blob: d135e70dd75dc17ab7da2844cead71a69e17abbf [file] [log] [blame]
//===- CallEvent.h - Wrapper for all function and method calls --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file defines CallEvent and its subclasses, which represent path-
/// sensitive instances of different kinds of function and method calls
/// (C, C++, and Objective-C).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <limits>
#include <utility>
namespace clang {
class LocationContext;
class ProgramPoint;
class ProgramPointTag;
class StackFrameContext;
namespace ento {
enum CallEventKind {
CE_Function,
CE_CXXMember,
CE_CXXMemberOperator,
CE_CXXDestructor,
CE_BEG_CXX_INSTANCE_CALLS = CE_CXXMember,
CE_END_CXX_INSTANCE_CALLS = CE_CXXDestructor,
CE_CXXConstructor,
CE_CXXInheritedConstructor,
CE_BEG_CXX_CONSTRUCTOR_CALLS = CE_CXXConstructor,
CE_END_CXX_CONSTRUCTOR_CALLS = CE_CXXInheritedConstructor,
CE_CXXAllocator,
CE_CXXDeallocator,
CE_BEG_FUNCTION_CALLS = CE_Function,
CE_END_FUNCTION_CALLS = CE_CXXDeallocator,
CE_Block,
CE_ObjCMessage
};
class CallEvent;
class CallDescription;
template<typename T = CallEvent>
class CallEventRef : public IntrusiveRefCntPtr<const T> {
public:
CallEventRef(const T *Call) : IntrusiveRefCntPtr<const T>(Call) {}
CallEventRef(const CallEventRef &Orig) : IntrusiveRefCntPtr<const T>(Orig) {}
CallEventRef<T> cloneWithState(ProgramStateRef State) const {
return this->get()->template cloneWithState<T>(State);
}
// Allow implicit conversions to a superclass type, since CallEventRef
// behaves like a pointer-to-const.
template <typename SuperT>
operator CallEventRef<SuperT> () const {
return this->get();
}
};
/// \class RuntimeDefinition
/// Defines the runtime definition of the called function.
///
/// Encapsulates the information we have about which Decl will be used
/// when the call is executed on the given path. When dealing with dynamic
/// dispatch, the information is based on DynamicTypeInfo and might not be
/// precise.
class RuntimeDefinition {
/// The Declaration of the function which could be called at runtime.
/// NULL if not available.
const Decl *D = nullptr;
/// The region representing an object (ObjC/C++) on which the method is
/// called. With dynamic dispatch, the method definition depends on the
/// runtime type of this object. NULL when the DynamicTypeInfo is
/// precise.
const MemRegion *R = nullptr;
public:
RuntimeDefinition() = default;
RuntimeDefinition(const Decl *InD): D(InD) {}
RuntimeDefinition(const Decl *InD, const MemRegion *InR): D(InD), R(InR) {}
const Decl *getDecl() { return D; }
/// Check if the definition we have is precise.
/// If not, it is possible that the call dispatches to another definition at
/// execution time.
bool mayHaveOtherDefinitions() { return R != nullptr; }
/// When other definitions are possible, returns the region whose runtime type
/// determines the method definition.
const MemRegion *getDispatchRegion() { return R; }
};
/// Represents an abstract call to a function or method along a
/// particular path.
///
/// CallEvents are created through the factory methods of CallEventManager.
///
/// CallEvents should always be cheap to create and destroy. In order for
/// CallEventManager to be able to re-use CallEvent-sized memory blocks,
/// subclasses of CallEvent may not add any data members to the base class.
/// Use the "Data" and "Location" fields instead.
class CallEvent {
public:
using Kind = CallEventKind;
private:
ProgramStateRef State;
const LocationContext *LCtx;
llvm::PointerUnion<const Expr *, const Decl *> Origin;
protected:
// This is user data for subclasses.
const void *Data;
// This is user data for subclasses.
// This should come right before RefCount, so that the two fields can be
// packed together on LP64 platforms.
SourceLocation Location;
private:
template <typename T> friend struct llvm::IntrusiveRefCntPtrInfo;
mutable unsigned RefCount = 0;
void Retain() const { ++RefCount; }
void Release() const;
protected:
friend class CallEventManager;
CallEvent(const Expr *E, ProgramStateRef state, const LocationContext *lctx)
: State(std::move(state)), LCtx(lctx), Origin(E) {}
CallEvent(const Decl *D, ProgramStateRef state, const LocationContext *lctx)
: State(std::move(state)), LCtx(lctx), Origin(D) {}
// DO NOT MAKE PUBLIC
CallEvent(const CallEvent &Original)
: State(Original.State), LCtx(Original.LCtx), Origin(Original.Origin),
Data(Original.Data), Location(Original.Location) {}
/// Copies this CallEvent, with vtable intact, into a new block of memory.
virtual void cloneTo(void *Dest) const = 0;
/// Get the value of arbitrary expressions at this point in the path.
SVal getSVal(const Stmt *S) const {
return getState()->getSVal(S, getLocationContext());
}
using ValueList = SmallVectorImpl<SVal>;
/// Used to specify non-argument regions that will be invalidated as a
/// result of this call.
virtual void getExtraInvalidatedValues(ValueList &Values,
RegionAndSymbolInvalidationTraits *ETraits) const {}
public:
CallEvent &operator=(const CallEvent &) = delete;
virtual ~CallEvent() = default;
/// Returns the kind of call this is.
virtual Kind getKind() const = 0;
virtual StringRef getKindAsString() const = 0;
/// Returns the declaration of the function or method that will be
/// called. May be null.
virtual const Decl *getDecl() const {
return Origin.dyn_cast<const Decl *>();
}
/// The state in which the call is being evaluated.
const ProgramStateRef &getState() const {
return State;
}
/// The context in which the call is being evaluated.
const LocationContext *getLocationContext() const {
return LCtx;
}
/// Returns the definition of the function or method that will be
/// called.
virtual RuntimeDefinition getRuntimeDefinition() const = 0;
/// Returns the expression whose value will be the result of this call.
/// May be null.
virtual const Expr *getOriginExpr() const {
return Origin.dyn_cast<const Expr *>();
}
/// Returns the number of arguments (explicit and implicit).
///
/// Note that this may be greater than the number of parameters in the
/// callee's declaration, and that it may include arguments not written in
/// the source.
virtual unsigned getNumArgs() const = 0;
/// Returns true if the callee is known to be from a system header.
bool isInSystemHeader() const {
const Decl *D = getDecl();
if (!D)
return false;
SourceLocation Loc = D->getLocation();
if (Loc.isValid()) {
const SourceManager &SM =
getState()->getStateManager().getContext().getSourceManager();
return SM.isInSystemHeader(D->getLocation());
}
// Special case for implicitly-declared global operator new/delete.
// These should be considered system functions.
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->isOverloadedOperator() && FD->isImplicit() && FD->isGlobal();
return false;
}
/// Returns a source range for the entire call, suitable for
/// outputting in diagnostics.
virtual SourceRange getSourceRange() const {
return getOriginExpr()->getSourceRange();
}
/// Returns the value of a given argument at the time of the call.
virtual SVal getArgSVal(unsigned Index) const;
/// Returns the expression associated with a given argument.
/// May be null if this expression does not appear in the source.
virtual const Expr *getArgExpr(unsigned Index) const { return nullptr; }
/// Returns the source range for errors associated with this argument.
///
/// May be invalid if the argument is not written in the source.
virtual SourceRange getArgSourceRange(unsigned Index) const;
/// Returns the result type, adjusted for references.
QualType getResultType() const;
/// Returns the return value of the call.
///
/// This should only be called if the CallEvent was created using a state in
/// which the return value has already been bound to the origin expression.
SVal getReturnValue() const;
/// Returns true if the type of any of the non-null arguments satisfies
/// the condition.
bool hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const;
/// Returns true if any of the arguments appear to represent callbacks.
bool hasNonZeroCallbackArg() const;
/// Returns true if any of the arguments is void*.
bool hasVoidPointerToNonConstArg() const;
/// Returns true if any of the arguments are known to escape to long-
/// term storage, even if this method will not modify them.
// NOTE: The exact semantics of this are still being defined!
// We don't really want a list of hardcoded exceptions in the long run,
// but we don't want duplicated lists of known APIs in the short term either.
virtual bool argumentsMayEscape() const {
return hasNonZeroCallbackArg();
}
/// Returns true if the callee is an externally-visible function in the
/// top-level namespace, such as \c malloc.
///
/// You can use this call to determine that a particular function really is
/// a library function and not, say, a C++ member function with the same name.
///
/// If a name is provided, the function must additionally match the given
/// name.
///
/// Note that this deliberately excludes C++ library functions in the \c std
/// namespace, but will include C library functions accessed through the
/// \c std namespace. This also does not check if the function is declared
/// as 'extern "C"', or if it uses C++ name mangling.
// FIXME: Add a helper for checking namespaces.
// FIXME: Move this down to AnyFunctionCall once checkers have more
// precise callbacks.
bool isGlobalCFunction(StringRef SpecificName = StringRef()) const;
/// Returns the name of the callee, if its name is a simple identifier.
///
/// Note that this will fail for Objective-C methods, blocks, and C++
/// overloaded operators. The former is named by a Selector rather than a
/// simple identifier, and the latter two do not have names.
// FIXME: Move this down to AnyFunctionCall once checkers have more
// precise callbacks.
const IdentifierInfo *getCalleeIdentifier() const {
const auto *ND = dyn_cast_or_null<NamedDecl>(getDecl());
if (!ND)
return nullptr;
return ND->getIdentifier();
}
/// Returns an appropriate ProgramPoint for this call.
ProgramPoint getProgramPoint(bool IsPreVisit = false,
const ProgramPointTag *Tag = nullptr) const;
/// Returns a new state with all argument regions invalidated.
///
/// This accepts an alternate state in case some processing has already
/// occurred.
ProgramStateRef invalidateRegions(unsigned BlockCount,
ProgramStateRef Orig = nullptr) const;
using FrameBindingTy = std::pair<SVal, SVal>;
using BindingsTy = SmallVectorImpl<FrameBindingTy>;
/// Populates the given SmallVector with the bindings in the callee's stack
/// frame at the start of this call.
virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const = 0;
/// Returns a copy of this CallEvent, but using the given state.
template <typename T>
CallEventRef<T> cloneWithState(ProgramStateRef NewState) const;
/// Returns a copy of this CallEvent, but using the given state.
CallEventRef<> cloneWithState(ProgramStateRef NewState) const {
return cloneWithState<CallEvent>(NewState);
}
/// Returns true if this is a statement is a function or method call
/// of some kind.
static bool isCallStmt(const Stmt *S);
/// Returns the result type of a function or method declaration.
///
/// This will return a null QualType if the result type cannot be determined.
static QualType getDeclaredResultType(const Decl *D);
/// Returns true if the given decl is known to be variadic.
///
/// \p D must not be null.
static bool isVariadic(const Decl *D);
/// Returns AnalysisDeclContext for the callee stack frame.
/// Currently may fail; returns null on failure.
AnalysisDeclContext *getCalleeAnalysisDeclContext() const;
/// Returns the callee stack frame. That stack frame will only be entered
/// during analysis if the call is inlined, but it may still be useful
/// in intermediate calculations even if the call isn't inlined.
/// May fail; returns null on failure.
const StackFrameContext *getCalleeStackFrame(unsigned BlockCount) const;
/// Returns memory location for a parameter variable within the callee stack
/// frame. The behavior is undefined if the block count is different from the
/// one that is there when call happens. May fail; returns null on failure.
const ParamVarRegion *getParameterLocation(unsigned Index,
unsigned BlockCount) const;
/// Returns true if on the current path, the argument was constructed by
/// calling a C++ constructor over it. This is an internal detail of the
/// analysis which doesn't necessarily represent the program semantics:
/// if we are supposed to construct an argument directly, we may still
/// not do that because we don't know how (i.e., construction context is
/// unavailable in the CFG or not supported by the analyzer).
bool isArgumentConstructedDirectly(unsigned Index) const {
// This assumes that the object was not yet removed from the state.
return ExprEngine::getObjectUnderConstruction(
getState(), {getOriginExpr(), Index}, getLocationContext()).hasValue();
}
/// Some calls have parameter numbering mismatched from argument numbering.
/// This function converts an argument index to the corresponding
/// parameter index. Returns None is the argument doesn't correspond
/// to any parameter variable.
virtual Optional<unsigned>
getAdjustedParameterIndex(unsigned ASTArgumentIndex) const {
return ASTArgumentIndex;
}
/// Some call event sub-classes conveniently adjust mismatching AST indices
/// to match parameter indices. This function converts an argument index
/// as understood by CallEvent to the argument index as understood by the AST.
virtual unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const {
return CallArgumentIndex;
}
/// Returns the construction context of the call, if it is a C++ constructor
/// call or a call of a function returning a C++ class instance. Otherwise
/// return nullptr.
const ConstructionContext *getConstructionContext() const;
/// If the call returns a C++ record type then the region of its return value
/// can be retrieved from its construction context.
Optional<SVal> getReturnValueUnderConstruction() const;
// Iterator access to formal parameters and their types.
private:
struct GetTypeFn {
QualType operator()(ParmVarDecl *PD) const { return PD->getType(); }
};
public:
/// Return call's formal parameters.
///
/// Remember that the number of formal parameters may not match the number
/// of arguments for all calls. However, the first parameter will always
/// correspond with the argument value returned by \c getArgSVal(0).
virtual ArrayRef<ParmVarDecl *> parameters() const = 0;
using param_type_iterator =
llvm::mapped_iterator<ArrayRef<ParmVarDecl *>::iterator, GetTypeFn>;
/// Returns an iterator over the types of the call's formal parameters.
///
/// This uses the callee decl found by default name lookup rather than the
/// definition because it represents a public interface, and probably has
/// more annotations.
param_type_iterator param_type_begin() const {
return llvm::map_iterator(parameters().begin(), GetTypeFn());
}
/// \sa param_type_begin()
param_type_iterator param_type_end() const {
return llvm::map_iterator(parameters().end(), GetTypeFn());
}
// For debugging purposes only
void dump(raw_ostream &Out) const;
void dump() const;
};
/// Represents a call to any sort of function that might have a
/// FunctionDecl.
class AnyFunctionCall : public CallEvent {
protected:
AnyFunctionCall(const Expr *E, ProgramStateRef St,
const LocationContext *LCtx)
: CallEvent(E, St, LCtx) {}
AnyFunctionCall(const Decl *D, ProgramStateRef St,
const LocationContext *LCtx)
: CallEvent(D, St, LCtx) {}
AnyFunctionCall(const AnyFunctionCall &Other) = default;
public:
// This function is overridden by subclasses, but they must return
// a FunctionDecl.
const FunctionDecl *getDecl() const override {
return cast<FunctionDecl>(CallEvent::getDecl());
}
RuntimeDefinition getRuntimeDefinition() const override;
bool argumentsMayEscape() const override;
void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const override;
ArrayRef<ParmVarDecl *> parameters() const override;
static bool classof(const CallEvent *CA) {
return CA->getKind() >= CE_BEG_FUNCTION_CALLS &&
CA->getKind() <= CE_END_FUNCTION_CALLS;
}
};
/// Represents a C function or static C++ member function call.
///
/// Example: \c fun()
class SimpleFunctionCall : public AnyFunctionCall {
friend class CallEventManager;
protected:
SimpleFunctionCall(const CallExpr *CE, ProgramStateRef St,
const LocationContext *LCtx)
: AnyFunctionCall(CE, St, LCtx) {}
SimpleFunctionCall(const SimpleFunctionCall &Other) = default;
void cloneTo(void *Dest) const override {
new (Dest) SimpleFunctionCall(*this);
}
public:
const CallExpr *getOriginExpr() const override {
return cast<CallExpr>(AnyFunctionCall::getOriginExpr());
}
const FunctionDecl *getDecl() const override;
unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
const Expr *getArgExpr(unsigned Index) const override {
return getOriginExpr()->getArg(Index);
}
Kind getKind() const override { return CE_Function; }
StringRef getKindAsString() const override { return "SimpleFunctionCall"; }
static bool classof(const CallEvent *CA) {
return CA->getKind() == CE_Function;
}
};
/// Represents a call to a block.
///
/// Example: <tt>^{ statement-body }()</tt>
class BlockCall : public CallEvent {
friend class CallEventManager;
protected:
BlockCall(const CallExpr *CE, ProgramStateRef St,
const LocationContext *LCtx)
: CallEvent(CE, St, LCtx) {}
BlockCall(const BlockCall &Other) = default;
void cloneTo(void *Dest) const override { new (Dest) BlockCall(*this); }
void getExtraInvalidatedValues(ValueList &Values,
RegionAndSymbolInvalidationTraits *ETraits) const override;
public:
const CallExpr *getOriginExpr() const override {
return cast<CallExpr>(CallEvent::getOriginExpr());
}
unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
const Expr *getArgExpr(unsigned Index) const override {
return getOriginExpr()->getArg(Index);
}
/// Returns the region associated with this instance of the block.
///
/// This may be NULL if the block's origin is unknown.
const BlockDataRegion *getBlockRegion() const;
const BlockDecl *getDecl() const override {
const BlockDataRegion *BR = getBlockRegion();
if (!BR)
return nullptr;
return BR->getDecl();
}
bool isConversionFromLambda() const {
const BlockDecl *BD = getDecl();
if (!BD)
return false;
return BD->isConversionFromLambda();
}
/// For a block converted from a C++ lambda, returns the block
/// VarRegion for the variable holding the captured C++ lambda record.
const VarRegion *getRegionStoringCapturedLambda() const {
assert(isConversionFromLambda());
const BlockDataRegion *BR = getBlockRegion();
assert(BR && "Block converted from lambda must have a block region");
auto I = BR->referenced_vars_begin();
assert(I != BR->referenced_vars_end());
return I.getCapturedRegion();
}
RuntimeDefinition getRuntimeDefinition() const override {
if (!isConversionFromLambda())
return RuntimeDefinition(getDecl());
// Clang converts lambdas to blocks with an implicit user-defined
// conversion operator method on the lambda record that looks (roughly)
// like:
//
// typedef R(^block_type)(P1, P2, ...);
// operator block_type() const {
// auto Lambda = *this;
// return ^(P1 p1, P2 p2, ...){
// /* return Lambda(p1, p2, ...); */
// };
// }
//
// Here R is the return type of the lambda and P1, P2, ... are
// its parameter types. 'Lambda' is a fake VarDecl captured by the block
// that is initialized to a copy of the lambda.
//
// Sema leaves the body of a lambda-converted block empty (it is
// produced by CodeGen), so we can't analyze it directly. Instead, we skip
// the block body and analyze the operator() method on the captured lambda.
const VarDecl *LambdaVD = getRegionStoringCapturedLambda()->getDecl();
const CXXRecordDecl *LambdaDecl = LambdaVD->getType()->getAsCXXRecordDecl();
CXXMethodDecl* LambdaCallOperator = LambdaDecl->getLambdaCallOperator();
return RuntimeDefinition(LambdaCallOperator);
}
bool argumentsMayEscape() const override {
return true;
}
void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const override;
ArrayRef<ParmVarDecl *> parameters() const override;
Kind getKind() const override { return CE_Block; }
StringRef getKindAsString() const override { return "BlockCall"; }
static bool classof(const CallEvent *CA) { return CA->getKind() == CE_Block; }
};
/// Represents a non-static C++ member function call, no matter how
/// it is written.
class CXXInstanceCall : public AnyFunctionCall {
protected:
CXXInstanceCall(const CallExpr *CE, ProgramStateRef St,
const LocationContext *LCtx)
: AnyFunctionCall(CE, St, LCtx) {}
CXXInstanceCall(const FunctionDecl *D, ProgramStateRef St,
const LocationContext *LCtx)
: AnyFunctionCall(D, St, LCtx) {}
CXXInstanceCall(const CXXInstanceCall &Other) = default;
void getExtraInvalidatedValues(ValueList &Values,
RegionAndSymbolInvalidationTraits *ETraits) const override;
public:
/// Returns the expression representing the implicit 'this' object.
virtual const Expr *getCXXThisExpr() const { return nullptr; }
/// Returns the value of the implicit 'this' object.
virtual SVal getCXXThisVal() const;
const FunctionDecl *getDecl() const override;
RuntimeDefinition getRuntimeDefinition() const override;
void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const override;
static bool classof(const CallEvent *CA) {
return CA->getKind() >= CE_BEG_CXX_INSTANCE_CALLS &&
CA->getKind() <= CE_END_CXX_INSTANCE_CALLS;
}
};
/// Represents a non-static C++ member function call.
///
/// Example: \c obj.fun()
class CXXMemberCall : public CXXInstanceCall {
friend class CallEventManager;
protected:
CXXMemberCall(const CXXMemberCallExpr *CE, ProgramStateRef St,
const LocationContext *LCtx)
: CXXInstanceCall(CE, St, LCtx) {}
CXXMemberCall(const CXXMemberCall &Other) = default;
void cloneTo(void *Dest) const override { new (Dest) CXXMemberCall(*this); }
public:
const CXXMemberCallExpr *getOriginExpr() const override {
return cast<CXXMemberCallExpr>(CXXInstanceCall::getOriginExpr());
}
unsigned getNumArgs() const override {
if (const CallExpr *CE = getOriginExpr())
return CE->getNumArgs();
return 0;
}
const Expr *getArgExpr(unsigned Index) const override {
return getOriginExpr()->getArg(Index);
}
const Expr *getCXXThisExpr() const override;
RuntimeDefinition getRuntimeDefinition() const override;
Kind getKind() const override { return CE_CXXMember; }
StringRef getKindAsString() const override { return "CXXMemberCall"; }
static bool classof(const CallEvent *CA) {
return CA->getKind() == CE_CXXMember;
}
};
/// Represents a C++ overloaded operator call where the operator is
/// implemented as a non-static member function.
///
/// Example: <tt>iter + 1</tt>
class CXXMemberOperatorCall : public CXXInstanceCall {
friend class CallEventManager;
protected:
CXXMemberOperatorCall(const CXXOperatorCallExpr *CE, ProgramStateRef St,
const LocationContext *LCtx)
: CXXInstanceCall(CE, St, LCtx) {}
CXXMemberOperatorCall(const CXXMemberOperatorCall &Other) = default;
void cloneTo(void *Dest) const override {
new (Dest) CXXMemberOperatorCall(*this);
}
public:
const CXXOperatorCallExpr *getOriginExpr() const override {
return cast<CXXOperatorCallExpr>(CXXInstanceCall::getOriginExpr());
}
unsigned getNumArgs() const override {
return getOriginExpr()->getNumArgs() - 1;
}
const Expr *getArgExpr(unsigned Index) const override {
return getOriginExpr()->getArg(Index + 1);
}
const Expr *getCXXThisExpr() const override;
Kind getKind() const override { return CE_CXXMemberOperator; }
StringRef getKindAsString() const override { return "CXXMemberOperatorCall"; }
static bool classof(const CallEvent *CA) {
return CA->getKind() == CE_CXXMemberOperator;
}
Optional<unsigned>
getAdjustedParameterIndex(unsigned ASTArgumentIndex) const override {
// For member operator calls argument 0 on the expression corresponds
// to implicit this-parameter on the declaration.
return (ASTArgumentIndex > 0) ? Optional<unsigned>(ASTArgumentIndex - 1)
: None;
}
unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const override {
// For member operator calls argument 0 on the expression corresponds
// to implicit this-parameter on the declaration.
return CallArgumentIndex + 1;
}
OverloadedOperatorKind getOverloadedOperator() const {
return getOriginExpr()->getOperator();
}
};
/// Represents an implicit call to a C++ destructor.
///
/// This can occur at the end of a scope (for automatic objects), at the end
/// of a full-expression (for temporaries), or as part of a delete.
class CXXDestructorCall : public CXXInstanceCall {
friend class CallEventManager;
protected:
using DtorDataTy = llvm::PointerIntPair<const MemRegion *, 1, bool>;
/// Creates an implicit destructor.
///
/// \param DD The destructor that will be called.
/// \param Trigger The statement whose completion causes this destructor call.
/// \param Target The object region to be destructed.
/// \param St The path-sensitive state at this point in the program.
/// \param LCtx The location context at this point in the program.
CXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger,
const MemRegion *Target, bool IsBaseDestructor,
ProgramStateRef St, const LocationContext *LCtx)
: CXXInstanceCall(DD, St, LCtx) {
Data = DtorDataTy(Target, IsBaseDestructor).getOpaqueValue();
Location = Trigger->getEndLoc();
}
CXXDestructorCall(const CXXDestructorCall &Other) = default;
void cloneTo(void *Dest) const override {new (Dest) CXXDestructorCall(*this);}
public:
SourceRange getSourceRange() const override { return Location; }
unsigned getNumArgs() const override { return 0; }
RuntimeDefinition getRuntimeDefinition() const override;
/// Returns the value of the implicit 'this' object.
SVal getCXXThisVal() const override;
/// Returns true if this is a call to a base class destructor.
bool isBaseDestructor() const {
return DtorDataTy::getFromOpaqueValue(Data).getInt();
}
Kind getKind() const override { return CE_CXXDestructor; }
StringRef getKindAsString() const override { return "CXXDestructorCall"; }
static bool classof(const CallEvent *CA) {
return CA->getKind() == CE_CXXDestructor;
}
};
/// Represents any constructor invocation. This includes regular constructors
/// and inherited constructors.
class AnyCXXConstructorCall : public AnyFunctionCall {
protected:
AnyCXXConstructorCall(const Expr *E, const MemRegion *Target,
ProgramStateRef St, const LocationContext *LCtx)
: AnyFunctionCall(E, St, LCtx) {
assert(E && (isa<CXXConstructExpr>(E) || isa<CXXInheritedCtorInitExpr>(E)));
// Target may be null when the region is unknown.
Data = Target;
}
void getExtraInvalidatedValues(ValueList &Values,
RegionAndSymbolInvalidationTraits *ETraits) const override;
void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const override;
public:
/// Returns the value of the implicit 'this' object.
SVal getCXXThisVal() const;
static bool classof(const CallEvent *Call) {
return Call->getKind() >= CE_BEG_CXX_CONSTRUCTOR_CALLS &&
Call->getKind() <= CE_END_CXX_CONSTRUCTOR_CALLS;
}
};
/// Represents a call to a C++ constructor.
///
/// Example: \c T(1)
class CXXConstructorCall : public AnyCXXConstructorCall {
friend class CallEventManager;
protected:
/// Creates a constructor call.
///
/// \param CE The constructor expression as written in the source.
/// \param Target The region where the object should be constructed. If NULL,
/// a new symbolic region will be used.
/// \param St The path-sensitive state at this point in the program.
/// \param LCtx The location context at this point in the program.
CXXConstructorCall(const CXXConstructExpr *CE, const MemRegion *Target,
ProgramStateRef St, const LocationContext *LCtx)
: AnyCXXConstructorCall(CE, Target, St, LCtx) {}
CXXConstructorCall(const CXXConstructorCall &Other) = default;
void cloneTo(void *Dest) const override { new (Dest) CXXConstructorCall(*this); }
public:
const CXXConstructExpr *getOriginExpr() const override {
return cast<CXXConstructExpr>(AnyFunctionCall::getOriginExpr());
}
const CXXConstructorDecl *getDecl() const override {
return getOriginExpr()->getConstructor();
}
unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
const Expr *getArgExpr(unsigned Index) const override {
return getOriginExpr()->getArg(Index);
}
Kind getKind() const override { return CE_CXXConstructor; }
StringRef getKindAsString() const override { return "CXXConstructorCall"; }
static bool classof(const CallEvent *CA) {
return CA->getKind() == CE_CXXConstructor;
}
};
/// Represents a call to a C++ inherited constructor.
///
/// Example: \c class T : public S { using S::S; }; T(1);
///
// Note, it is difficult to model the parameters. This is one of the reasons
// why we skip analysis of inheriting constructors as top-level functions.
// CXXInheritedCtorInitExpr doesn't take arguments and doesn't model parameter
// initialization because there is none: the arguments in the outer
// CXXConstructExpr directly initialize the parameters of the base class
// constructor, and no copies are made. (Making a copy of the parameter is
// incorrect, at least if it's done in an observable way.) The derived class
// constructor doesn't even exist in the formal model.
/// E.g., in:
///
/// struct X { X *p = this; ~X() {} };
/// struct A { A(X x) : b(x.p == &x) {} bool b; };
/// struct B : A { using A::A; };
/// B b = X{};
///
/// ... b.b is initialized to true.
class CXXInheritedConstructorCall : public AnyCXXConstructorCall {
friend class CallEventManager;
protected:
CXXInheritedConstructorCall(const CXXInheritedCtorInitExpr *CE,
const MemRegion *Target, ProgramStateRef St,
const LocationContext *LCtx)
: AnyCXXConstructorCall(CE, Target, St, LCtx) {}
CXXInheritedConstructorCall(const CXXInheritedConstructorCall &Other) =
default;
void cloneTo(void *Dest) const override {
new (Dest) CXXInheritedConstructorCall(*this);
}
public:
const CXXInheritedCtorInitExpr *getOriginExpr() const override {
return cast<CXXInheritedCtorInitExpr>(AnyFunctionCall::getOriginExpr());
}
const CXXConstructorDecl *getDecl() const override {
return getOriginExpr()->getConstructor();
}
/// Obtain the stack frame of the inheriting constructor. Argument expressions
/// can be found on the call site of that stack frame.
const StackFrameContext *getInheritingStackFrame() const;
/// Obtain the CXXConstructExpr for the sub-class that inherited the current
/// constructor (possibly indirectly). It's the statement that contains
/// argument expressions.
const CXXConstructExpr *getInheritingConstructor() const {
return cast<CXXConstructExpr>(getInheritingStackFrame()->getCallSite());
}
unsigned getNumArgs() const override {
return getInheritingConstructor()->getNumArgs();
}
const Expr *getArgExpr(unsigned Index) const override {
return getInheritingConstructor()->getArg(Index);
}
SVal getArgSVal(unsigned Index) const override {
return getState()->getSVal(
getArgExpr(Index),
getInheritingStackFrame()->getParent()->getStackFrame());
}
Kind getKind() const override { return CE_CXXInheritedConstructor; }
StringRef getKindAsString() const override {
return "CXXInheritedConstructorCall";
}
static bool classof(const CallEvent *CA) {
return CA->getKind() == CE_CXXInheritedConstructor;
}
};
/// Represents the memory allocation call in a C++ new-expression.
///
/// This is a call to "operator new".
class CXXAllocatorCall : public AnyFunctionCall {
friend class CallEventManager;
protected:
CXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef St,
const LocationContext *LCtx)
: AnyFunctionCall(E, St, LCtx) {}
CXXAllocatorCall(const CXXAllocatorCall &Other) = default;
void cloneTo(void *Dest) const override { new (Dest) CXXAllocatorCall(*this); }
public:
const CXXNewExpr *getOriginExpr() const override {
return cast<CXXNewExpr>(AnyFunctionCall::getOriginExpr());
}
const FunctionDecl *getDecl() const override {
return getOriginExpr()->getOperatorNew();
}
SVal getObjectUnderConstruction() const {
return ExprEngine::getObjectUnderConstruction(getState(), getOriginExpr(),
getLocationContext())
.getValue();
}
/// Number of non-placement arguments to the call. It is equal to 2 for
/// C++17 aligned operator new() calls that have alignment implicitly
/// passed as the second argument, and to 1 for other operator new() calls.
unsigned getNumImplicitArgs() const {
return getOriginExpr()->passAlignment() ? 2 : 1;
}
unsigned getNumArgs() const override {
return getOriginExpr()->getNumPlacementArgs() + getNumImplicitArgs();
}
const Expr *getArgExpr(unsigned Index) const override {
// The first argument of an allocator call is the size of the allocation.
if (Index < getNumImplicitArgs())
return nullptr;
return getOriginExpr()->getPlacementArg(Index - getNumImplicitArgs());
}
/// Number of placement arguments to the operator new() call. For example,
/// standard std::nothrow operator new and standard placement new both have
/// 1 implicit argument (size) and 1 placement argument, while regular
/// operator new() has 1 implicit argument and 0 placement arguments.
const Expr *getPlacementArgExpr(unsigned Index) const {
return getOriginExpr()->getPlacementArg(Index);
}
Kind getKind() const override { return CE_CXXAllocator; }
StringRef getKindAsString() const override { return "CXXAllocatorCall"; }
static bool classof(const CallEvent *CE) {
return CE->getKind() == CE_CXXAllocator;
}
};
/// Represents the memory deallocation call in a C++ delete-expression.
///
/// This is a call to "operator delete".
// FIXME: CXXDeleteExpr isn't present for custom delete operators, or even for
// some those that are in the standard library, like the no-throw or align_val
// versions.
// Some pointers:
// http://lists.llvm.org/pipermail/cfe-dev/2020-April/065080.html
// clang/test/Analysis/cxx-dynamic-memory-analysis-order.cpp
// clang/unittests/StaticAnalyzer/CallEventTest.cpp
class CXXDeallocatorCall : public AnyFunctionCall {
friend class CallEventManager;
protected:
CXXDeallocatorCall(const CXXDeleteExpr *E, ProgramStateRef St,
const LocationContext *LCtx)
: AnyFunctionCall(E, St, LCtx) {}
CXXDeallocatorCall(const CXXDeallocatorCall &Other) = default;
void cloneTo(void *Dest) const override {
new (Dest) CXXDeallocatorCall(*this);
}
public:
const CXXDeleteExpr *getOriginExpr() const override {
return cast<CXXDeleteExpr>(AnyFunctionCall::getOriginExpr());
}
const FunctionDecl *getDecl() const override {
return getOriginExpr()->getOperatorDelete();
}
unsigned getNumArgs() const override { return getDecl()->getNumParams(); }
const Expr *getArgExpr(unsigned Index) const override {
// CXXDeleteExpr's only have a single argument.
return getOriginExpr()->getArgument();
}
Kind getKind() const override { return CE_CXXDeallocator; }
StringRef getKindAsString() const override { return "CXXDeallocatorCall"; }
static bool classof(const CallEvent *CE) {
return CE->getKind() == CE_CXXDeallocator;
}
};
/// Represents the ways an Objective-C message send can occur.
//
// Note to maintainers: OCM_Message should always be last, since it does not
// need to fit in the Data field's low bits.
enum ObjCMessageKind {
OCM_PropertyAccess,
OCM_Subscript,
OCM_Message
};
/// Represents any expression that calls an Objective-C method.
///
/// This includes all of the kinds listed in ObjCMessageKind.
class ObjCMethodCall : public CallEvent {
friend class CallEventManager;
const PseudoObjectExpr *getContainingPseudoObjectExpr() const;
protected:
ObjCMethodCall(const ObjCMessageExpr *Msg, ProgramStateRef St,
const LocationContext *LCtx)
: CallEvent(Msg, St, LCtx) {
Data = nullptr;
}
ObjCMethodCall(const ObjCMethodCall &Other) = default;
void cloneTo(void *Dest) const override { new (Dest) ObjCMethodCall(*this); }
void getExtraInvalidatedValues(ValueList &Values,
RegionAndSymbolInvalidationTraits *ETraits) const override;
/// Check if the selector may have multiple definitions (may have overrides).
virtual bool canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
Selector Sel) const;
public:
const ObjCMessageExpr *getOriginExpr() const override {
return cast<ObjCMessageExpr>(CallEvent::getOriginExpr());
}
const ObjCMethodDecl *getDecl() const override {
return getOriginExpr()->getMethodDecl();
}
unsigned getNumArgs() const override {
return getOriginExpr()->getNumArgs();
}
const Expr *getArgExpr(unsigned Index) const override {
return getOriginExpr()->getArg(Index);
}
bool isInstanceMessage() const {
return getOriginExpr()->isInstanceMessage();
}
ObjCMethodFamily getMethodFamily() const {
return getOriginExpr()->getMethodFamily();
}
Selector getSelector() const {
return getOriginExpr()->getSelector();
}
SourceRange getSourceRange() const override;
/// Returns the value of the receiver at the time of this call.
SVal getReceiverSVal() const;
/// Get the interface for the receiver.
///
/// This works whether this is an instance message or a class message.
/// However, it currently just uses the static type of the receiver.
const ObjCInterfaceDecl *getReceiverInterface() const {
return getOriginExpr()->getReceiverInterface();
}
/// Checks if the receiver refers to 'self' or 'super'.
bool isReceiverSelfOrSuper() const;
/// Returns how the message was written in the source (property access,
/// subscript, or explicit message send).
ObjCMessageKind getMessageKind() const;
/// Returns true if this property access or subscript is a setter (has the
/// form of an assignment).
bool isSetter() const {
switch (getMessageKind()) {
case OCM_Message:
llvm_unreachable("This is not a pseudo-object access!");
case OCM_PropertyAccess:
return getNumArgs() > 0;
case OCM_Subscript:
return getNumArgs() > 1;
}
llvm_unreachable("Unknown message kind");
}
// Returns the property accessed by this method, either explicitly via
// property syntax or implicitly via a getter or setter method. Returns
// nullptr if the call is not a prooperty access.
const ObjCPropertyDecl *getAccessedProperty() const;
RuntimeDefinition getRuntimeDefinition() const override;
bool argumentsMayEscape() const override;
void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const override;
ArrayRef<ParmVarDecl*> parameters() const override;
Kind getKind() const override { return CE_ObjCMessage; }
StringRef getKindAsString() const override { return "ObjCMethodCall"; }
static bool classof(const CallEvent *CA) {
return CA->getKind() == CE_ObjCMessage;
}
};
/// Manages the lifetime of CallEvent objects.
///
/// CallEventManager provides a way to create arbitrary CallEvents "on the
/// stack" as if they were value objects by keeping a cache of CallEvent-sized
/// memory blocks. The CallEvents created by CallEventManager are only valid
/// for the lifetime of the OwnedCallEvent that holds them; right now these
/// objects cannot be copied and ownership cannot be transferred.
class CallEventManager {
friend class CallEvent;
llvm::BumpPtrAllocator &Alloc;
SmallVector<void *, 8> Cache;
using CallEventTemplateTy = SimpleFunctionCall;
void reclaim(const void *Memory) {
Cache.push_back(const_cast<void *>(Memory));
}
/// Returns memory that can be initialized as a CallEvent.
void *allocate() {
if (Cache.empty())
return Alloc.Allocate<CallEventTemplateTy>();
else
return Cache.pop_back_val();
}
template <typename T, typename Arg>
T *create(Arg A, ProgramStateRef St, const LocationContext *LCtx) {
static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
"CallEvent subclasses are not all the same size");
return new (allocate()) T(A, St, LCtx);
}
template <typename T, typename Arg1, typename Arg2>
T *create(Arg1 A1, Arg2 A2, ProgramStateRef St, const LocationContext *LCtx) {
static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
"CallEvent subclasses are not all the same size");
return new (allocate()) T(A1, A2, St, LCtx);
}
template <typename T, typename Arg1, typename Arg2, typename Arg3>
T *create(Arg1 A1, Arg2 A2, Arg3 A3, ProgramStateRef St,
const LocationContext *LCtx) {
static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
"CallEvent subclasses are not all the same size");
return new (allocate()) T(A1, A2, A3, St, LCtx);
}
template <typename T, typename Arg1, typename Arg2, typename Arg3,
typename Arg4>
T *create(Arg1 A1, Arg2 A2, Arg3 A3, Arg4 A4, ProgramStateRef St,
const LocationContext *LCtx) {
static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
"CallEvent subclasses are not all the same size");
return new (allocate()) T(A1, A2, A3, A4, St, LCtx);
}
public:
CallEventManager(llvm::BumpPtrAllocator &alloc) : Alloc(alloc) {}
/// Gets an outside caller given a callee context.
CallEventRef<>
getCaller(const StackFrameContext *CalleeCtx, ProgramStateRef State);
/// Gets a call event for a function call, Objective-C method call,
/// or a 'new' call.
CallEventRef<>
getCall(const Stmt *S, ProgramStateRef State,
const LocationContext *LC);
CallEventRef<>
getSimpleCall(const CallExpr *E, ProgramStateRef State,
const LocationContext *LCtx);
CallEventRef<ObjCMethodCall>
getObjCMethodCall(const ObjCMessageExpr *E, ProgramStateRef State,
const LocationContext *LCtx) {
return create<ObjCMethodCall>(E, State, LCtx);
}
CallEventRef<CXXConstructorCall>
getCXXConstructorCall(const CXXConstructExpr *E, const MemRegion *Target,
ProgramStateRef State, const LocationContext *LCtx) {
return create<CXXConstructorCall>(E, Target, State, LCtx);
}
CallEventRef<CXXInheritedConstructorCall>
getCXXInheritedConstructorCall(const CXXInheritedCtorInitExpr *E,
const MemRegion *Target, ProgramStateRef State,
const LocationContext *LCtx) {
return create<CXXInheritedConstructorCall>(E, Target, State, LCtx);
}
CallEventRef<CXXDestructorCall>
getCXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger,
const MemRegion *Target, bool IsBase,
ProgramStateRef State, const LocationContext *LCtx) {
return create<CXXDestructorCall>(DD, Trigger, Target, IsBase, State, LCtx);
}
CallEventRef<CXXAllocatorCall>
getCXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef State,
const LocationContext *LCtx) {
return create<CXXAllocatorCall>(E, State, LCtx);
}
CallEventRef<CXXDeallocatorCall>
getCXXDeallocatorCall(const CXXDeleteExpr *E, ProgramStateRef State,
const LocationContext *LCtx) {
return create<CXXDeallocatorCall>(E, State, LCtx);
}
};
template <typename T>
CallEventRef<T> CallEvent::cloneWithState(ProgramStateRef NewState) const {
assert(isa<T>(*this) && "Cloning to unrelated type");
static_assert(sizeof(T) == sizeof(CallEvent),
"Subclasses may not add fields");
if (NewState == State)
return cast<T>(this);
CallEventManager &Mgr = State->getStateManager().getCallEventManager();
T *Copy = static_cast<T *>(Mgr.allocate());
cloneTo(Copy);
assert(Copy->getKind() == this->getKind() && "Bad copy");
Copy->State = NewState;
return Copy;
}
inline void CallEvent::Release() const {
assert(RefCount > 0 && "Reference count is already zero.");
--RefCount;
if (RefCount > 0)
return;
CallEventManager &Mgr = State->getStateManager().getCallEventManager();
Mgr.reclaim(this);
this->~CallEvent();
}
} // namespace ento
} // namespace clang
namespace llvm {
// Support isa<>, cast<>, and dyn_cast<> for CallEventRef.
template<class T> struct simplify_type< clang::ento::CallEventRef<T>> {
using SimpleType = const T *;
static SimpleType
getSimplifiedValue(clang::ento::CallEventRef<T> Val) {
return Val.get();
}
};
} // namespace llvm
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H