blob: fff06da22cf3037b90635cacd32a506cbedb50b1 [file] [log] [blame]
//===-- ProfiledCallGraph.h - Profiled Call Graph ----------------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_IPO_PROFILEDCALLGRAPH_H
#define LLVM_TRANSFORMS_IPO_PROFILEDCALLGRAPH_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/Transforms/IPO/SampleContextTracker.h"
#include <queue>
#include <set>
namespace llvm {
namespace sampleprof {
struct ProfiledCallGraphNode;
struct ProfiledCallGraphEdge {
ProfiledCallGraphEdge(ProfiledCallGraphNode *Source,
ProfiledCallGraphNode *Target, uint64_t Weight)
: Source(Source), Target(Target), Weight(Weight) {}
ProfiledCallGraphNode *Source;
ProfiledCallGraphNode *Target;
uint64_t Weight;
// The call destination is the only important data here,
// allow to transparently unwrap into it.
operator ProfiledCallGraphNode *() const { return Target; }
};
struct ProfiledCallGraphNode {
// Sort edges by callee names only since all edges to be compared are from
// same caller. Edge weights are not considered either because for the same
// callee only the edge with the largest weight is added to the edge set.
struct ProfiledCallGraphEdgeComparer {
bool operator()(const ProfiledCallGraphEdge &L,
const ProfiledCallGraphEdge &R) const {
return L.Target->Name < R.Target->Name;
}
};
using edge = ProfiledCallGraphEdge;
using edges = std::set<edge, ProfiledCallGraphEdgeComparer>;
using iterator = edges::iterator;
using const_iterator = edges::const_iterator;
ProfiledCallGraphNode(StringRef FName = StringRef()) : Name(FName) {}
StringRef Name;
edges Edges;
};
class ProfiledCallGraph {
public:
using iterator = ProfiledCallGraphNode::iterator;
// Constructor for non-CS profile.
ProfiledCallGraph(SampleProfileMap &ProfileMap) {
assert(!FunctionSamples::ProfileIsCS &&
"CS flat profile is not handled here");
for (const auto &Samples : ProfileMap) {
addProfiledCalls(Samples.second);
}
}
// Constructor for CS profile.
ProfiledCallGraph(SampleContextTracker &ContextTracker) {
// BFS traverse the context profile trie to add call edges for calls shown
// in context.
std::queue<ContextTrieNode *> Queue;
for (auto &Child : ContextTracker.getRootContext().getAllChildContext()) {
ContextTrieNode *Callee = &Child.second;
addProfiledFunction(ContextTracker.getFuncNameFor(Callee));
Queue.push(Callee);
}
while (!Queue.empty()) {
ContextTrieNode *Caller = Queue.front();
Queue.pop();
FunctionSamples *CallerSamples = Caller->getFunctionSamples();
// Add calls for context.
// Note that callsite target samples are completely ignored since they can
// conflict with the context edges, which are formed by context
// compression during profile generation, for cyclic SCCs. This may
// further result in an SCC order incompatible with the purely
// context-based one, which may in turn block context-based inlining.
for (auto &Child : Caller->getAllChildContext()) {
ContextTrieNode *Callee = &Child.second;
addProfiledFunction(ContextTracker.getFuncNameFor(Callee));
Queue.push(Callee);
// Fetch edge weight from the profile.
uint64_t Weight;
FunctionSamples *CalleeSamples = Callee->getFunctionSamples();
if (!CalleeSamples || !CallerSamples) {
Weight = 0;
} else {
uint64_t CalleeEntryCount = CalleeSamples->getEntrySamples();
uint64_t CallsiteCount = 0;
LineLocation Callsite = Callee->getCallSiteLoc();
if (auto CallTargets = CallerSamples->findCallTargetMapAt(Callsite)) {
SampleRecord::CallTargetMap &TargetCounts = CallTargets.get();
auto It = TargetCounts.find(CalleeSamples->getName());
if (It != TargetCounts.end())
CallsiteCount = It->second;
}
Weight = std::max(CallsiteCount, CalleeEntryCount);
}
addProfiledCall(ContextTracker.getFuncNameFor(Caller),
ContextTracker.getFuncNameFor(Callee), Weight);
}
}
}
iterator begin() { return Root.Edges.begin(); }
iterator end() { return Root.Edges.end(); }
ProfiledCallGraphNode *getEntryNode() { return &Root; }
void addProfiledFunction(StringRef Name) {
if (!ProfiledFunctions.count(Name)) {
// Link to synthetic root to make sure every node is reachable
// from root. This does not affect SCC order.
ProfiledFunctions[Name] = ProfiledCallGraphNode(Name);
Root.Edges.emplace(&Root, &ProfiledFunctions[Name], 0);
}
}
private:
void addProfiledCall(StringRef CallerName, StringRef CalleeName,
uint64_t Weight = 0) {
assert(ProfiledFunctions.count(CallerName));
auto CalleeIt = ProfiledFunctions.find(CalleeName);
if (CalleeIt == ProfiledFunctions.end())
return;
ProfiledCallGraphEdge Edge(&ProfiledFunctions[CallerName],
&CalleeIt->second, Weight);
auto &Edges = ProfiledFunctions[CallerName].Edges;
auto EdgeIt = Edges.find(Edge);
if (EdgeIt == Edges.end()) {
Edges.insert(Edge);
} else if (EdgeIt->Weight < Edge.Weight) {
// Replace existing call edges with same target but smaller weight.
Edges.erase(EdgeIt);
Edges.insert(Edge);
}
}
void addProfiledCalls(const FunctionSamples &Samples) {
addProfiledFunction(Samples.getFuncName());
for (const auto &Sample : Samples.getBodySamples()) {
for (const auto &Target : Sample.second.getCallTargets()) {
addProfiledFunction(Target.first());
addProfiledCall(Samples.getFuncName(), Target.first(), Target.second);
}
}
for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
for (const auto &InlinedSamples : CallsiteSamples.second) {
addProfiledFunction(InlinedSamples.first);
addProfiledCall(Samples.getFuncName(), InlinedSamples.first,
InlinedSamples.second.getEntrySamples());
addProfiledCalls(InlinedSamples.second);
}
}
}
ProfiledCallGraphNode Root;
StringMap<ProfiledCallGraphNode> ProfiledFunctions;
};
} // end namespace sampleprof
template <> struct GraphTraits<ProfiledCallGraphNode *> {
using NodeType = ProfiledCallGraphNode;
using NodeRef = ProfiledCallGraphNode *;
using EdgeType = NodeType::edge;
using ChildIteratorType = NodeType::const_iterator;
static NodeRef getEntryNode(NodeRef PCGN) { return PCGN; }
static ChildIteratorType child_begin(NodeRef N) { return N->Edges.begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->Edges.end(); }
};
template <>
struct GraphTraits<ProfiledCallGraph *>
: public GraphTraits<ProfiledCallGraphNode *> {
static NodeRef getEntryNode(ProfiledCallGraph *PCG) {
return PCG->getEntryNode();
}
static ChildIteratorType nodes_begin(ProfiledCallGraph *PCG) {
return PCG->begin();
}
static ChildIteratorType nodes_end(ProfiledCallGraph *PCG) {
return PCG->end();
}
};
} // end namespace llvm
#endif