protoOut, unsigned int *protoOutLen,
unsigned int protoMaxLen)
{
unsigned int i, j;
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in ssl_NextProtoNegoCallback",
SSL_GETPID(), fd));
return SECFailure;
}
PORT_Assert(protoMaxLen <= 255);
if (protoMaxLen > 255) {
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
/* For each protocol in client preference, see if we support it. */
for (j = 0; j < ss->opt.nextProtoNego.len;) {
for (i = 0; i < protos_len;) {
if (protos[i] == ss->opt.nextProtoNego.data[j] &&
PORT_Memcmp(&protos[i + 1], &ss->opt.nextProtoNego.data[j + 1],
protos[i]) == 0) {
/* We found a match. */
const unsigned char *result = &protos[i];
memcpy(protoOut, result + 1, result[0]);
*protoOutLen = result[0];
return SECSuccess;
}
i += 1 + (unsigned int)protos[i];
}
j += 1 + (unsigned int)ss->opt.nextProtoNego.data[j];
}
return SECSuccess;
}
SECStatus
SSL_SetNextProtoNego(PRFileDesc *fd, const unsigned char *data,
unsigned int length)
{
sslSocket *ss;
ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SetNextProtoNego",
SSL_GETPID(), fd));
return SECFailure;
}
if (ssl3_ValidateAppProtocol(data, length) != SECSuccess) {
return SECFailure;
}
/* NPN required that the client's fallback protocol is first in the
* list. However, ALPN sends protocols in preference order. So move the
* first protocol to the end of the list. */
ssl_GetSSL3HandshakeLock(ss);
SECITEM_FreeItem(&ss->opt.nextProtoNego, PR_FALSE);
SECITEM_AllocItem(NULL, &ss->opt.nextProtoNego, length);
size_t firstLen = data[0] + 1;
/* firstLen <= length is ensured by ssl3_ValidateAppProtocol. */
PORT_Memcpy(ss->opt.nextProtoNego.data + (length - firstLen), data, firstLen);
PORT_Memcpy(ss->opt.nextProtoNego.data, data + firstLen, length - firstLen);
ssl_ReleaseSSL3HandshakeLock(ss);
return SSL_SetNextProtoCallback(fd, ssl_NextProtoNegoCallback, NULL);
}
SECStatus
SSL_GetNextProto(PRFileDesc *fd, SSLNextProtoState *state, unsigned char *buf,
unsigned int *bufLen, unsigned int bufLenMax)
{
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_GetNextProto", SSL_GETPID(),
fd));
return SECFailure;
}
if (!state || !buf || !bufLen) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
*state = ss->xtnData.nextProtoState;
if (ss->xtnData.nextProtoState != SSL_NEXT_PROTO_NO_SUPPORT &&
ss->xtnData.nextProto.data) {
if (ss->xtnData.nextProto.len > bufLenMax) {
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
PORT_Memcpy(buf, ss->xtnData.nextProto.data, ss->xtnData.nextProto.len);
*bufLen = ss->xtnData.nextProto.len;
} else {
*bufLen = 0;
}
return SECSuccess;
}
SECStatus
SSL_SetSRTPCiphers(PRFileDesc *fd,
const PRUint16 *ciphers,
unsigned int numCiphers)
{
sslSocket *ss;
unsigned int i;
ss = ssl_FindSocket(fd);
if (!ss || !IS_DTLS(ss)) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SetSRTPCiphers",
SSL_GETPID(), fd));
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (numCiphers > MAX_DTLS_SRTP_CIPHER_SUITES) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ss->ssl3.dtlsSRTPCipherCount = 0;
for (i = 0; i < numCiphers; i++) {
const PRUint16 *srtpCipher = srtpCiphers;
while (*srtpCipher) {
if (ciphers[i] == *srtpCipher)
break;
srtpCipher++;
}
if (*srtpCipher) {
ss->ssl3.dtlsSRTPCiphers[ss->ssl3.dtlsSRTPCipherCount++] =
ciphers[i];
} else {
SSL_DBG(("%d: SSL[%d]: invalid or unimplemented SRTP cipher "
"suite specified: 0x%04hx",
SSL_GETPID(), fd,
ciphers[i]));
}
}
if (ss->ssl3.dtlsSRTPCipherCount == 0) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
return SECSuccess;
}
SECStatus
SSL_GetSRTPCipher(PRFileDesc *fd, PRUint16 *cipher)
{
sslSocket *ss;
ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_GetSRTPCipher",
SSL_GETPID(), fd));
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (!ss->xtnData.dtlsSRTPCipherSuite) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
*cipher = ss->xtnData.dtlsSRTPCipherSuite;
return SECSuccess;
}
PRFileDesc *
SSL_ReconfigFD(PRFileDesc *model, PRFileDesc *fd)
{
sslSocket *sm = NULL, *ss = NULL;
PRCList *cursor;
if (model == NULL) {
PR_SetError(SEC_ERROR_INVALID_ARGS, 0);
return NULL;
}
sm = ssl_FindSocket(model);
if (sm == NULL) {
SSL_DBG(("%d: SSL[%d]: bad model socket in ssl_ReconfigFD",
SSL_GETPID(), model));
return NULL;
}
ss = ssl_FindSocket(fd);
PORT_Assert(ss);
if (ss == NULL) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
ss->opt = sm->opt;
ss->vrange = sm->vrange;
PORT_Memcpy(ss->cipherSuites, sm->cipherSuites, sizeof sm->cipherSuites);
PORT_Memcpy(ss->ssl3.dtlsSRTPCiphers, sm->ssl3.dtlsSRTPCiphers,
sizeof(PRUint16) * sm->ssl3.dtlsSRTPCipherCount);
ss->ssl3.dtlsSRTPCipherCount = sm->ssl3.dtlsSRTPCipherCount;
PORT_Memcpy(ss->ssl3.signatureSchemes, sm->ssl3.signatureSchemes,
sizeof(ss->ssl3.signatureSchemes[0]) *
sm->ssl3.signatureSchemeCount);
ss->ssl3.signatureSchemeCount = sm->ssl3.signatureSchemeCount;
ss->ssl3.downgradeCheckVersion = sm->ssl3.downgradeCheckVersion;
if (!ss->opt.useSecurity) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return NULL;
}
while (!PR_CLIST_IS_EMPTY(&ss->serverCerts)) {
cursor = PR_LIST_TAIL(&ss->serverCerts);
PR_REMOVE_LINK(cursor);
ssl_FreeServerCert((sslServerCert *)cursor);
}
for (cursor = PR_NEXT_LINK(&sm->serverCerts);
cursor != &sm->serverCerts;
cursor = PR_NEXT_LINK(cursor)) {
sslServerCert *sc = ssl_CopyServerCert((sslServerCert *)cursor);
if (!sc)
return NULL;
PR_APPEND_LINK(&sc->link, &ss->serverCerts);
}
ssl_FreeEphemeralKeyPairs(ss);
for (cursor = PR_NEXT_LINK(&sm->ephemeralKeyPairs);
cursor != &sm->ephemeralKeyPairs;
cursor = PR_NEXT_LINK(cursor)) {
sslEphemeralKeyPair *mkp = (sslEphemeralKeyPair *)cursor;
sslEphemeralKeyPair *skp = ssl_CopyEphemeralKeyPair(mkp);
if (!skp)
return NULL;
PR_APPEND_LINK(&skp->link, &ss->ephemeralKeyPairs);
}
while (!PR_CLIST_IS_EMPTY(&ss->extensionHooks)) {
cursor = PR_LIST_TAIL(&ss->extensionHooks);
PR_REMOVE_LINK(cursor);
PORT_Free(cursor);
}
for (cursor = PR_NEXT_LINK(&sm->extensionHooks);
cursor != &sm->extensionHooks;
cursor = PR_NEXT_LINK(cursor)) {
SECStatus rv;
sslCustomExtensionHooks *hook = (sslCustomExtensionHooks *)cursor;
rv = SSL_InstallExtensionHooks(ss->fd, hook->type,
hook->writer, hook->writerArg,
hook->handler, hook->handlerArg);
if (rv != SECSuccess) {
return NULL;
}
}
PORT_Memcpy((void *)ss->namedGroupPreferences,
sm->namedGroupPreferences,
sizeof(ss->namedGroupPreferences));
ss->additionalShares = sm->additionalShares;
/* copy trust anchor names */
if (sm->ssl3.ca_list) {
if (ss->ssl3.ca_list) {
CERT_FreeDistNames(ss->ssl3.ca_list);
}
ss->ssl3.ca_list = CERT_DupDistNames(sm->ssl3.ca_list);
if (!ss->ssl3.ca_list) {
return NULL;
}
}
if (sm->authCertificate)
ss->authCertificate = sm->authCertificate;
if (sm->authCertificateArg)
ss->authCertificateArg = sm->authCertificateArg;
if (sm->getClientAuthData)
ss->getClientAuthData = sm->getClientAuthData;
if (sm->getClientAuthDataArg)
ss->getClientAuthDataArg = sm->getClientAuthDataArg;
if (sm->sniSocketConfig)
ss->sniSocketConfig = sm->sniSocketConfig;
if (sm->sniSocketConfigArg)
ss->sniSocketConfigArg = sm->sniSocketConfigArg;
if (sm->alertReceivedCallback) {
ss->alertReceivedCallback = sm->alertReceivedCallback;
ss->alertReceivedCallbackArg = sm->alertReceivedCallbackArg;
}
if (sm->alertSentCallback) {
ss->alertSentCallback = sm->alertSentCallback;
ss->alertSentCallbackArg = sm->alertSentCallbackArg;
}
if (sm->handleBadCert)
ss->handleBadCert = sm->handleBadCert;
if (sm->badCertArg)
ss->badCertArg = sm->badCertArg;
if (sm->handshakeCallback)
ss->handshakeCallback = sm->handshakeCallback;
if (sm->handshakeCallbackData)
ss->handshakeCallbackData = sm->handshakeCallbackData;
if (sm->pkcs11PinArg)
ss->pkcs11PinArg = sm->pkcs11PinArg;
return fd;
}
SECStatus
ssl3_GetEffectiveVersionPolicy(SSLProtocolVariant variant,
SSLVersionRange *effectivePolicy)
{
SECStatus rv;
PRUint32 policyFlag;
PRInt32 minPolicy, maxPolicy;
if (variant == ssl_variant_stream) {
effectivePolicy->min = SSL_LIBRARY_VERSION_MIN_SUPPORTED_STREAM;
effectivePolicy->max = SSL_LIBRARY_VERSION_MAX_SUPPORTED;
} else {
effectivePolicy->min = SSL_LIBRARY_VERSION_MIN_SUPPORTED_DATAGRAM;
effectivePolicy->max = SSL_LIBRARY_VERSION_MAX_SUPPORTED;
}
rv = NSS_GetAlgorithmPolicy(SEC_OID_APPLY_SSL_POLICY, &policyFlag);
if ((rv != SECSuccess) || !(policyFlag & NSS_USE_POLICY_IN_SSL)) {
/* Policy is not active, report library extents. */
return SECSuccess;
}
rv = NSS_OptionGet(VERSIONS_POLICY_MIN(variant), &minPolicy);
if (rv != SECSuccess) {
return SECFailure;
}
rv = NSS_OptionGet(VERSIONS_POLICY_MAX(variant), &maxPolicy);
if (rv != SECSuccess) {
return SECFailure;
}
if (minPolicy > effectivePolicy->max ||
maxPolicy < effectivePolicy->min ||
minPolicy > maxPolicy) {
return SECFailure;
}
effectivePolicy->min = PR_MAX(effectivePolicy->min, minPolicy);
effectivePolicy->max = PR_MIN(effectivePolicy->max, maxPolicy);
return SECSuccess;
}
/*
* Assumes that rangeParam values are within the supported boundaries,
* but should contain all potentially allowed versions, even if they contain
* conflicting versions.
* Will return the overlap, or a NONE range if system policy is invalid.
*/
static SECStatus
ssl3_CreateOverlapWithPolicy(SSLProtocolVariant protocolVariant,
SSLVersionRange *input,
SSLVersionRange *overlap)
{
SECStatus rv;
SSLVersionRange effectivePolicyBoundary;
SSLVersionRange vrange;
PORT_Assert(input != NULL);
rv = ssl3_GetEffectiveVersionPolicy(protocolVariant,
&effectivePolicyBoundary);
if (rv == SECFailure) {
/* SECFailure means internal failure or invalid configuration. */
overlap->min = overlap->max = SSL_LIBRARY_VERSION_NONE;
return SECFailure;
}
vrange.min = PR_MAX(input->min, effectivePolicyBoundary.min);
vrange.max = PR_MIN(input->max, effectivePolicyBoundary.max);
if (vrange.max < vrange.min) {
/* there was no overlap, turn off range altogether */
overlap->min = overlap->max = SSL_LIBRARY_VERSION_NONE;
return SECFailure;
}
*overlap = vrange;
return SECSuccess;
}
static PRBool
ssl_VersionIsSupportedByPolicy(SSLProtocolVariant protocolVariant,
SSL3ProtocolVersion version)
{
SECStatus rv;
SSLVersionRange effectivePolicyBoundary;
rv = ssl3_GetEffectiveVersionPolicy(protocolVariant,
&effectivePolicyBoundary);
if (rv == SECFailure) {
/* SECFailure means internal failure or invalid configuration. */
return PR_FALSE;
}
return version >= effectivePolicyBoundary.min &&
version <= effectivePolicyBoundary.max;
}
/*
* This is called at SSL init time to constrain the existing range based
* on user supplied policy.
*/
SECStatus
ssl3_ConstrainRangeByPolicy(void)
{
/* We ignore failures in ssl3_CreateOverlapWithPolicy. Although an empty
* overlap disables all connectivity, it's an allowed state.
*/
ssl3_CreateOverlapWithPolicy(ssl_variant_stream,
VERSIONS_DEFAULTS(ssl_variant_stream),
VERSIONS_DEFAULTS(ssl_variant_stream));
ssl3_CreateOverlapWithPolicy(ssl_variant_datagram,
VERSIONS_DEFAULTS(ssl_variant_datagram),
VERSIONS_DEFAULTS(ssl_variant_datagram));
return SECSuccess;
}
PRBool
ssl3_VersionIsSupportedByCode(SSLProtocolVariant protocolVariant,
SSL3ProtocolVersion version)
{
switch (protocolVariant) {
case ssl_variant_stream:
return (version >= SSL_LIBRARY_VERSION_MIN_SUPPORTED_STREAM &&
version <= SSL_LIBRARY_VERSION_MAX_SUPPORTED);
case ssl_variant_datagram:
return (version >= SSL_LIBRARY_VERSION_MIN_SUPPORTED_DATAGRAM &&
version <= SSL_LIBRARY_VERSION_MAX_SUPPORTED);
}
/* Can't get here */
PORT_Assert(PR_FALSE);
return PR_FALSE;
}
PRBool
ssl3_VersionIsSupported(SSLProtocolVariant protocolVariant,
SSL3ProtocolVersion version)
{
if (!ssl_VersionIsSupportedByPolicy(protocolVariant, version)) {
return PR_FALSE;
}
return ssl3_VersionIsSupportedByCode(protocolVariant, version);
}
const SECItem *
SSL_PeerSignedCertTimestamps(PRFileDesc *fd)
{
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_PeerSignedCertTimestamps",
SSL_GETPID(), fd));
return NULL;
}
if (!ss->sec.ci.sid) {
PORT_SetError(SEC_ERROR_NOT_INITIALIZED);
return NULL;
}
return &ss->sec.ci.sid->u.ssl3.signedCertTimestamps;
}
SECStatus
SSL_VersionRangeGetSupported(SSLProtocolVariant protocolVariant,
SSLVersionRange *vrange)
{
SECStatus rv;
if (!vrange) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
switch (protocolVariant) {
case ssl_variant_stream:
vrange->min = SSL_LIBRARY_VERSION_MIN_SUPPORTED_STREAM;
vrange->max = SSL_LIBRARY_VERSION_MAX_SUPPORTED;
/* We don't allow SSLv3 and TLSv1.3 together.
* However, don't check yet, apply the policy first.
* Because if the effective supported range doesn't use TLS 1.3,
* then we don't need to increase the minimum. */
break;
case ssl_variant_datagram:
vrange->min = SSL_LIBRARY_VERSION_MIN_SUPPORTED_DATAGRAM;
vrange->max = SSL_LIBRARY_VERSION_MAX_SUPPORTED;
break;
default:
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
rv = ssl3_CreateOverlapWithPolicy(protocolVariant, vrange, vrange);
if (rv != SECSuccess) {
/* Library default and policy don't overlap. */
return rv;
}
/* We don't allow SSLv3 and TLSv1.3 together */
if (vrange->max >= SSL_LIBRARY_VERSION_TLS_1_3) {
vrange->min = PR_MAX(vrange->min, SSL_LIBRARY_VERSION_TLS_1_0);
}
return SECSuccess;
}
SECStatus
SSL_VersionRangeGetDefault(SSLProtocolVariant protocolVariant,
SSLVersionRange *vrange)
{
if ((protocolVariant != ssl_variant_stream &&
protocolVariant != ssl_variant_datagram) ||
!vrange) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
*vrange = *VERSIONS_DEFAULTS(protocolVariant);
return ssl3_CreateOverlapWithPolicy(protocolVariant, vrange, vrange);
}
static PRBool
ssl3_HasConflictingSSLVersions(const SSLVersionRange *vrange)
{
return (vrange->min <= SSL_LIBRARY_VERSION_3_0 &&
vrange->max >= SSL_LIBRARY_VERSION_TLS_1_3);
}
static SECStatus
ssl3_CheckRangeValidAndConstrainByPolicy(SSLProtocolVariant protocolVariant,
SSLVersionRange *vrange)
{
SECStatus rv;
if (vrange->min > vrange->max ||
!ssl3_VersionIsSupportedByCode(protocolVariant, vrange->min) ||
!ssl3_VersionIsSupportedByCode(protocolVariant, vrange->max) ||
ssl3_HasConflictingSSLVersions(vrange)) {
PORT_SetError(SSL_ERROR_INVALID_VERSION_RANGE);
return SECFailure;
}
/* Try to adjust the received range using our policy.
* If there's overlap, we'll use the (possibly reduced) range.
* If there isn't overlap, it's failure. */
rv = ssl3_CreateOverlapWithPolicy(protocolVariant, vrange, vrange);
if (rv != SECSuccess) {
return rv;
}
/* We don't allow SSLv3 and TLSv1.3 together */
if (vrange->max >= SSL_LIBRARY_VERSION_TLS_1_3) {
vrange->min = PR_MAX(vrange->min, SSL_LIBRARY_VERSION_TLS_1_0);
}
return SECSuccess;
}
SECStatus
SSL_VersionRangeSetDefault(SSLProtocolVariant protocolVariant,
const SSLVersionRange *vrange)
{
SSLVersionRange constrainedRange;
SECStatus rv;
if (!vrange) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
constrainedRange = *vrange;
rv = ssl3_CheckRangeValidAndConstrainByPolicy(protocolVariant,
&constrainedRange);
if (rv != SECSuccess)
return rv;
*VERSIONS_DEFAULTS(protocolVariant) = constrainedRange;
return SECSuccess;
}
SECStatus
SSL_VersionRangeGet(PRFileDesc *fd, SSLVersionRange *vrange)
{
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_VersionRangeGet",
SSL_GETPID(), fd));
return SECFailure;
}
if (!vrange) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ssl_Get1stHandshakeLock(ss);
ssl_GetSSL3HandshakeLock(ss);
*vrange = ss->vrange;
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_Release1stHandshakeLock(ss);
return ssl3_CreateOverlapWithPolicy(ss->protocolVariant, vrange, vrange);
}
SECStatus
SSL_VersionRangeSet(PRFileDesc *fd, const SSLVersionRange *vrange)
{
SSLVersionRange constrainedRange;
sslSocket *ss;
SECStatus rv;
if (!vrange) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_VersionRangeSet",
SSL_GETPID(), fd));
return SECFailure;
}
constrainedRange = *vrange;
rv = ssl3_CheckRangeValidAndConstrainByPolicy(ss->protocolVariant,
&constrainedRange);
if (rv != SECSuccess)
return rv;
ssl_Get1stHandshakeLock(ss);
ssl_GetSSL3HandshakeLock(ss);
if (ss->ssl3.downgradeCheckVersion &&
ss->vrange.max > ss->ssl3.downgradeCheckVersion) {
PORT_SetError(SSL_ERROR_INVALID_VERSION_RANGE);
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_Release1stHandshakeLock(ss);
return SECFailure;
}
ss->vrange = constrainedRange;
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_Release1stHandshakeLock(ss);
return SECSuccess;
}
SECStatus
SSL_SetDowngradeCheckVersion(PRFileDesc *fd, PRUint16 version)
{
sslSocket *ss = ssl_FindSocket(fd);
SECStatus rv = SECFailure;
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SetDowngradeCheckVersion",
SSL_GETPID(), fd));
return SECFailure;
}
if (version && !ssl3_VersionIsSupported(ss->protocolVariant, version)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ssl_Get1stHandshakeLock(ss);
ssl_GetSSL3HandshakeLock(ss);
if (version && version < ss->vrange.max) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
goto loser;
}
ss->ssl3.downgradeCheckVersion = version;
rv = SECSuccess;
loser:
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_Release1stHandshakeLock(ss);
return rv;
}
const SECItemArray *
SSL_PeerStapledOCSPResponses(PRFileDesc *fd)
{
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_PeerStapledOCSPResponses",
SSL_GETPID(), fd));
return NULL;
}
if (!ss->sec.ci.sid) {
PORT_SetError(SEC_ERROR_NOT_INITIALIZED);
return NULL;
}
return &ss->sec.ci.sid->peerCertStatus;
}
/************************************************************************/
/* The following functions are the TOP LEVEL SSL functions.
** They all get called through the NSPRIOMethods table below.
*/
static PRFileDesc *PR_CALLBACK
ssl_Accept(PRFileDesc *fd, PRNetAddr *sockaddr, PRIntervalTime timeout)
{
sslSocket *ss;
sslSocket *ns = NULL;
PRFileDesc *newfd = NULL;
PRFileDesc *osfd;
PRStatus status;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in accept", SSL_GETPID(), fd));
return NULL;
}
/* IF this is a listen socket, there shouldn't be any I/O going on */
SSL_LOCK_READER(ss);
SSL_LOCK_WRITER(ss);
ssl_Get1stHandshakeLock(ss);
ssl_GetSSL3HandshakeLock(ss);
ss->cTimeout = timeout;
osfd = ss->fd->lower;
/* First accept connection */
newfd = osfd->methods->accept(osfd, sockaddr, timeout);
if (newfd == NULL) {
SSL_DBG(("%d: SSL[%d]: accept failed, errno=%d",
SSL_GETPID(), ss->fd, PORT_GetError()));
} else {
/* Create ssl module */
ns = ssl_DupSocket(ss);
}
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_Release1stHandshakeLock(ss);
SSL_UNLOCK_WRITER(ss);
SSL_UNLOCK_READER(ss); /* ss isn't used below here. */
if (ns == NULL)
goto loser;
/* push ssl module onto the new socket */
status = ssl_PushIOLayer(ns, newfd, PR_TOP_IO_LAYER);
if (status != PR_SUCCESS)
goto loser;
/* Now start server connection handshake with client.
** Don't need locks here because nobody else has a reference to ns yet.
*/
if (ns->opt.useSecurity) {
if (ns->opt.handshakeAsClient) {
ns->handshake = ssl_BeginClientHandshake;
ss->handshaking = sslHandshakingAsClient;
} else {
ns->handshake = ssl_BeginServerHandshake;
ss->handshaking = sslHandshakingAsServer;
}
}
ns->TCPconnected = 1;
return newfd;
loser:
if (ns != NULL)
ssl_FreeSocket(ns);
if (newfd != NULL)
PR_Close(newfd);
return NULL;
}
static PRStatus PR_CALLBACK
ssl_Connect(PRFileDesc *fd, const PRNetAddr *sockaddr, PRIntervalTime timeout)
{
sslSocket *ss;
PRStatus rv;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in connect", SSL_GETPID(), fd));
return PR_FAILURE;
}
/* IF this is a listen socket, there shouldn't be any I/O going on */
SSL_LOCK_READER(ss);
SSL_LOCK_WRITER(ss);
ss->cTimeout = timeout;
rv = (PRStatus)(*ss->ops->connect)(ss, sockaddr);
SSL_UNLOCK_WRITER(ss);
SSL_UNLOCK_READER(ss);
return rv;
}
static PRStatus PR_CALLBACK
ssl_Bind(PRFileDesc *fd, const PRNetAddr *addr)
{
sslSocket *ss = ssl_GetPrivate(fd);
PRStatus rv;
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in bind", SSL_GETPID(), fd));
return PR_FAILURE;
}
SSL_LOCK_READER(ss);
SSL_LOCK_WRITER(ss);
rv = (PRStatus)(*ss->ops->bind)(ss, addr);
SSL_UNLOCK_WRITER(ss);
SSL_UNLOCK_READER(ss);
return rv;
}
static PRStatus PR_CALLBACK
ssl_Listen(PRFileDesc *fd, PRIntn backlog)
{
sslSocket *ss = ssl_GetPrivate(fd);
PRStatus rv;
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in listen", SSL_GETPID(), fd));
return PR_FAILURE;
}
SSL_LOCK_READER(ss);
SSL_LOCK_WRITER(ss);
rv = (PRStatus)(*ss->ops->listen)(ss, backlog);
SSL_UNLOCK_WRITER(ss);
SSL_UNLOCK_READER(ss);
return rv;
}
static PRStatus PR_CALLBACK
ssl_Shutdown(PRFileDesc *fd, PRIntn how)
{
sslSocket *ss = ssl_GetPrivate(fd);
PRStatus rv;
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in shutdown", SSL_GETPID(), fd));
return PR_FAILURE;
}
if (how == PR_SHUTDOWN_RCV || how == PR_SHUTDOWN_BOTH) {
SSL_LOCK_READER(ss);
}
if (how == PR_SHUTDOWN_SEND || how == PR_SHUTDOWN_BOTH) {
SSL_LOCK_WRITER(ss);
}
rv = (PRStatus)(*ss->ops->shutdown)(ss, how);
if (how == PR_SHUTDOWN_SEND || how == PR_SHUTDOWN_BOTH) {
SSL_UNLOCK_WRITER(ss);
}
if (how == PR_SHUTDOWN_RCV || how == PR_SHUTDOWN_BOTH) {
SSL_UNLOCK_READER(ss);
}
return rv;
}
static PRStatus PR_CALLBACK
ssl_Close(PRFileDesc *fd)
{
sslSocket *ss;
PRStatus rv;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in close", SSL_GETPID(), fd));
return PR_FAILURE;
}
/* There must not be any I/O going on */
SSL_LOCK_READER(ss);
SSL_LOCK_WRITER(ss);
/* By the time this function returns,
** ss is an invalid pointer, and the locks to which it points have
** been unlocked and freed. So, this is the ONE PLACE in all of SSL
** where the LOCK calls and the corresponding UNLOCK calls are not in
** the same function scope. The unlock calls are in ssl_FreeSocket().
*/
rv = (PRStatus)(*ss->ops->close)(ss);
return rv;
}
static int PR_CALLBACK
ssl_Recv(PRFileDesc *fd, void *buf, PRInt32 len, PRIntn flags,
PRIntervalTime timeout)
{
sslSocket *ss;
int rv;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in recv", SSL_GETPID(), fd));
return SECFailure;
}
SSL_LOCK_READER(ss);
ss->rTimeout = timeout;
if (!ss->opt.fdx)
ss->wTimeout = timeout;
rv = (*ss->ops->recv)(ss, (unsigned char *)buf, len, flags);
SSL_UNLOCK_READER(ss);
return rv;
}
static int PR_CALLBACK
ssl_Send(PRFileDesc *fd, const void *buf, PRInt32 len, PRIntn flags,
PRIntervalTime timeout)
{
sslSocket *ss;
int rv;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in send", SSL_GETPID(), fd));
return SECFailure;
}
SSL_LOCK_WRITER(ss);
ss->wTimeout = timeout;
if (!ss->opt.fdx)
ss->rTimeout = timeout;
rv = (*ss->ops->send)(ss, (const unsigned char *)buf, len, flags);
SSL_UNLOCK_WRITER(ss);
return rv;
}
static int PR_CALLBACK
ssl_Read(PRFileDesc *fd, void *buf, PRInt32 len)
{
sslSocket *ss;
int rv;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in read", SSL_GETPID(), fd));
return SECFailure;
}
SSL_LOCK_READER(ss);
ss->rTimeout = PR_INTERVAL_NO_TIMEOUT;
if (!ss->opt.fdx)
ss->wTimeout = PR_INTERVAL_NO_TIMEOUT;
rv = (*ss->ops->read)(ss, (unsigned char *)buf, len);
SSL_UNLOCK_READER(ss);
return rv;
}
static int PR_CALLBACK
ssl_Write(PRFileDesc *fd, const void *buf, PRInt32 len)
{
sslSocket *ss;
int rv;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in write", SSL_GETPID(), fd));
return SECFailure;
}
SSL_LOCK_WRITER(ss);
ss->wTimeout = PR_INTERVAL_NO_TIMEOUT;
if (!ss->opt.fdx)
ss->rTimeout = PR_INTERVAL_NO_TIMEOUT;
rv = (*ss->ops->write)(ss, (const unsigned char *)buf, len);
SSL_UNLOCK_WRITER(ss);
return rv;
}
static PRStatus PR_CALLBACK
ssl_GetPeerName(PRFileDesc *fd, PRNetAddr *addr)
{
sslSocket *ss;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in getpeername", SSL_GETPID(), fd));
return PR_FAILURE;
}
return (PRStatus)(*ss->ops->getpeername)(ss, addr);
}
/*
*/
SECStatus
ssl_GetPeerInfo(sslSocket *ss)
{
PRFileDesc *osfd;
int rv;
PRNetAddr sin;
osfd = ss->fd->lower;
PORT_Memset(&sin, 0, sizeof(sin));
rv = osfd->methods->getpeername(osfd, &sin);
if (rv < 0) {
return SECFailure;
}
ss->TCPconnected = 1;
if (sin.inet.family == PR_AF_INET) {
PR_ConvertIPv4AddrToIPv6(sin.inet.ip, &ss->sec.ci.peer);
ss->sec.ci.port = sin.inet.port;
} else if (sin.ipv6.family == PR_AF_INET6) {
ss->sec.ci.peer = sin.ipv6.ip;
ss->sec.ci.port = sin.ipv6.port;
} else {
PORT_SetError(PR_ADDRESS_NOT_SUPPORTED_ERROR);
return SECFailure;
}
return SECSuccess;
}
static PRStatus PR_CALLBACK
ssl_GetSockName(PRFileDesc *fd, PRNetAddr *name)
{
sslSocket *ss;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in getsockname", SSL_GETPID(), fd));
return PR_FAILURE;
}
return (PRStatus)(*ss->ops->getsockname)(ss, name);
}
SECStatus
SSL_SetSockPeerID(PRFileDesc *fd, const char *peerID)
{
sslSocket *ss;
ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SetSockPeerID",
SSL_GETPID(), fd));
return SECFailure;
}
if (ss->peerID) {
PORT_Free(ss->peerID);
ss->peerID = NULL;
}
if (peerID)
ss->peerID = PORT_Strdup(peerID);
return (ss->peerID || !peerID) ? SECSuccess : SECFailure;
}
#define PR_POLL_RW (PR_POLL_WRITE | PR_POLL_READ)
static PRInt16 PR_CALLBACK
ssl_Poll(PRFileDesc *fd, PRInt16 how_flags, PRInt16 *p_out_flags)
{
sslSocket *ss;
PRInt16 new_flags = how_flags; /* should select on these flags. */
PRNetAddr addr;
*p_out_flags = 0;
ss = ssl_GetPrivate(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_Poll",
SSL_GETPID(), fd));
return 0; /* don't poll on this socket */
}
if (ss->opt.useSecurity &&
ss->handshaking != sslHandshakingUndetermined &&
!ss->firstHsDone &&
(how_flags & PR_POLL_RW)) {
if (!ss->TCPconnected) {
ss->TCPconnected = (PR_SUCCESS == ssl_DefGetpeername(ss, &addr));
}
/* If it's not connected, then presumably the application is polling
** on read or write appropriately, so don't change it.
*/
if (ss->TCPconnected) {
if (!ss->handshakeBegun) {
/* If the handshake has not begun, poll on read or write
** based on the local application's role in the handshake,
** not based on what the application requested.
*/
new_flags &= ~PR_POLL_RW;
if (ss->handshaking == sslHandshakingAsClient) {
new_flags |= PR_POLL_WRITE;
} else { /* handshaking as server */
new_flags |= PR_POLL_READ;
}
} else if (ss->lastWriteBlocked) {
/* First handshake is in progress */
if (new_flags & PR_POLL_READ) {
/* The caller is waiting for data to be received,
** but the initial handshake is blocked on write, or the
** client's first handshake record has not been written.
** The code should select on write, not read.
*/
new_flags &= ~PR_POLL_READ; /* don't select on read. */
new_flags |= PR_POLL_WRITE; /* do select on write. */
}
} else if (new_flags & PR_POLL_WRITE) {
/* The caller is trying to write, but the handshake is
** blocked waiting for data to read, and the first
** handshake has been sent. So do NOT to poll on write
** unless we did false start or we are doing 0-RTT.
*/
if (!(ss->ssl3.hs.canFalseStart ||
ss->ssl3.hs.zeroRttState == ssl_0rtt_sent ||
ss->ssl3.hs.zeroRttState == ssl_0rtt_accepted)) {
new_flags &= ~PR_POLL_WRITE; /* don't select on write. */
}
new_flags |= PR_POLL_READ; /* do select on read. */
}
}
} else if ((new_flags & PR_POLL_READ) && (SSL_DataPending(fd) > 0)) {
*p_out_flags = PR_POLL_READ; /* it's ready already. */
return new_flags;
} else if ((ss->lastWriteBlocked) && (how_flags & PR_POLL_READ) &&
(ss->pendingBuf.len != 0)) { /* write data waiting to be sent */
new_flags |= PR_POLL_WRITE; /* also select on write. */
}
if (ss->ssl3.hs.restartTarget != NULL) {
/* Read and write will block until the asynchronous callback completes
* (e.g. until SSL_AuthCertificateComplete is called), so don't tell
* the caller to poll the socket unless there is pending write data.
*/
if (ss->lastWriteBlocked && ss->pendingBuf.len != 0) {
/* Ignore any newly-received data on the socket, but do wait for
* the socket to become writable again. Here, it is OK for an error
* to be detected, because our logic for sending pending write data
* will allow us to report the error to the caller without the risk
* of the application spinning.
*/
new_flags &= (PR_POLL_WRITE | PR_POLL_EXCEPT);
} else {
/* Unfortunately, clearing new_flags will make it impossible for
* the application to detect errors that it would otherwise be
* able to detect with PR_POLL_EXCEPT, until the asynchronous
* callback completes. However, we must clear all the flags to
* prevent the application from spinning (alternating between
* calling PR_Poll that would return PR_POLL_EXCEPT, and send/recv
* which won't actually report the I/O error while we are waiting
* for the asynchronous callback to complete).
*/
new_flags = 0;
}
}
SSL_TRC(20, ("%d: SSL[%d]: ssl_Poll flags %x -> %x",
SSL_GETPID(), fd, how_flags, new_flags));
if (new_flags && (fd->lower->methods->poll != NULL)) {
PRInt16 lower_out_flags = 0;
PRInt16 lower_new_flags;
lower_new_flags = fd->lower->methods->poll(fd->lower, new_flags,
&lower_out_flags);
if ((lower_new_flags & lower_out_flags) && (how_flags != new_flags)) {
PRInt16 out_flags = lower_out_flags & ~PR_POLL_RW;
if (lower_out_flags & PR_POLL_READ)
out_flags |= PR_POLL_WRITE;
if (lower_out_flags & PR_POLL_WRITE)
out_flags |= PR_POLL_READ;
*p_out_flags = out_flags;
new_flags = how_flags;
} else {
*p_out_flags = lower_out_flags;
new_flags = lower_new_flags;
}
}
return new_flags;
}
static PRInt32 PR_CALLBACK
ssl_TransmitFile(PRFileDesc *sd, PRFileDesc *fd,
const void *headers, PRInt32 hlen,
PRTransmitFileFlags flags, PRIntervalTime timeout)
{
PRSendFileData sfd;
sfd.fd = fd;
sfd.file_offset = 0;
sfd.file_nbytes = 0;
sfd.header = headers;
sfd.hlen = hlen;
sfd.trailer = NULL;
sfd.tlen = 0;
return sd->methods->sendfile(sd, &sfd, flags, timeout);
}
PRBool
ssl_FdIsBlocking(PRFileDesc *fd)
{
PRSocketOptionData opt;
PRStatus status;
opt.option = PR_SockOpt_Nonblocking;
opt.value.non_blocking = PR_FALSE;
status = PR_GetSocketOption(fd, &opt);
if (status != PR_SUCCESS)
return PR_FALSE;
return (PRBool)!opt.value.non_blocking;
}
PRBool
ssl_SocketIsBlocking(sslSocket *ss)
{
return ssl_FdIsBlocking(ss->fd);
}
PRInt32 sslFirstBufSize = 8 * 1024;
PRInt32 sslCopyLimit = 1024;
static PRInt32 PR_CALLBACK
ssl_WriteV(PRFileDesc *fd, const PRIOVec *iov, PRInt32 vectors,
PRIntervalTime timeout)
{
PRInt32 i;
PRInt32 bufLen;
PRInt32 left;
PRInt32 rv;
PRInt32 sent = 0;
const PRInt32 first_len = sslFirstBufSize;
const PRInt32 limit = sslCopyLimit;
PRBool blocking;
PRIOVec myIov;
char buf[MAX_FRAGMENT_LENGTH];
if (vectors < 0) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return -1;
}
if (vectors > PR_MAX_IOVECTOR_SIZE) {
PORT_SetError(PR_BUFFER_OVERFLOW_ERROR);
return -1;
}
for (i = 0; i < vectors; i++) {
if (iov[i].iov_len < 0) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return -1;
}
}
blocking = ssl_FdIsBlocking(fd);
#define K16 ((int)sizeof(buf))
#define KILL_VECTORS \
while (vectors && !iov->iov_len) { \
++iov; \
--vectors; \
}
#define GET_VECTOR \
do { \
myIov = *iov++; \
--vectors; \
KILL_VECTORS \
} while (0)
#define HANDLE_ERR(rv, len) \
if (rv != len) { \
if (rv < 0) { \
if (!blocking && \
(PR_GetError() == PR_WOULD_BLOCK_ERROR) && \
(sent > 0)) { \
return sent; \
} else { \
return -1; \
} \
} \
/* Only a nonblocking socket can have partial sends */ \
PR_ASSERT(!blocking); \
return sent + rv; \
}
#define SEND(bfr, len) \
do { \
rv = ssl_Send(fd, bfr, len, 0, timeout); \
HANDLE_ERR(rv, len) \
sent += len; \
} while (0)
/* Make sure the first write is at least 8 KB, if possible. */
KILL_VECTORS
if (!vectors)
return ssl_Send(fd, 0, 0, 0, timeout);
GET_VECTOR;
if (!vectors) {
return ssl_Send(fd, myIov.iov_base, myIov.iov_len, 0, timeout);
}
if (myIov.iov_len < first_len) {
PORT_Memcpy(buf, myIov.iov_base, myIov.iov_len);
bufLen = myIov.iov_len;
left = first_len - bufLen;
while (vectors && left) {
int toCopy;
GET_VECTOR;
toCopy = PR_MIN(left, myIov.iov_len);
PORT_Memcpy(buf + bufLen, myIov.iov_base, toCopy);
bufLen += toCopy;
left -= toCopy;
myIov.iov_base += toCopy;
myIov.iov_len -= toCopy;
}
SEND(buf, bufLen);
}
while (vectors || myIov.iov_len) {
PRInt32 addLen;
if (!myIov.iov_len) {
GET_VECTOR;
}
while (myIov.iov_len >= K16) {
SEND(myIov.iov_base, K16);
myIov.iov_base += K16;
myIov.iov_len -= K16;
}
if (!myIov.iov_len)
continue;
if (!vectors || myIov.iov_len > limit) {
addLen = 0;
} else if ((addLen = iov->iov_len % K16) + myIov.iov_len <= limit) {
/* Addlen is already computed. */;
} else if (vectors > 1 &&
iov[1].iov_len % K16 + addLen + myIov.iov_len <= 2 * limit) {
addLen = limit - myIov.iov_len;
} else
addLen = 0;
if (!addLen) {
SEND(myIov.iov_base, myIov.iov_len);
myIov.iov_len = 0;
continue;
}
PORT_Memcpy(buf, myIov.iov_base, myIov.iov_len);
bufLen = myIov.iov_len;
do {
GET_VECTOR;
PORT_Memcpy(buf + bufLen, myIov.iov_base, addLen);
myIov.iov_base += addLen;
myIov.iov_len -= addLen;
bufLen += addLen;
left = PR_MIN(limit, K16 - bufLen);
if (!vectors /* no more left */
|| myIov.iov_len > 0 /* we didn't use that one all up */
|| bufLen >= K16 /* it's full. */) {
addLen = 0;
} else if ((addLen = iov->iov_len % K16) <= left) {
/* Addlen is already computed. */;
} else if (vectors > 1 &&
iov[1].iov_len % K16 + addLen <= left + limit) {
addLen = left;
} else
addLen = 0;
} while (addLen);
SEND(buf, bufLen);
}
return sent;
}
/*
* These functions aren't implemented.
*/
static PRInt32 PR_CALLBACK
ssl_Available(PRFileDesc *fd)
{
PORT_Assert(0);
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return SECFailure;
}
static PRInt64 PR_CALLBACK
ssl_Available64(PRFileDesc *fd)
{
PRInt64 res;
PORT_Assert(0);
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
LL_I2L(res, -1L);
return res;
}
static PRStatus PR_CALLBACK
ssl_FSync(PRFileDesc *fd)
{
PORT_Assert(0);
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return PR_FAILURE;
}
static PRInt32 PR_CALLBACK
ssl_Seek(PRFileDesc *fd, PRInt32 offset, PRSeekWhence how)
{
PORT_Assert(0);
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return SECFailure;
}
static PRInt64 PR_CALLBACK
ssl_Seek64(PRFileDesc *fd, PRInt64 offset, PRSeekWhence how)
{
PRInt64 res;
PORT_Assert(0);
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
LL_I2L(res, -1L);
return res;
}
static PRStatus PR_CALLBACK
ssl_FileInfo(PRFileDesc *fd, PRFileInfo *info)
{
PORT_Assert(0);
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return PR_FAILURE;
}
static PRStatus PR_CALLBACK
ssl_FileInfo64(PRFileDesc *fd, PRFileInfo64 *info)
{
PORT_Assert(0);
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return PR_FAILURE;
}
static PRInt32 PR_CALLBACK
ssl_RecvFrom(PRFileDesc *fd, void *buf, PRInt32 amount, PRIntn flags,
PRNetAddr *addr, PRIntervalTime timeout)
{
PORT_Assert(0);
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return SECFailure;
}
static PRInt32 PR_CALLBACK
ssl_SendTo(PRFileDesc *fd, const void *buf, PRInt32 amount, PRIntn flags,
const PRNetAddr *addr, PRIntervalTime timeout)
{
PORT_Assert(0);
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return SECFailure;
}
static const PRIOMethods ssl_methods = {
PR_DESC_LAYERED,
ssl_Close, /* close */
ssl_Read, /* read */
ssl_Write, /* write */
ssl_Available, /* available */
ssl_Available64, /* available64 */
ssl_FSync, /* fsync */
ssl_Seek, /* seek */
ssl_Seek64, /* seek64 */
ssl_FileInfo, /* fileInfo */
ssl_FileInfo64, /* fileInfo64 */
ssl_WriteV, /* writev */
ssl_Connect, /* connect */
ssl_Accept, /* accept */
ssl_Bind, /* bind */
ssl_Listen, /* listen */
ssl_Shutdown, /* shutdown */
ssl_Recv, /* recv */
ssl_Send, /* send */
ssl_RecvFrom, /* recvfrom */
ssl_SendTo, /* sendto */
ssl_Poll, /* poll */
PR_EmulateAcceptRead, /* acceptread */
ssl_TransmitFile, /* transmitfile */
ssl_GetSockName, /* getsockname */
ssl_GetPeerName, /* getpeername */
NULL, /* getsockopt OBSOLETE */
NULL, /* setsockopt OBSOLETE */
NULL, /* getsocketoption */
NULL, /* setsocketoption */
PR_EmulateSendFile, /* Send a (partial) file with header/trailer*/
NULL, /* reserved for future use */
NULL, /* reserved for future use */
NULL, /* reserved for future use */
NULL, /* reserved for future use */
NULL /* reserved for future use */
};
static PRIOMethods combined_methods;
static void
ssl_SetupIOMethods(void)
{
PRIOMethods *new_methods = &combined_methods;
const PRIOMethods *nspr_methods = PR_GetDefaultIOMethods();
const PRIOMethods *my_methods = &ssl_methods;
*new_methods = *nspr_methods;
new_methods->file_type = my_methods->file_type;
new_methods->close = my_methods->close;
new_methods->read = my_methods->read;
new_methods->write = my_methods->write;
new_methods->available = my_methods->available;
new_methods->available64 = my_methods->available64;
new_methods->fsync = my_methods->fsync;
new_methods->seek = my_methods->seek;
new_methods->seek64 = my_methods->seek64;
new_methods->fileInfo = my_methods->fileInfo;
new_methods->fileInfo64 = my_methods->fileInfo64;
new_methods->writev = my_methods->writev;
new_methods->connect = my_methods->connect;
new_methods->accept = my_methods->accept;
new_methods->bind = my_methods->bind;
new_methods->listen = my_methods->listen;
new_methods->shutdown = my_methods->shutdown;
new_methods->recv = my_methods->recv;
new_methods->send = my_methods->send;
new_methods->recvfrom = my_methods->recvfrom;
new_methods->sendto = my_methods->sendto;
new_methods->poll = my_methods->poll;
new_methods->acceptread = my_methods->acceptread;
new_methods->transmitfile = my_methods->transmitfile;
new_methods->getsockname = my_methods->getsockname;
new_methods->getpeername = my_methods->getpeername;
/* new_methods->getsocketoption = my_methods->getsocketoption; */
/* new_methods->setsocketoption = my_methods->setsocketoption; */
new_methods->sendfile = my_methods->sendfile;
}
static PRCallOnceType initIoLayerOnce;
static PRStatus
ssl_InitIOLayer(void)
{
ssl_layer_id = PR_GetUniqueIdentity("SSL");
ssl_SetupIOMethods();
return PR_SUCCESS;
}
static PRStatus
ssl_PushIOLayer(sslSocket *ns, PRFileDesc *stack, PRDescIdentity id)
{
PRFileDesc *layer = NULL;
PRStatus status;
status = PR_CallOnce(&initIoLayerOnce, &ssl_InitIOLayer);
if (status != PR_SUCCESS) {
goto loser;
}
if (ns == NULL) {
goto loser;
}
layer = PR_CreateIOLayerStub(ssl_layer_id, &combined_methods);
if (layer == NULL)
goto loser;
layer->secret = (PRFilePrivate *)ns;
/* Here, "stack" points to the PRFileDesc on the top of the stack.
** "layer" points to a new FD that is to be inserted into the stack.
** If layer is being pushed onto the top of the stack, then
** PR_PushIOLayer switches the contents of stack and layer, and then
** puts stack on top of layer, so that after it is done, the top of
** stack is the same "stack" as it was before, and layer is now the
** FD for the former top of stack.
** After this call, stack always points to the top PRFD on the stack.
** If this function fails, the contents of stack and layer are as
** they were before the call.
*/
status = PR_PushIOLayer(stack, id, layer);
if (status != PR_SUCCESS)
goto loser;
ns->fd = (id == PR_TOP_IO_LAYER) ? stack : layer;
return PR_SUCCESS;
loser:
if (layer) {
layer->dtor(layer); /* free layer */
}
return PR_FAILURE;
}
/* if this fails, caller must destroy socket. */
static SECStatus
ssl_MakeLocks(sslSocket *ss)
{
ss->firstHandshakeLock = PZ_NewMonitor(nssILockSSL);
if (!ss->firstHandshakeLock)
goto loser;
ss->ssl3HandshakeLock = PZ_NewMonitor(nssILockSSL);
if (!ss->ssl3HandshakeLock)
goto loser;
ss->specLock = NSSRWLock_New(SSL_LOCK_RANK_SPEC, NULL);
if (!ss->specLock)
goto loser;
ss->recvBufLock = PZ_NewMonitor(nssILockSSL);
if (!ss->recvBufLock)
goto loser;
ss->xmitBufLock = PZ_NewMonitor(nssILockSSL);
if (!ss->xmitBufLock)
goto loser;
ss->writerThread = NULL;
if (ssl_lock_readers) {
ss->recvLock = PZ_NewLock(nssILockSSL);
if (!ss->recvLock)
goto loser;
ss->sendLock = PZ_NewLock(nssILockSSL);
if (!ss->sendLock)
goto loser;
}
return SECSuccess;
loser:
ssl_DestroyLocks(ss);
return SECFailure;
}
#if defined(XP_UNIX) || defined(XP_WIN32) || defined(XP_BEOS)
#define NSS_HAVE_GETENV 1
#endif
#define LOWER(x) (x | 0x20) /* cheap ToLower function ignores LOCALE */
static void
ssl_SetDefaultsFromEnvironment(void)
{
#if defined(NSS_HAVE_GETENV)
static int firsttime = 1;
if (firsttime) {
char *ev;
firsttime = 0;
#ifdef DEBUG
ev = PR_GetEnvSecure("SSLDEBUGFILE");
if (ev && ev[0]) {
ssl_trace_iob = fopen(ev, "w");
}
if (!ssl_trace_iob) {
ssl_trace_iob = stderr;
}
#ifdef TRACE
ev = PR_GetEnvSecure("SSLTRACE");
if (ev && ev[0]) {
ssl_trace = atoi(ev);
SSL_TRACE(("SSL: tracing set to %d", ssl_trace));
}
#endif /* TRACE */
ev = PR_GetEnvSecure("SSLDEBUG");
if (ev && ev[0]) {
ssl_debug = atoi(ev);
SSL_TRACE(("SSL: debugging set to %d", ssl_debug));
}
#endif /* DEBUG */
#ifdef NSS_ALLOW_SSLKEYLOGFILE
ev = PR_GetEnvSecure("SSLKEYLOGFILE");
if (ev && ev[0]) {
ssl_keylog_iob = fopen(ev, "a");
if (!ssl_keylog_iob) {
SSL_TRACE(("SSL: failed to open key log file"));
} else {
if (ftell(ssl_keylog_iob) == 0) {
fputs("# SSL/TLS secrets log file, generated by NSS\n",
ssl_keylog_iob);
}
SSL_TRACE(("SSL: logging SSL/TLS secrets to %s", ev));
ssl_keylog_lock = PR_NewLock();
if (!ssl_keylog_lock) {
SSL_TRACE(("SSL: failed to create key log lock"));
fclose(ssl_keylog_iob);
ssl_keylog_iob = NULL;
}
}
}
#endif
ev = PR_GetEnvSecure("SSLFORCELOCKS");
if (ev && ev[0] == '1') {
ssl_force_locks = PR_TRUE;
ssl_defaults.noLocks = 0;
strcpy(lockStatus + LOCKSTATUS_OFFSET, "FORCED. ");
SSL_TRACE(("SSL: force_locks set to %d", ssl_force_locks));
}
ev = PR_GetEnvSecure("NSS_SSL_ENABLE_RENEGOTIATION");
if (ev) {
if (ev[0] == '1' || LOWER(ev[0]) == 'u')
ssl_defaults.enableRenegotiation = SSL_RENEGOTIATE_UNRESTRICTED;
else if (ev[0] == '0' || LOWER(ev[0]) == 'n')
ssl_defaults.enableRenegotiation = SSL_RENEGOTIATE_NEVER;
else if (ev[0] == '2' || LOWER(ev[0]) == 'r')
ssl_defaults.enableRenegotiation = SSL_RENEGOTIATE_REQUIRES_XTN;
else if (ev[0] == '3' || LOWER(ev[0]) == 't')
ssl_defaults.enableRenegotiation = SSL_RENEGOTIATE_TRANSITIONAL;
SSL_TRACE(("SSL: enableRenegotiation set to %d",
ssl_defaults.enableRenegotiation));
}
ev = PR_GetEnvSecure("NSS_SSL_REQUIRE_SAFE_NEGOTIATION");
if (ev && ev[0] == '1') {
ssl_defaults.requireSafeNegotiation = PR_TRUE;
SSL_TRACE(("SSL: requireSafeNegotiation set to %d",
PR_TRUE));
}
ev = PR_GetEnvSecure("NSS_SSL_CBC_RANDOM_IV");
if (ev && ev[0] == '0') {
ssl_defaults.cbcRandomIV = PR_FALSE;
SSL_TRACE(("SSL: cbcRandomIV set to 0"));
}
}
#endif /* NSS_HAVE_GETENV */
}
const sslNamedGroupDef *
ssl_LookupNamedGroup(SSLNamedGroup group)
{
unsigned int i;
for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) {
if (ssl_named_groups[i].name == group) {
return &ssl_named_groups[i];
}
}
return NULL;
}
PRBool
ssl_NamedGroupEnabled(const sslSocket *ss, const sslNamedGroupDef *groupDef)
{
unsigned int i;
if (!groupDef) {
return PR_FALSE;
}
for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) {
if (ss->namedGroupPreferences[i] &&
ss->namedGroupPreferences[i] == groupDef) {
return PR_TRUE;
}
}
return PR_FALSE;
}
/* Returns a reference counted object that contains a key pair.
* Or NULL on failure. Initial ref count is 1.
* Uses the keys in the pair as input. Adopts the keys given.
*/
sslKeyPair *
ssl_NewKeyPair(SECKEYPrivateKey *privKey, SECKEYPublicKey *pubKey)
{
sslKeyPair *pair;
if (!privKey || !pubKey) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return NULL;
}
pair = PORT_ZNew(sslKeyPair);
if (!pair)
return NULL; /* error code is set. */
pair->privKey = privKey;
pair->pubKey = pubKey;
pair->refCount = 1;
return pair; /* success */
}
sslKeyPair *
ssl_GetKeyPairRef(sslKeyPair *keyPair)
{
PR_ATOMIC_INCREMENT(&keyPair->refCount);
return keyPair;
}
void
ssl_FreeKeyPair(sslKeyPair *keyPair)
{
if (!keyPair) {
return;
}
PRInt32 newCount = PR_ATOMIC_DECREMENT(&keyPair->refCount);
if (!newCount) {
SECKEY_DestroyPrivateKey(keyPair->privKey);
SECKEY_DestroyPublicKey(keyPair->pubKey);
PORT_Free(keyPair);
}
}
/* Ephemeral key handling. */
sslEphemeralKeyPair *
ssl_NewEphemeralKeyPair(const sslNamedGroupDef *group,
SECKEYPrivateKey *privKey, SECKEYPublicKey *pubKey)
{
sslKeyPair *keys;
sslEphemeralKeyPair *pair;
if (!group) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return NULL;
}
keys = ssl_NewKeyPair(privKey, pubKey);
if (!keys) {
return NULL;
}
pair = PORT_ZNew(sslEphemeralKeyPair);
if (!pair) {
ssl_FreeKeyPair(keys);
return NULL; /* error already set */
}
PR_INIT_CLIST(&pair->link);
pair->group = group;
pair->keys = keys;
return pair;
}
sslEphemeralKeyPair *
ssl_CopyEphemeralKeyPair(sslEphemeralKeyPair *keyPair)
{
sslEphemeralKeyPair *pair;
pair = PORT_ZNew(sslEphemeralKeyPair);
if (!pair) {
return NULL; /* error already set */
}
PR_INIT_CLIST(&pair->link);
pair->group = keyPair->group;
pair->keys = ssl_GetKeyPairRef(keyPair->keys);
return pair;
}
void
ssl_FreeEphemeralKeyPair(sslEphemeralKeyPair *keyPair)
{
if (!keyPair) {
return;
}
ssl_FreeKeyPair(keyPair->keys);
PR_REMOVE_LINK(&keyPair->link);
PORT_Free(keyPair);
}
PRBool
ssl_HaveEphemeralKeyPair(const sslSocket *ss, const sslNamedGroupDef *groupDef)
{
return ssl_LookupEphemeralKeyPair((sslSocket *)ss, groupDef) != NULL;
}
sslEphemeralKeyPair *
ssl_LookupEphemeralKeyPair(sslSocket *ss, const sslNamedGroupDef *groupDef)
{
PRCList *cursor;
for (cursor = PR_NEXT_LINK(&ss->ephemeralKeyPairs);
cursor != &ss->ephemeralKeyPairs;
cursor = PR_NEXT_LINK(cursor)) {
sslEphemeralKeyPair *keyPair = (sslEphemeralKeyPair *)cursor;
if (keyPair->group == groupDef) {
return keyPair;
}
}
return NULL;
}
void
ssl_FreeEphemeralKeyPairs(sslSocket *ss)
{
while (!PR_CLIST_IS_EMPTY(&ss->ephemeralKeyPairs)) {
PRCList *cursor = PR_LIST_TAIL(&ss->ephemeralKeyPairs);
ssl_FreeEphemeralKeyPair((sslEphemeralKeyPair *)cursor);
}
}
/*
** Create a newsocket structure for a file descriptor.
*/
static sslSocket *
ssl_NewSocket(PRBool makeLocks, SSLProtocolVariant protocolVariant)
{
SECStatus rv;
sslSocket *ss;
int i;
ssl_SetDefaultsFromEnvironment();
if (ssl_force_locks)
makeLocks = PR_TRUE;
/* Make a new socket and get it ready */
ss = (sslSocket *)PORT_ZAlloc(sizeof(sslSocket));
if (!ss) {
return NULL;
}
ss->opt = ssl_defaults;
if (protocolVariant == ssl_variant_datagram) {
ss->opt.enableRenegotiation = SSL_RENEGOTIATE_NEVER;
}
ss->opt.useSocks = PR_FALSE;
ss->opt.noLocks = !makeLocks;
ss->vrange = *VERSIONS_DEFAULTS(protocolVariant);
ss->protocolVariant = protocolVariant;
/* Ignore overlap failures, because returning NULL would trigger assertion
* failures elsewhere. We don't want this scenario to be fatal, it's just
* a state where no SSL connectivity is possible. */
ssl3_CreateOverlapWithPolicy(ss->protocolVariant, &ss->vrange, &ss->vrange);
ss->peerID = NULL;
ss->rTimeout = PR_INTERVAL_NO_TIMEOUT;
ss->wTimeout = PR_INTERVAL_NO_TIMEOUT;
ss->cTimeout = PR_INTERVAL_NO_TIMEOUT;
ss->url = NULL;
PR_INIT_CLIST(&ss->serverCerts);
PR_INIT_CLIST(&ss->ephemeralKeyPairs);
PR_INIT_CLIST(&ss->extensionHooks);
ss->dbHandle = CERT_GetDefaultCertDB();
/* Provide default implementation of hooks */
ss->authCertificate = SSL_AuthCertificate;
ss->authCertificateArg = (void *)ss->dbHandle;
ss->sniSocketConfig = NULL;
ss->sniSocketConfigArg = NULL;
ss->getClientAuthData = NULL;
ss->alertReceivedCallback = NULL;
ss->alertReceivedCallbackArg = NULL;
ss->alertSentCallback = NULL;
ss->alertSentCallbackArg = NULL;
ss->handleBadCert = NULL;
ss->badCertArg = NULL;
ss->pkcs11PinArg = NULL;
ssl_ChooseOps(ss);
ssl3_InitSocketPolicy(ss);
for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) {
ss->namedGroupPreferences[i] = &ssl_named_groups[i];
}
ss->additionalShares = 0;
PR_INIT_CLIST(&ss->ssl3.hs.remoteExtensions);
PR_INIT_CLIST(&ss->ssl3.hs.lastMessageFlight);
PR_INIT_CLIST(&ss->ssl3.hs.cipherSpecs);
PR_INIT_CLIST(&ss->ssl3.hs.bufferedEarlyData);
ssl3_InitExtensionData(&ss->xtnData, ss);
PR_INIT_CLIST(&ss->ssl3.hs.dtlsSentHandshake);
PR_INIT_CLIST(&ss->ssl3.hs.dtlsRcvdHandshake);
dtls_InitTimers(ss);
ss->esniKeys = NULL;
if (makeLocks) {
rv = ssl_MakeLocks(ss);
if (rv != SECSuccess)
goto loser;
}
rv = ssl_CreateSecurityInfo(ss);
if (rv != SECSuccess)
goto loser;
rv = ssl3_InitGather(&ss->gs);
if (rv != SECSuccess)
goto loser;
rv = ssl3_InitState(ss);
if (rv != SECSuccess) {
goto loser;
}
return ss;
loser:
ssl_DestroySocketContents(ss);
ssl_DestroyLocks(ss);
PORT_Free(ss);
return NULL;
}
/**
* DEPRECATED: Will always return false.
*/
SECStatus
SSL_CanBypass(CERTCertificate *cert, SECKEYPrivateKey *srvPrivkey,
PRUint32 protocolmask, PRUint16 *ciphersuites, int nsuites,
PRBool *pcanbypass, void *pwArg)
{
if (!pcanbypass) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
*pcanbypass = PR_FALSE;
return SECSuccess;
}
/* Functions that are truly experimental use EXP, functions that are no longer
* experimental use PUB.
*
* When initially defining a new API, add that API here using the EXP() macro
* and name the function with a SSLExp_ prefix. Define the experimental API as
* a macro in sslexp.h using the SSL_EXPERIMENTAL_API() macro defined there.
*
* Once an API is stable and proven, move the macro definition in sslexp.h to a
* proper function declaration in ssl.h. Keeping the function in this list
* ensures that code built against the release that contained the experimental
* API will continue to work; use PUB() to reference the public function.
*/
#define EXP(n) \
{ \
"SSL_" #n, SSLExp_##n \
}
#define PUB(n) \
{ \
"SSL_" #n, SSL_##n \
}
struct {
const char *const name;
void *function;
} ssl_experimental_functions[] = {
#ifndef SSL_DISABLE_EXPERIMENTAL_API
EXP(GetExtensionSupport),
EXP(HelloRetryRequestCallback),
EXP(InstallExtensionHooks),
EXP(KeyUpdate),
EXP(SendSessionTicket),
EXP(SetMaxEarlyDataSize),
EXP(SetupAntiReplay),
EXP(SetResumptionTokenCallback),
EXP(SetResumptionToken),
EXP(GetResumptionTokenInfo),
EXP(DestroyResumptionTokenInfo),
EXP(SetESNIKeyPair),
EXP(EncodeESNIKeys),
EXP(EnableESNI),
#endif
{ "", NULL }
};
#undef EXP
#undef PUB
void *
SSL_GetExperimentalAPI(const char *name)
{
unsigned int i;
for (i = 0; i < PR_ARRAY_SIZE(ssl_experimental_functions); ++i) {
if (strcmp(name, ssl_experimental_functions[i].name) == 0) {
return ssl_experimental_functions[i].function;
}
}
PORT_SetError(SSL_ERROR_UNSUPPORTED_EXPERIMENTAL_API);
return NULL;
}
void
ssl_ClearPRCList(PRCList *list, void (*f)(void *))
{
PRCList *cursor;
while (!PR_CLIST_IS_EMPTY(list)) {
cursor = PR_LIST_TAIL(list);
PR_REMOVE_LINK(cursor);
if (f) {
f(cursor);
}
PORT_Free(cursor);
}
}
/* Experimental APIs for session cache handling. */
SECStatus
SSLExp_SetResumptionTokenCallback(PRFileDesc *fd,
SSLResumptionTokenCallback cb,
void *ctx)
{
sslSocket *ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SetResumptionTokenCallback",
SSL_GETPID(), fd));
return SECFailure;
}
ssl_Get1stHandshakeLock(ss);
ssl_GetSSL3HandshakeLock(ss);
ss->resumptionTokenCallback = cb;
ss->resumptionTokenContext = ctx;
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_Release1stHandshakeLock(ss);
return SECSuccess;
}
SECStatus
SSLExp_SetResumptionToken(PRFileDesc *fd, const PRUint8 *token,
unsigned int len)
{
sslSocket *ss = ssl_FindSocket(fd);
sslSessionID *sid = NULL;
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SetResumptionToken",
SSL_GETPID(), fd));
return SECFailure;
}
ssl_Get1stHandshakeLock(ss);
ssl_GetSSL3HandshakeLock(ss);
if (ss->firstHsDone || ss->ssl3.hs.ws != idle_handshake ||
ss->sec.isServer || len == 0 || !token) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
goto loser;
}
// We override any previously set session.
if (ss->sec.ci.sid) {
ssl_FreeSID(ss->sec.ci.sid);
ss->sec.ci.sid = NULL;
}
PRINT_BUF(50, (ss, "incoming resumption token", token, len));
sid = ssl3_NewSessionID(ss, PR_FALSE);
if (!sid) {
goto loser;
}
/* Populate NewSessionTicket values */
SECStatus rv = ssl_DecodeResumptionToken(sid, token, len);
if (rv != SECSuccess) {
// If decoding fails, we assume the token is bad.
PORT_SetError(SSL_ERROR_BAD_RESUMPTION_TOKEN_ERROR);
goto loser;
}
// Make sure that the token is currently usable.
if (!ssl_IsResumptionTokenUsable(ss, sid)) {
PORT_SetError(SSL_ERROR_BAD_RESUMPTION_TOKEN_ERROR);
goto loser;
}
// Generate a new random session ID for this ticket.
rv = PK11_GenerateRandom(sid->u.ssl3.sessionID, SSL3_SESSIONID_BYTES);
if (rv != SECSuccess) {
goto loser; // Code set by PK11_GenerateRandom.
}
sid->u.ssl3.sessionIDLength = SSL3_SESSIONID_BYTES;
/* Use the sid->cached as marker that this is from an external cache and
* we don't have to look up anything in the NSS internal cache. */
sid->cached = in_external_cache;
sid->lastAccessTime = ssl_TimeSec();
ss->sec.ci.sid = sid;
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_Release1stHandshakeLock(ss);
return SECSuccess;
loser:
ssl_FreeSID(sid);
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_Release1stHandshakeLock(ss);
return SECFailure;
}
SECStatus
SSLExp_DestroyResumptionTokenInfo(SSLResumptionTokenInfo *token)
{
if (!token) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (token->peerCert) {
CERT_DestroyCertificate(token->peerCert);
}
PORT_Free(token->alpnSelection);
PORT_Memset(token, 0, token->length);
return SECSuccess;
}
SECStatus
SSLExp_GetResumptionTokenInfo(const PRUint8 *tokenData, unsigned int tokenLen,
SSLResumptionTokenInfo *tokenOut, PRUintn len)
{
if (!tokenData || !tokenOut || !tokenLen ||
len > sizeof(SSLResumptionTokenInfo)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
sslSessionID sid = { 0 };
SSLResumptionTokenInfo token;
/* Populate sid values */
if (ssl_DecodeResumptionToken(&sid, tokenData, tokenLen) != SECSuccess) {
// If decoding fails, we assume the token is bad.
PORT_SetError(SSL_ERROR_BAD_RESUMPTION_TOKEN_ERROR);
return SECFailure;
}
token.peerCert = CERT_DupCertificate(sid.peerCert);
token.alpnSelectionLen = sid.u.ssl3.alpnSelection.len;
token.alpnSelection = PORT_ZAlloc(token.alpnSelectionLen);
if (!token.alpnSelection) {
return SECFailure;
}
PORT_Memcpy(token.alpnSelection, sid.u.ssl3.alpnSelection.data,
token.alpnSelectionLen);
if (sid.u.ssl3.locked.sessionTicket.flags & ticket_allow_early_data) {
token.maxEarlyDataSize =
sid.u.ssl3.locked.sessionTicket.max_early_data_size;
} else {
token.maxEarlyDataSize = 0;
}
token.expirationTime = sid.expirationTime;
token.length = PR_MIN(sizeof(SSLResumptionTokenInfo), len);
PORT_Memcpy(tokenOut, &token, token.length);
ssl_DestroySID(&sid, PR_FALSE);
return SECSuccess;
}