| /* Copyright (C) 1997-2021 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <https://www.gnu.org/licenses/>. */ |
| |
| /* |
| * ISO C99 Standard: 7.22 Type-generic math <tgmath.h> |
| */ |
| |
| #ifndef _TGMATH_H |
| #define _TGMATH_H 1 |
| |
| #define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION |
| #include <bits/libc-header-start.h> |
| |
| /* Include the needed headers. */ |
| #include <bits/floatn.h> |
| #include <math.h> |
| #include <complex.h> |
| |
| |
| /* There are two variant implementations of type-generic macros in |
| this file: one for GCC 8 and later, using __builtin_tgmath and |
| where each macro expands each of its arguments only once, and one |
| for older GCC, using other compiler extensions but with macros |
| expanding their arguments many times (so resulting in exponential |
| blowup of the size of expansions when calls to such macros are |
| nested inside arguments to such macros). */ |
| |
| #define __HAVE_BUILTIN_TGMATH __GNUC_PREREQ (8, 0) |
| |
| #if __GNUC_PREREQ (2, 7) |
| |
| /* Certain cases of narrowing macros only need to call a single |
| function so cannot use __builtin_tgmath and do not need any |
| complicated logic. */ |
| # if __HAVE_FLOAT128X |
| # error "Unsupported _Float128x type for <tgmath.h>." |
| # endif |
| # if ((__HAVE_FLOAT64X && !__HAVE_FLOAT128) \ |
| || (__HAVE_FLOAT128 && !__HAVE_FLOAT64X)) |
| # error "Unsupported combination of types for <tgmath.h>." |
| # endif |
| # define __TGMATH_2_NARROW_D(F, X, Y) \ |
| (F ## l (X, Y)) |
| # define __TGMATH_2_NARROW_F64X(F, X, Y) \ |
| (F ## f128 (X, Y)) |
| # if !__HAVE_FLOAT128 |
| # define __TGMATH_2_NARROW_F32X(F, X, Y) \ |
| (F ## f64 (X, Y)) |
| # endif |
| |
| # if __HAVE_BUILTIN_TGMATH |
| |
| # if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT) |
| # define __TG_F16_ARG(X) X ## f16, |
| # else |
| # define __TG_F16_ARG(X) |
| # endif |
| # if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT) |
| # define __TG_F32_ARG(X) X ## f32, |
| # else |
| # define __TG_F32_ARG(X) |
| # endif |
| # if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT) |
| # define __TG_F64_ARG(X) X ## f64, |
| # else |
| # define __TG_F64_ARG(X) |
| # endif |
| # if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT) |
| # define __TG_F128_ARG(X) X ## f128, |
| # else |
| # define __TG_F128_ARG(X) |
| # endif |
| # if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT) |
| # define __TG_F32X_ARG(X) X ## f32x, |
| # else |
| # define __TG_F32X_ARG(X) |
| # endif |
| # if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT) |
| # define __TG_F64X_ARG(X) X ## f64x, |
| # else |
| # define __TG_F64X_ARG(X) |
| # endif |
| # if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT) |
| # define __TG_F128X_ARG(X) X ## f128x, |
| # else |
| # define __TG_F128X_ARG(X) |
| # endif |
| |
| # define __TGMATH_FUNCS(X) X ## f, X, X ## l, \ |
| __TG_F16_ARG (X) __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \ |
| __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X) |
| # define __TGMATH_RCFUNCS(F, C) __TGMATH_FUNCS (F) __TGMATH_FUNCS (C) |
| # define __TGMATH_1(F, X) __builtin_tgmath (__TGMATH_FUNCS (F) (X)) |
| # define __TGMATH_2(F, X, Y) __builtin_tgmath (__TGMATH_FUNCS (F) (X), (Y)) |
| # define __TGMATH_2STD(F, X, Y) __builtin_tgmath (F ## f, F, F ## l, (X), (Y)) |
| # define __TGMATH_3(F, X, Y, Z) __builtin_tgmath (__TGMATH_FUNCS (F) \ |
| (X), (Y), (Z)) |
| # define __TGMATH_1C(F, C, X) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) (X)) |
| # define __TGMATH_2C(F, C, X, Y) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) \ |
| (X), (Y)) |
| |
| # define __TGMATH_NARROW_FUNCS_F(X) X, X ## l, |
| # define __TGMATH_NARROW_FUNCS_F16(X) \ |
| __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \ |
| __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X) |
| # define __TGMATH_NARROW_FUNCS_F32(X) \ |
| __TG_F64_ARG (X) __TG_F128_ARG (X) \ |
| __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X) |
| # define __TGMATH_NARROW_FUNCS_F64(X) \ |
| __TG_F128_ARG (X) \ |
| __TG_F64X_ARG (X) __TG_F128X_ARG (X) |
| # define __TGMATH_NARROW_FUNCS_F32X(X) \ |
| __TG_F64X_ARG (X) __TG_F128X_ARG (X) \ |
| __TG_F64_ARG (X) __TG_F128_ARG (X) |
| |
| # define __TGMATH_2_NARROW_F(F, X, Y) \ |
| __builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X), (Y)) |
| # define __TGMATH_2_NARROW_F16(F, X, Y) \ |
| __builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X), (Y)) |
| # define __TGMATH_2_NARROW_F32(F, X, Y) \ |
| __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X), (Y)) |
| # define __TGMATH_2_NARROW_F64(F, X, Y) \ |
| __builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y)) |
| # if __HAVE_FLOAT128 |
| # define __TGMATH_2_NARROW_F32X(F, X, Y) \ |
| __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y)) |
| # endif |
| |
| # else /* !__HAVE_BUILTIN_TGMATH. */ |
| |
| # ifdef __NO_LONG_DOUBLE_MATH |
| # define __tgml(fct) fct |
| # else |
| # define __tgml(fct) fct ## l |
| # endif |
| |
| /* __floating_type expands to 1 if TYPE is a floating type (including |
| complex floating types), 0 if TYPE is an integer type (including |
| complex integer types). __real_integer_type expands to 1 if TYPE |
| is a real integer type. __complex_integer_type expands to 1 if |
| TYPE is a complex integer type. All these macros expand to integer |
| constant expressions. All these macros can assume their argument |
| has an arithmetic type (not vector, decimal floating-point or |
| fixed-point), valid to pass to tgmath.h macros. */ |
| # if __GNUC_PREREQ (3, 1) |
| /* __builtin_classify_type expands to an integer constant expression |
| in GCC 3.1 and later. Default conversions applied to the argument |
| of __builtin_classify_type mean it always returns 1 for real |
| integer types rather than ever returning different values for |
| character, boolean or enumerated types. */ |
| # define __floating_type(type) \ |
| (__builtin_classify_type (__real__ ((type) 0)) == 8) |
| # define __real_integer_type(type) \ |
| (__builtin_classify_type ((type) 0) == 1) |
| # define __complex_integer_type(type) \ |
| (__builtin_classify_type ((type) 0) == 9 \ |
| && __builtin_classify_type (__real__ ((type) 0)) == 1) |
| # else |
| /* GCC versions predating __builtin_classify_type are also looser on |
| what counts as an integer constant expression. */ |
| # define __floating_type(type) (((type) 1.25) != 1) |
| # define __real_integer_type(type) (((type) (1.25 + _Complex_I)) == 1) |
| # define __complex_integer_type(type) \ |
| (((type) (1.25 + _Complex_I)) == (1 + _Complex_I)) |
| # endif |
| |
| /* Whether an expression (of arithmetic type) has a real type. */ |
| # define __expr_is_real(E) (__builtin_classify_type (E) != 9) |
| |
| /* The tgmath real type for T, where E is 0 if T is an integer type |
| and 1 for a floating type. If T has a complex type, it is |
| unspecified whether the return type is real or complex (but it has |
| the correct corresponding real type). */ |
| # define __tgmath_real_type_sub(T, E) \ |
| __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \ |
| : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0)) |
| |
| /* The tgmath real type of EXPR. */ |
| # define __tgmath_real_type(expr) \ |
| __tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \ |
| __floating_type (__typeof__ (+(expr)))) |
| |
| /* The tgmath complex type for T, where E1 is 1 if T has a floating |
| type and 0 otherwise, E2 is 1 if T has a real integer type and 0 |
| otherwise, and E3 is 1 if T has a complex type and 0 otherwise. */ |
| # define __tgmath_complex_type_sub(T, E1, E2, E3) \ |
| __typeof__ (*(0 \ |
| ? (__typeof__ (0 ? (T *) 0 : (void *) (!(E1)))) 0 \ |
| : (__typeof__ (0 \ |
| ? (__typeof__ (0 \ |
| ? (double *) 0 \ |
| : (void *) (!(E2)))) 0 \ |
| : (__typeof__ (0 \ |
| ? (_Complex double *) 0 \ |
| : (void *) (!(E3)))) 0)) 0)) |
| |
| /* The tgmath complex type of EXPR. */ |
| # define __tgmath_complex_type(expr) \ |
| __tgmath_complex_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \ |
| __floating_type (__typeof__ (+(expr))), \ |
| __real_integer_type (__typeof__ (+(expr))), \ |
| __complex_integer_type (__typeof__ (+(expr)))) |
| |
| # if (__HAVE_DISTINCT_FLOAT16 \ |
| || __HAVE_DISTINCT_FLOAT32 \ |
| || __HAVE_DISTINCT_FLOAT64 \ |
| || __HAVE_DISTINCT_FLOAT32X \ |
| || __HAVE_DISTINCT_FLOAT64X \ |
| || __HAVE_DISTINCT_FLOAT128X) |
| # error "Unsupported _FloatN or _FloatNx types for <tgmath.h>." |
| # endif |
| |
| /* Expand to text that checks if ARG_COMB has type _Float128, and if |
| so calls the appropriately suffixed FCT (which may include a cast), |
| or FCT and CFCT for complex functions, with arguments ARG_CALL. */ |
| # if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT) |
| # if (!__HAVE_FLOAT64X \ |
| || __HAVE_FLOAT64X_LONG_DOUBLE \ |
| || !__HAVE_FLOATN_NOT_TYPEDEF) |
| # define __TGMATH_F128(arg_comb, fct, arg_call) \ |
| __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \ |
| ? fct ## f128 arg_call : |
| # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \ |
| __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \ |
| ? (__expr_is_real (arg_comb) \ |
| ? fct ## f128 arg_call \ |
| : cfct ## f128 arg_call) : |
| # else |
| /* _Float64x is a distinct type at the C language level, which must be |
| handled like _Float128. */ |
| # define __TGMATH_F128(arg_comb, fct, arg_call) \ |
| (__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \ |
| || __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float64x)) \ |
| ? fct ## f128 arg_call : |
| # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \ |
| (__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \ |
| || __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), \ |
| _Float64x)) \ |
| ? (__expr_is_real (arg_comb) \ |
| ? fct ## f128 arg_call \ |
| : cfct ## f128 arg_call) : |
| # endif |
| # else |
| # define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing. */ |
| # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing. */ |
| # endif |
| |
| # endif /* !__HAVE_BUILTIN_TGMATH. */ |
| |
| /* We have two kinds of generic macros: to support functions which are |
| only defined on real valued parameters and those which are defined |
| for complex functions as well. */ |
| # if __HAVE_BUILTIN_TGMATH |
| |
| # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val)) |
| # define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val)) |
| # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ |
| __TGMATH_2 (Fct, (Val1), (Val2)) |
| # define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \ |
| __TGMATH_2STD (Fct, (Val1), (Val2)) |
| # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ |
| __TGMATH_2 (Fct, (Val1), (Val2)) |
| # define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \ |
| __TGMATH_2STD (Fct, (Val1), (Val2)) |
| # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ |
| __TGMATH_3 (Fct, (Val1), (Val2), (Val3)) |
| # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ |
| __TGMATH_3 (Fct, (Val1), (Val2), (Val3)) |
| # define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \ |
| __TGMATH_3 (Fct, (Val1), (Val2), (Val3)) |
| # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ |
| __TGMATH_1C (Fct, Cfct, (Val)) |
| # define __TGMATH_UNARY_IMAG(Val, Cfct) __TGMATH_1 (Cfct, (Val)) |
| # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \ |
| __TGMATH_1C (Fct, Cfct, (Val)) |
| # define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \ |
| __TGMATH_1 (Cfct, (Val)) |
| # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ |
| __TGMATH_2C (Fct, Cfct, (Val1), (Val2)) |
| |
| # else /* !__HAVE_BUILTIN_TGMATH. */ |
| |
| # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \ |
| (__extension__ ((sizeof (+(Val)) == sizeof (double) \ |
| || __builtin_classify_type (Val) != 8) \ |
| ? (__tgmath_real_type (Val)) Fct (Val) \ |
| : (sizeof (+(Val)) == sizeof (float)) \ |
| ? (__tgmath_real_type (Val)) Fct##f (Val) \ |
| : __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct, \ |
| (Val)) \ |
| (__tgmath_real_type (Val)) __tgml(Fct) (Val))) |
| |
| # define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \ |
| (__extension__ ((sizeof (+(Val)) == sizeof (double) \ |
| || __builtin_classify_type (Val) != 8) \ |
| ? Fct (Val) \ |
| : (sizeof (+(Val)) == sizeof (float)) \ |
| ? Fct##f (Val) \ |
| : __TGMATH_F128 ((Val), Fct, (Val)) \ |
| __tgml(Fct) (Val))) |
| |
| # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ |
| (__extension__ ((sizeof (+(Val1)) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8) \ |
| ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \ |
| : (sizeof (+(Val1)) == sizeof (float)) \ |
| ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \ |
| : __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \ |
| (Val1, Val2)) \ |
| (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2))) |
| |
| # define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \ |
| (__extension__ ((sizeof (+(Val1)) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8) \ |
| ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \ |
| : (sizeof (+(Val1)) == sizeof (float)) \ |
| ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \ |
| : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2))) |
| |
| # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ |
| (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ |
| && __builtin_classify_type ((Val1) + (Val2)) == 8) \ |
| ? __TGMATH_F128 ((Val1) + (Val2), \ |
| (__typeof \ |
| ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) Fct, \ |
| (Val1, Val2)) \ |
| (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) \ |
| __tgml(Fct) (Val1, Val2) \ |
| : (sizeof (+(Val1)) == sizeof (double) \ |
| || sizeof (+(Val2)) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8 \ |
| || __builtin_classify_type (Val2) != 8) \ |
| ? (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) \ |
| Fct (Val1, Val2) \ |
| : (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) \ |
| Fct##f (Val1, Val2))) |
| |
| # define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \ |
| (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ |
| && __builtin_classify_type ((Val1) + (Val2)) == 8) \ |
| ? (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) \ |
| __tgml(Fct) (Val1, Val2) \ |
| : (sizeof (+(Val1)) == sizeof (double) \ |
| || sizeof (+(Val2)) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8 \ |
| || __builtin_classify_type (Val2) != 8) \ |
| ? (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) \ |
| Fct (Val1, Val2) \ |
| : (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) \ |
| Fct##f (Val1, Val2))) |
| |
| # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ |
| (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ |
| && __builtin_classify_type ((Val1) + (Val2)) == 8) \ |
| ? __TGMATH_F128 ((Val1) + (Val2), \ |
| (__typeof \ |
| ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) Fct, \ |
| (Val1, Val2, Val3)) \ |
| (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) \ |
| __tgml(Fct) (Val1, Val2, Val3) \ |
| : (sizeof (+(Val1)) == sizeof (double) \ |
| || sizeof (+(Val2)) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8 \ |
| || __builtin_classify_type (Val2) != 8) \ |
| ? (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) \ |
| Fct (Val1, Val2, Val3) \ |
| : (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0)) \ |
| Fct##f (Val1, Val2, Val3))) |
| |
| # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ |
| (__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double) \ |
| && __builtin_classify_type ((Val1) + (Val2) + (Val3)) \ |
| == 8) \ |
| ? __TGMATH_F128 ((Val1) + (Val2) + (Val3), \ |
| (__typeof \ |
| ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0 \ |
| + (__tgmath_real_type (Val3)) 0)) Fct, \ |
| (Val1, Val2, Val3)) \ |
| (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0 \ |
| + (__tgmath_real_type (Val3)) 0)) \ |
| __tgml(Fct) (Val1, Val2, Val3) \ |
| : (sizeof (+(Val1)) == sizeof (double) \ |
| || sizeof (+(Val2)) == sizeof (double) \ |
| || sizeof (+(Val3)) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8 \ |
| || __builtin_classify_type (Val2) != 8 \ |
| || __builtin_classify_type (Val3) != 8) \ |
| ? (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0 \ |
| + (__tgmath_real_type (Val3)) 0)) \ |
| Fct (Val1, Val2, Val3) \ |
| : (__typeof ((__tgmath_real_type (Val1)) 0 \ |
| + (__tgmath_real_type (Val2)) 0 \ |
| + (__tgmath_real_type (Val3)) 0)) \ |
| Fct##f (Val1, Val2, Val3))) |
| |
| # define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \ |
| (__extension__ ((sizeof (+(Val1)) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8) \ |
| ? Fct (Val1, Val2, Val3) \ |
| : (sizeof (+(Val1)) == sizeof (float)) \ |
| ? Fct##f (Val1, Val2, Val3) \ |
| : __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3)) \ |
| __tgml(Fct) (Val1, Val2, Val3))) |
| |
| /* XXX This definition has to be changed as soon as the compiler understands |
| the imaginary keyword. */ |
| # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ |
| (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \ |
| || __builtin_classify_type (__real__ (Val)) != 8) \ |
| ? (__expr_is_real (Val) \ |
| ? (__tgmath_complex_type (Val)) Fct (Val) \ |
| : (__tgmath_complex_type (Val)) Cfct (Val)) \ |
| : (sizeof (+__real__ (Val)) == sizeof (float)) \ |
| ? (__expr_is_real (Val) \ |
| ? (__tgmath_complex_type (Val)) Fct##f (Val) \ |
| : (__tgmath_complex_type (Val)) Cfct##f (Val)) \ |
| : __TGMATH_CF128 ((Val), \ |
| (__tgmath_complex_type (Val)) Fct, \ |
| (__tgmath_complex_type (Val)) Cfct, \ |
| (Val)) \ |
| (__expr_is_real (Val) \ |
| ? (__tgmath_complex_type (Val)) __tgml(Fct) (Val) \ |
| : (__tgmath_complex_type (Val)) __tgml(Cfct) (Val)))) |
| |
| # define __TGMATH_UNARY_IMAG(Val, Cfct) \ |
| (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \ |
| || __builtin_classify_type (__real__ (Val)) != 8) \ |
| ? (__typeof__ ((__tgmath_real_type (Val)) 0 \ |
| + _Complex_I)) Cfct (Val) \ |
| : (sizeof (+__real__ (Val)) == sizeof (float)) \ |
| ? (__typeof__ ((__tgmath_real_type (Val)) 0 \ |
| + _Complex_I)) Cfct##f (Val) \ |
| : __TGMATH_F128 (__real__ (Val), \ |
| (__typeof__ \ |
| ((__tgmath_real_type (Val)) 0 \ |
| + _Complex_I)) Cfct, (Val)) \ |
| (__typeof__ ((__tgmath_real_type (Val)) 0 \ |
| + _Complex_I)) __tgml(Cfct) (Val))) |
| |
| /* XXX This definition has to be changed as soon as the compiler understands |
| the imaginary keyword. */ |
| # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \ |
| (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \ |
| || __builtin_classify_type (__real__ (Val)) != 8) \ |
| ? (__expr_is_real (Val) \ |
| ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ |
| Fct (Val) \ |
| : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ |
| Cfct (Val)) \ |
| : (sizeof (+__real__ (Val)) == sizeof (float)) \ |
| ? (__expr_is_real (Val) \ |
| ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ |
| Fct##f (Val) \ |
| : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ |
| Cfct##f (Val)) \ |
| : __TGMATH_CF128 ((Val), \ |
| (__typeof__ \ |
| (__real__ \ |
| (__tgmath_real_type (Val)) 0)) Fct, \ |
| (__typeof__ \ |
| (__real__ \ |
| (__tgmath_real_type (Val)) 0)) Cfct, \ |
| (Val)) \ |
| (__expr_is_real (Val) \ |
| ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \ |
| __tgml(Fct) (Val) \ |
| : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \ |
| __tgml(Cfct) (Val)))) |
| # define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \ |
| __TGMATH_UNARY_REAL_IMAG_RET_REAL ((Val), Cfct, Cfct) |
| |
| /* XXX This definition has to be changed as soon as the compiler understands |
| the imaginary keyword. */ |
| # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ |
| (__extension__ ((sizeof (__real__ (Val1) \ |
| + __real__ (Val2)) > sizeof (double) \ |
| && __builtin_classify_type (__real__ (Val1) \ |
| + __real__ (Val2)) == 8) \ |
| ? __TGMATH_CF128 ((Val1) + (Val2), \ |
| (__typeof \ |
| ((__tgmath_complex_type (Val1)) 0 \ |
| + (__tgmath_complex_type (Val2)) 0)) \ |
| Fct, \ |
| (__typeof \ |
| ((__tgmath_complex_type (Val1)) 0 \ |
| + (__tgmath_complex_type (Val2)) 0)) \ |
| Cfct, \ |
| (Val1, Val2)) \ |
| (__expr_is_real ((Val1) + (Val2)) \ |
| ? (__typeof ((__tgmath_complex_type (Val1)) 0 \ |
| + (__tgmath_complex_type (Val2)) 0)) \ |
| __tgml(Fct) (Val1, Val2) \ |
| : (__typeof ((__tgmath_complex_type (Val1)) 0 \ |
| + (__tgmath_complex_type (Val2)) 0)) \ |
| __tgml(Cfct) (Val1, Val2)) \ |
| : (sizeof (+__real__ (Val1)) == sizeof (double) \ |
| || sizeof (+__real__ (Val2)) == sizeof (double) \ |
| || __builtin_classify_type (__real__ (Val1)) != 8 \ |
| || __builtin_classify_type (__real__ (Val2)) != 8) \ |
| ? (__expr_is_real ((Val1) + (Val2)) \ |
| ? (__typeof ((__tgmath_complex_type (Val1)) 0 \ |
| + (__tgmath_complex_type (Val2)) 0)) \ |
| Fct (Val1, Val2) \ |
| : (__typeof ((__tgmath_complex_type (Val1)) 0 \ |
| + (__tgmath_complex_type (Val2)) 0)) \ |
| Cfct (Val1, Val2)) \ |
| : (__expr_is_real ((Val1) + (Val2)) \ |
| ? (__typeof ((__tgmath_complex_type (Val1)) 0 \ |
| + (__tgmath_complex_type (Val2)) 0)) \ |
| Fct##f (Val1, Val2) \ |
| : (__typeof ((__tgmath_complex_type (Val1)) 0 \ |
| + (__tgmath_complex_type (Val2)) 0)) \ |
| Cfct##f (Val1, Val2)))) |
| |
| # define __TGMATH_2_NARROW_F(F, X, Y) \ |
| (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ |
| + (__tgmath_real_type (Y)) 0) > sizeof (double) \ |
| ? F ## l (X, Y) \ |
| : F (X, Y))) |
| /* In most cases, these narrowing macro definitions based on sizeof |
| ensure that the function called has the right argument format, as |
| for other <tgmath.h> macros for compilers before GCC 8, but may not |
| have exactly the argument type (among the types with that format) |
| specified in the standard logic. |
| |
| In the case of macros for _Float32x return type, when _Float64x |
| exists, _Float64 arguments should result in the *f64 function being |
| called while _Float32x arguments should result in the *f64x |
| function being called. These cases cannot be distinguished using |
| sizeof (or at all if the types are typedefs rather than different |
| types). However, for these functions it is OK (does not affect the |
| final result) to call a function with any argument format at least |
| as wide as all the floating-point arguments, unless that affects |
| rounding of integer arguments. Integer arguments are considered to |
| have type _Float64, so the *f64 functions are preferred for f32x* |
| macros when no argument has a wider floating-point type. */ |
| # if __HAVE_FLOAT64X_LONG_DOUBLE && __HAVE_DISTINCT_FLOAT128 |
| # define __TGMATH_2_NARROW_F32(F, X, Y) \ |
| (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ |
| + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \ |
| ? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \ |
| F ## f64x (X, Y) \ |
| : F ## f64 (X, Y))) |
| # define __TGMATH_2_NARROW_F64(F, X, Y) \ |
| (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ |
| + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \ |
| ? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \ |
| F ## f64x (X, Y) \ |
| : F ## f128 (X, Y))) |
| # define __TGMATH_2_NARROW_F32X(F, X, Y) \ |
| (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ |
| + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \ |
| ? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \ |
| F ## f64x (X, Y) \ |
| : F ## f64 (X, Y))) |
| # elif __HAVE_FLOAT128 |
| # define __TGMATH_2_NARROW_F32(F, X, Y) \ |
| (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ |
| + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \ |
| ? F ## f128 (X, Y) \ |
| : F ## f64 (X, Y))) |
| # define __TGMATH_2_NARROW_F64(F, X, Y) \ |
| (F ## f128 (X, Y)) |
| # define __TGMATH_2_NARROW_F32X(F, X, Y) \ |
| (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ |
| + (__tgmath_real_type (Y)) 0) > sizeof (_Float32x) \ |
| ? F ## f64x (X, Y) \ |
| : F ## f64 (X, Y))) |
| # else |
| # define __TGMATH_2_NARROW_F32(F, X, Y) \ |
| (F ## f64 (X, Y)) |
| # endif |
| # endif /* !__HAVE_BUILTIN_TGMATH. */ |
| #else |
| # error "Unsupported compiler; you cannot use <tgmath.h>" |
| #endif |
| |
| |
| /* Unary functions defined for real and complex values. */ |
| |
| |
| /* Trigonometric functions. */ |
| |
| /* Arc cosine of X. */ |
| #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos) |
| /* Arc sine of X. */ |
| #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin) |
| /* Arc tangent of X. */ |
| #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan) |
| /* Arc tangent of Y/X. */ |
| #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2) |
| |
| /* Cosine of X. */ |
| #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos) |
| /* Sine of X. */ |
| #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin) |
| /* Tangent of X. */ |
| #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan) |
| |
| |
| /* Hyperbolic functions. */ |
| |
| /* Hyperbolic arc cosine of X. */ |
| #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh) |
| /* Hyperbolic arc sine of X. */ |
| #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh) |
| /* Hyperbolic arc tangent of X. */ |
| #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh) |
| |
| /* Hyperbolic cosine of X. */ |
| #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh) |
| /* Hyperbolic sine of X. */ |
| #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh) |
| /* Hyperbolic tangent of X. */ |
| #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh) |
| |
| |
| /* Exponential and logarithmic functions. */ |
| |
| /* Exponential function of X. */ |
| #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp) |
| |
| /* Break VALUE into a normalized fraction and an integral power of 2. */ |
| #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp) |
| |
| /* X times (two to the EXP power). */ |
| #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp) |
| |
| /* Natural logarithm of X. */ |
| #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog) |
| |
| /* Base-ten logarithm of X. */ |
| #ifdef __USE_GNU |
| # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10) |
| #else |
| # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10) |
| #endif |
| |
| /* Return exp(X) - 1. */ |
| #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1) |
| |
| /* Return log(1 + X). */ |
| #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p) |
| |
| /* Return the base 2 signed integral exponent of X. */ |
| #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb) |
| |
| /* Compute base-2 exponential of X. */ |
| #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2) |
| |
| /* Compute base-2 logarithm of X. */ |
| #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2) |
| |
| |
| /* Power functions. */ |
| |
| /* Return X to the Y power. */ |
| #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow) |
| |
| /* Return the square root of X. */ |
| #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt) |
| |
| /* Return `sqrt(X*X + Y*Y)'. */ |
| #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot) |
| |
| /* Return the cube root of X. */ |
| #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt) |
| |
| |
| /* Nearest integer, absolute value, and remainder functions. */ |
| |
| /* Smallest integral value not less than X. */ |
| #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil) |
| |
| /* Absolute value of X. */ |
| #define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs) |
| |
| /* Largest integer not greater than X. */ |
| #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor) |
| |
| /* Floating-point modulo remainder of X/Y. */ |
| #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod) |
| |
| /* Round X to integral valuein floating-point format using current |
| rounding direction, but do not raise inexact exception. */ |
| #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint) |
| |
| /* Round X to nearest integral value, rounding halfway cases away from |
| zero. */ |
| #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round) |
| |
| /* Round X to the integral value in floating-point format nearest but |
| not larger in magnitude. */ |
| #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc) |
| |
| /* Compute remainder of X and Y and put in *QUO a value with sign of x/y |
| and magnitude congruent `mod 2^n' to the magnitude of the integral |
| quotient x/y, with n >= 3. */ |
| #define remquo(Val1, Val2, Val3) \ |
| __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo) |
| |
| /* Round X to nearest integral value according to current rounding |
| direction. */ |
| #define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint) |
| #define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint) |
| |
| /* Round X to nearest integral value, rounding halfway cases away from |
| zero. */ |
| #define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround) |
| #define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround) |
| |
| |
| /* Return X with its signed changed to Y's. */ |
| #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign) |
| |
| /* Error and gamma functions. */ |
| #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf) |
| #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc) |
| #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma) |
| #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma) |
| |
| |
| /* Return the integer nearest X in the direction of the |
| prevailing rounding mode. */ |
| #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint) |
| |
| #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X) |
| /* Return X - epsilon. */ |
| # define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown) |
| /* Return X + epsilon. */ |
| # define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup) |
| #endif |
| |
| /* Return X + epsilon if X < Y, X - epsilon if X > Y. */ |
| #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter) |
| #define nexttoward(Val1, Val2) \ |
| __TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward) |
| |
| /* Return the remainder of integer divison X / Y with infinite precision. */ |
| #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder) |
| |
| /* Return X times (2 to the Nth power). */ |
| #ifdef __USE_MISC |
| # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb) |
| #endif |
| |
| /* Return X times (2 to the Nth power). */ |
| #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn) |
| |
| /* Return X times (2 to the Nth power). */ |
| #define scalbln(Val1, Val2) \ |
| __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln) |
| |
| /* Return the binary exponent of X, which must be nonzero. */ |
| #define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb) |
| |
| |
| /* Return positive difference between X and Y. */ |
| #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim) |
| |
| /* Return maximum numeric value from X and Y. */ |
| #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax) |
| |
| /* Return minimum numeric value from X and Y. */ |
| #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin) |
| |
| |
| /* Multiply-add function computed as a ternary operation. */ |
| #define fma(Val1, Val2, Val3) \ |
| __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma) |
| |
| #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X) |
| /* Round X to nearest integer value, rounding halfway cases to even. */ |
| # define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven) |
| |
| # define fromfp(Val1, Val2, Val3) \ |
| __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp) |
| |
| # define ufromfp(Val1, Val2, Val3) \ |
| __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp) |
| |
| # define fromfpx(Val1, Val2, Val3) \ |
| __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx) |
| |
| # define ufromfpx(Val1, Val2, Val3) \ |
| __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx) |
| |
| /* Like ilogb, but returning long int. */ |
| # define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb) |
| |
| /* Return value with maximum magnitude. */ |
| # define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag) |
| |
| /* Return value with minimum magnitude. */ |
| # define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag) |
| #endif |
| |
| |
| /* Absolute value, conjugates, and projection. */ |
| |
| /* Argument value of Z. */ |
| #define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, carg) |
| |
| /* Complex conjugate of Z. */ |
| #define conj(Val) __TGMATH_UNARY_IMAG (Val, conj) |
| |
| /* Projection of Z onto the Riemann sphere. */ |
| #define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj) |
| |
| |
| /* Decomposing complex values. */ |
| |
| /* Imaginary part of Z. */ |
| #define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, cimag) |
| |
| /* Real part of Z. */ |
| #define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, creal) |
| |
| |
| /* Narrowing functions. */ |
| |
| #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X) |
| |
| /* Add. */ |
| # define fadd(Val1, Val2) __TGMATH_2_NARROW_F (fadd, Val1, Val2) |
| # define dadd(Val1, Val2) __TGMATH_2_NARROW_D (dadd, Val1, Val2) |
| |
| /* Divide. */ |
| # define fdiv(Val1, Val2) __TGMATH_2_NARROW_F (fdiv, Val1, Val2) |
| # define ddiv(Val1, Val2) __TGMATH_2_NARROW_D (ddiv, Val1, Val2) |
| |
| /* Multiply. */ |
| # define fmul(Val1, Val2) __TGMATH_2_NARROW_F (fmul, Val1, Val2) |
| # define dmul(Val1, Val2) __TGMATH_2_NARROW_D (dmul, Val1, Val2) |
| |
| /* Subtract. */ |
| # define fsub(Val1, Val2) __TGMATH_2_NARROW_F (fsub, Val1, Val2) |
| # define dsub(Val1, Val2) __TGMATH_2_NARROW_D (dsub, Val1, Val2) |
| |
| #endif |
| |
| #if __GLIBC_USE (IEC_60559_TYPES_EXT) |
| |
| # if __HAVE_FLOAT16 |
| # define f16add(Val1, Val2) __TGMATH_2_NARROW_F16 (f16add, Val1, Val2) |
| # define f16div(Val1, Val2) __TGMATH_2_NARROW_F16 (f16div, Val1, Val2) |
| # define f16mul(Val1, Val2) __TGMATH_2_NARROW_F16 (f16mul, Val1, Val2) |
| # define f16sub(Val1, Val2) __TGMATH_2_NARROW_F16 (f16sub, Val1, Val2) |
| # endif |
| |
| # if __HAVE_FLOAT32 |
| # define f32add(Val1, Val2) __TGMATH_2_NARROW_F32 (f32add, Val1, Val2) |
| # define f32div(Val1, Val2) __TGMATH_2_NARROW_F32 (f32div, Val1, Val2) |
| # define f32mul(Val1, Val2) __TGMATH_2_NARROW_F32 (f32mul, Val1, Val2) |
| # define f32sub(Val1, Val2) __TGMATH_2_NARROW_F32 (f32sub, Val1, Val2) |
| # endif |
| |
| # if __HAVE_FLOAT64 && (__HAVE_FLOAT64X || __HAVE_FLOAT128) |
| # define f64add(Val1, Val2) __TGMATH_2_NARROW_F64 (f64add, Val1, Val2) |
| # define f64div(Val1, Val2) __TGMATH_2_NARROW_F64 (f64div, Val1, Val2) |
| # define f64mul(Val1, Val2) __TGMATH_2_NARROW_F64 (f64mul, Val1, Val2) |
| # define f64sub(Val1, Val2) __TGMATH_2_NARROW_F64 (f64sub, Val1, Val2) |
| # endif |
| |
| # if __HAVE_FLOAT32X |
| # define f32xadd(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xadd, Val1, Val2) |
| # define f32xdiv(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xdiv, Val1, Val2) |
| # define f32xmul(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xmul, Val1, Val2) |
| # define f32xsub(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xsub, Val1, Val2) |
| # endif |
| |
| # if __HAVE_FLOAT64X && (__HAVE_FLOAT128X || __HAVE_FLOAT128) |
| # define f64xadd(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xadd, Val1, Val2) |
| # define f64xdiv(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xdiv, Val1, Val2) |
| # define f64xmul(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xmul, Val1, Val2) |
| # define f64xsub(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xsub, Val1, Val2) |
| # endif |
| |
| #endif |
| |
| #endif /* tgmath.h */ |