blob: 198eeecdee027b44e5e61cd450c11766978b9d95 [file] [log] [blame]
/* SPDX-License-Identifier: (GPL-2.0+ OR MIT) */
/*
* common/cmd_imgread.c
*
* Copyright (C) 2020 Amlogic, Inc. All rights reserved.
*
*/
#include <config.h>
#include <common.h>
#include <amlogic/storage_if.h>
#include <image.h>
#include <android_image.h>
#include <zircon/image.h>
#include <asm/arch/bl31_apis.h>
#include <asm/arch/secure_apb.h>
#include <libfdt.h>
#include <partition_table.h>
#include <malloc.h>
#include <emmc_partitions.h>
#include <fs.h>
#include <amlogic/aml_efuse.h>
#if defined(CONFIG_AML_NAND) || defined (CONFIG_AML_MTD)
#include <nand.h>
#endif
#define debugP(fmt...) //printf("[Dbg imgread]L%d:", __LINE__),printf(fmt)
#define errorP(fmt...) printf("Err imgread(L%d):", __LINE__),printf(fmt)
#define wrnP(fmt...) printf("wrn:"fmt)
#define MsgP(fmt...) printf("[imgread]"fmt)
#define IMG_PRELOAD_SZ (1U<<20) //Total read 1M at first to read the image header
#define PIC_PRELOAD_SZ (8U<<10) //Total read 4k at first to read the image header
#define RES_OLD_FMT_READ_SZ (8U<<20)
typedef struct __aml_enc_blk{
unsigned int nOffset;
unsigned int nRawLength;
unsigned int nSigLength;
unsigned int nAlignment;
unsigned int nTotalLength;
unsigned char szPad[12];
unsigned char szSHA2IMG[32];
unsigned char szSHA2KeyID[32];
}t_aml_enc_blk;
#define AML_SECU_BOOT_IMG_HDR_MAGIC "AMLSECU!"
#define AML_SECU_BOOT_IMG_HDR_MAGIC_SIZE (8)
#define AML_SECU_BOOT_IMG_HDR_VESRION (0x0905)
typedef struct {
unsigned char magic[AML_SECU_BOOT_IMG_HDR_MAGIC_SIZE];//magic to identify whether it is a encrypted boot image
unsigned int version; //ersion for this header struct
unsigned int nBlkCnt;
unsigned char szTimeStamp[16];
t_aml_enc_blk amlKernel;
t_aml_enc_blk amlRamdisk;
t_aml_enc_blk amlDTB;
}AmlEncryptBootImgInfo;
typedef struct _boot_img_hdr_secure_boot
{
unsigned char reserve4ImgHdr[1024];
AmlEncryptBootImgInfo encrypteImgInfo;
}AmlSecureBootImgHeader;
typedef struct{
unsigned char reserve4ImgHdr[2048];
AmlEncryptBootImgInfo encrypteImgInfo;
}AmlSecureBootImg9Header;
#define COMPILE_TYPE_ASSERT(expr, t) typedef char t[(expr) ? 1 : -1]
COMPILE_TYPE_ASSERT(2048 >= sizeof(AmlSecureBootImgHeader), _cc);
#ifndef CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK
static int is_andr_9_image(void* pBuffer)
{
int nReturn = 0;
p_boot_img_hdr_t pAHdr = NULL;
if (!pBuffer)
goto exit;
pAHdr = (p_boot_img_hdr_t)pBuffer;
if (pAHdr->header_version)
nReturn = 1;
exit:
return nReturn;
}
#endif
typedef struct {
uint32_t magic;
uint32_t version;
uint32_t flags;
uint32_t img_version;
uint32_t img_size;
uint32_t img_offset;
uint8_t img_hash[32];
uint8_t reserved[200];
uint8_t rsa_sig[256];
} aml_boot_header_t;
#ifndef CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK
static int _aml_get_secure_boot_kernel_size(const void* pLoadaddr, unsigned* pTotalEncKernelSz)
{
const AmlEncryptBootImgInfo* amlEncrypteBootimgInfo = 0;
int rc = 0;
unsigned secureKernelImgSz = 2048;
unsigned int nBlkCnt = 0;
const t_aml_enc_blk* pBlkInf = NULL;
unsigned char *pAndHead = (unsigned char *)pLoadaddr;
unsigned int isSecure = IS_FEAT_BOOT_VERIFY();
rc = __LINE__;
if (!pLoadaddr || !pTotalEncKernelSz)
return rc;
if (isSecure)
{
ulong nCheckOffset = 0;
#ifndef CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK
nCheckOffset = aml_sec_boot_check(AML_D_Q_IMG_SIG_HDR_SIZE,GXB_IMG_LOAD_ADDR,GXB_EFUSE_PATTERN_SIZE,GXB_IMG_DEC_ALL);
#endif /*CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK*/
if (AML_D_Q_IMG_SIG_HDR_SIZE == (nCheckOffset & 0xFFFF) &&
((nCheckOffset>>16) & 0xFFFF))
{
if (is_andr_9_image(pAndHead))
{
*pTotalEncKernelSz = (((aml_boot_header_t *)(pAndHead+secureKernelImgSz))->img_size)+secureKernelImgSz;
}
else
*pTotalEncKernelSz = (((aml_boot_header_t *)pLoadaddr)->img_size);
return 0;
}
}
if (is_andr_9_image(pAndHead))
{
secureKernelImgSz = 4096;
}
amlEncrypteBootimgInfo = (AmlEncryptBootImgInfo*)(pAndHead + (secureKernelImgSz>>1));
nBlkCnt = amlEncrypteBootimgInfo->nBlkCnt;
*pTotalEncKernelSz = 0;
rc = memcmp(AML_SECU_BOOT_IMG_HDR_MAGIC, amlEncrypteBootimgInfo->magic, AML_SECU_BOOT_IMG_HDR_MAGIC_SIZE);
if (rc) { // img NOT singed
if (isSecure) {
errorP("img NOT signed but secure boot enabled\n");
return __LINE__;
}
*pTotalEncKernelSz = 0;
return 0;
} else { //img signed
if (!isSecure) {
errorP("Img signed but secure boot NOT enabled\n");
return __LINE__;
}
}
if (AML_SECU_BOOT_IMG_HDR_VESRION != amlEncrypteBootimgInfo->version) {
errorP("magic ok but version err, err ver=0x%x\n", amlEncrypteBootimgInfo->version);
return __LINE__;
}
MsgP("szTimeStamp[%s]\n", (char*)&amlEncrypteBootimgInfo->szTimeStamp);
debugP("nBlkCnt=%d\n", nBlkCnt);
for (pBlkInf = &amlEncrypteBootimgInfo->amlKernel;nBlkCnt--; ++pBlkInf)
{
const unsigned int thisBlkLen = pBlkInf->nTotalLength;
debugP("thisBlkLen=0x%x\n", thisBlkLen);
secureKernelImgSz += thisBlkLen;
}
*pTotalEncKernelSz = secureKernelImgSz;
return 0;
}
#endif
static int do_image_read_dtb(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
boot_img_hdr_t *hdr_addr = NULL;
char* partName = argv[1];
unsigned char* loadaddr = 0;
int nReturn = __LINE__;
uint64_t lflashReadOff = 0;
unsigned int nFlashLoadLen = 0;
unsigned secureKernelImgSz = 0;
const int preloadSz = 4096;
int pageSz = 0;
if (2 < argc) {
loadaddr = (unsigned char*)simple_strtoul(argv[2], NULL, 16);
}
else{
loadaddr = (unsigned char *)getenv_hex("loadaddr", 0);
}
hdr_addr = (boot_img_hdr_t*)loadaddr;
if (3 < argc) lflashReadOff = simple_strtoull(argv[3], NULL, 0) ;
nFlashLoadLen = preloadSz;//head info is one page size == 2k
debugP("sizeof preloadSz=%u\n", nFlashLoadLen);
nReturn = store_read_ops((unsigned char*)partName, loadaddr, lflashReadOff, nFlashLoadLen );
if (nReturn) {
errorP("Fail to read 0x%xB from part[%s] at offset 0\n", nFlashLoadLen, partName);
return __LINE__;
}
if (IMAGE_FORMAT_ANDROID != genimg_get_format(hdr_addr)) {
errorP("Fmt unsupported! only support 0x%x\n", IMAGE_FORMAT_ANDROID);
return __LINE__;
}
if (is_android_r_image((void *) hdr_addr)) {
const int preloadSz_r = 0x1000;
int rc_r = 0;
char *slot_name;
slot_name = getenv("slot-suffixes");
if (strcmp(slot_name, "0") == 0)
strcpy(partName, "vendor_boot_a");
else if (strcmp(slot_name, "1") == 0)
strcpy(partName, "vendor_boot_b");
else
strcpy(partName, "vendor_boot");
printf("partName = %s \n", partName);
nFlashLoadLen = preloadSz_r;//head info is one page size == 4k
debugP("sizeof preloadSz=%u\n", nFlashLoadLen);
nReturn = store_read_ops((unsigned char*)partName, loadaddr, lflashReadOff, nFlashLoadLen);
if (nReturn) {
errorP("Fail to read 0x%xB from part[%s] at offset 0\n", nFlashLoadLen, partName);
return __LINE__;
}
p_vendor_boot_img_hdr_t pVendorIMGHDR = (p_vendor_boot_img_hdr_t)loadaddr;
rc_r = vendor_boot_image_check_header(pVendorIMGHDR);
if (!rc_r) {
unsigned long ramdisk_size_r,dtb_size_r;
pageSz = pVendorIMGHDR->page_size;
/* Android R's vendor_boot partition include ramdisk and dtb */
ramdisk_size_r = ALIGN(pVendorIMGHDR->vendor_ramdisk_size, pageSz);
dtb_size_r = ALIGN(pVendorIMGHDR->dtb_size, pageSz);
nFlashLoadLen = dtb_size_r;
lflashReadOff = ramdisk_size_r + 0x1000;
debugP("ramdisk_size_r 0x%x, totalSz 0x%lx\n", pVendorIMGHDR->vendor_ramdisk_size, ramdisk_size_r);
debugP("dtb_size_r 0x%x, totalSz 0x%lx\n", pVendorIMGHDR->dtb_size, dtb_size_r);
debugP("lflashReadOff=0x%llx\n", lflashReadOff);
debugP("nFlashLoadLen=0x%x\n", nFlashLoadLen);
}else {
errorP("check vendor_boot header error\n");
return __LINE__;
}
} else {
#ifndef CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK
nReturn = _aml_get_secure_boot_kernel_size(loadaddr, &secureKernelImgSz);
if (nReturn) {
errorP("Fail in _aml_get_secure_boot_kernel_size, rc=%d\n", nReturn);
return __LINE__;
}
#endif
pageSz = hdr_addr->page_size;
/*lflashReadOff += secureKernelImgSz ? sizeof(AmlSecureBootImgHeader) : pageSz;*/
lflashReadOff += pageSz;
lflashReadOff += ALIGN(hdr_addr->kernel_size, pageSz);
lflashReadOff += ALIGN(hdr_addr->ramdisk_size, pageSz);
nFlashLoadLen = ALIGN(hdr_addr->second_size, pageSz);
}
debugP("lflashReadOff=0x%llx, nFlashLoadLen=0x%x\n", lflashReadOff, nFlashLoadLen);
debugP("page sz %u\n", hdr_addr->page_size);
if (!nFlashLoadLen) {
errorP("NO second part in kernel image\n");
return __LINE__;
}
unsigned long rdOffAlign = lflashReadOff;
unsigned char* dtImgAddr = (unsigned char*)loadaddr + lflashReadOff;
#ifdef CONFIG_AML_MTD
if (NAND_BOOT_FLAG == device_boot_flag) {
const nand_info_t * mtdPartInf = get_mtd_device_nm(partName);
if (IS_ERR(mtdPartInf)) {
errorP("device(%s) is err\n", partName);
return CMD_RET_FAILURE;
}
const unsigned pageShift = mtdPartInf->writesize_shift;
const unsigned writesz = mtdPartInf->writesize;
MsgP("MTD pageShift %d, writesz 0x%x\n", pageShift, writesz);
rdOffAlign = (lflashReadOff >> pageShift) << pageShift;//align 4k page for mtd nand, 512 for emmc
nFlashLoadLen += writesz;
dtImgAddr = (unsigned char*)loadaddr + rdOffAlign;
}
#endif//#ifdef CONFIG_AML_MTD
nReturn = store_read_ops((unsigned char*)partName, dtImgAddr, rdOffAlign, nFlashLoadLen);
if (nReturn) {
errorP("Fail to read 0x%xB from part[%s] at offset 0x%x\n", nFlashLoadLen, partName, (unsigned int)lflashReadOff);
return __LINE__;
}
#ifdef CONFIG_AML_MTD
if (NAND_BOOT_FLAG == device_boot_flag) {
flush_cache((unsigned long)dtImgAddr,(unsigned long)nFlashLoadLen);
}
#endif
dtImgAddr = (unsigned char*)loadaddr + lflashReadOff;
if (secureKernelImgSz) {
#ifndef CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK
nReturn = aml_sec_boot_check(AML_D_P_IMG_DECRYPT, (unsigned long)loadaddr, GXB_IMG_SIZE, GXB_IMG_DEC_DTB); //GXB_IMG_DEC_DTB GXB_IMG_DEC_ALL
if (nReturn) {
errorP("\n[dtb]aml log : Sig Check is %d\n",nReturn);
return __LINE__;
}
#endif /*CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK*/
MsgP("Enc dtb sz 0x%x\n", nFlashLoadLen);
}
char* dtDestAddr = (char*)loadaddr; //simple_strtoull(getenv("dtb_mem_addr"), NULL, 0);
unsigned long fdtAddr = (unsigned long)dtImgAddr;
#ifdef CONFIG_MULTI_DTB
extern unsigned long get_multi_dt_entry(unsigned long fdt_addr);
fdtAddr = get_multi_dt_entry((unsigned long)dtImgAddr);
if (!fdtAddr) {
errorP("Fail in fdt chk\n");
return __LINE__;
}
#endif// #ifdef CONFIG_MULTI_DTB
nReturn = fdt_check_header((char*)fdtAddr);
if (nReturn) {
errorP("Fail in fdt check header\n");
return CMD_RET_FAILURE;
}
const unsigned fdtsz = fdt_totalsize((char*)fdtAddr);
memmove(dtDestAddr, (char*)fdtAddr, fdtsz);
return nReturn;
}
#if defined(CONFIG_FIT)
static int _fit_img_get_img_sz(void* hdr, unsigned* imgSz)
{
debugP("hdr 0x%p\n", hdr);
if (fdt_path_offset(hdr, FIT_IMAGES_PATH) < 0) {
errorP("Wrong FIT format: no images parent node\n");
return 0;
}
*imgSz = fdt_totalsize(hdr);
MsgP("fit img sz 0x%x\n", *imgSz);
return 0;
}
#endif//#if defined(CONFIG_FIT)
uint32_t get_rsv_mem_size(void)
{
uint32_t rsv_start, reg_size, rsv_size;
#if defined(P_AO_SEC_GP_CFG3)
rsv_start = *((volatile uint32_t *)((uintptr_t)(P_AO_SEC_GP_CFG5)));
reg_size = *((volatile uint32_t *)((uintptr_t)(P_AO_SEC_GP_CFG3)));
#elif defined(SYSCTRL_SEC_STATUS_REG15)
rsv_start = *((volatile uint32_t *)((uintptr_t)(SYSCTRL_SEC_STATUS_REG17)));
reg_size = *((volatile uint32_t *)((uintptr_t)(SYSCTRL_SEC_STATUS_REG15)));
#endif
if ((reg_size >> 16) & 0xff)
rsv_size = (((reg_size & 0xffff0000) >> 16) << 16) +
((reg_size & 0x0000ffff) << 16);
else
rsv_size = (((reg_size & 0xffff0000) >> 16) << 10) +
((reg_size & 0x0000ffff) << 10);
return (rsv_start + rsv_size);
}
static int do_image_read_kernel(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned int kernel_size = 0;
unsigned int ramdisk_size = 0;
boot_img_hdr_t * hdr_addr = NULL;
int genFmt = 0;
unsigned actualBootImgSz = 0;
const char* const partName = argv[1];
unsigned char* loadaddr = 0;
int rc = 0;
uint64_t flashReadOff = 0;
unsigned secureKernelImgSz = 0;
char *upgrade_step_s = NULL;
bool cache_flag = false;
unsigned int dtbSz = 0;
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
image_header_t *hdr;
#endif
ulong kernelEndAddr = 0;
ulong kernelLoadAddr = 0;
ulong dtbLoadAddr = 0;
ulong secMemSize = get_rsv_mem_size();
char strAddr[128] = {0};
if (argc > 2) {
loadaddr = (unsigned char *)simple_strtoul(argv[2], NULL, 16);
setenv("loadaddr", (const char *)argv[2]);
} else {
loadaddr = (unsigned char *)getenv_hex("loadaddr", 0);
}
ulong nCheckOffset = 0;
#ifndef CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK
nCheckOffset = aml_sec_boot_check(AML_D_Q_IMG_SIG_HDR_SIZE,GXB_IMG_LOAD_ADDR,GXB_EFUSE_PATTERN_SIZE,GXB_IMG_DEC_ALL);
#endif /*CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK*/
if (AML_D_Q_IMG_SIG_HDR_SIZE == (nCheckOffset & 0xFFFF))
nCheckOffset = (nCheckOffset >> 16) & 0xFFFF;
else
nCheckOffset = 0;
debugP("nCheckOffset 0x%lx\n", nCheckOffset);
hdr_addr = (boot_img_hdr_t*)(loadaddr + nCheckOffset);
if (3 < argc) flashReadOff = simple_strtoull(argv[3], NULL, 0);
upgrade_step_s = getenv("upgrade_step");
if (upgrade_step_s && (strcmp(upgrade_step_s, "3") == 0) &&
(strcmp(partName, "recovery") == 0)) {
loff_t len_read;
MsgP("read recovery.img from cache\n");
rc = fs_set_blk_dev("mmc", "1:2", FS_TYPE_EXT);
if (rc) {
errorP("Fail to set blk dev cache\n");
cache_flag = false;
}
if (rc == 0) {
rc = fs_read("/recovery/recovery.img", (unsigned long)loadaddr,
flashReadOff, IMG_PRELOAD_SZ, &len_read);
if (rc < 0 || IMG_PRELOAD_SZ != len_read) {
errorP("Fail to read recovery.img from cache\n");
cache_flag = false;
} else {
cache_flag = true;
}
}
}
if (!cache_flag) {
MsgP("read from part: %s\n", partName);
rc = store_read_ops((unsigned char *)partName, loadaddr,
flashReadOff, IMG_PRELOAD_SZ);
if (rc) {
errorP("Fail to read 0x%xB from part[%s] at offset 0\n",
IMG_PRELOAD_SZ, partName);
return __LINE__;
}
}
flashReadOff += IMG_PRELOAD_SZ;
genFmt = genimg_get_format(hdr_addr);
#if defined(CONFIG_FIT)
if (IMAGE_FORMAT_FIT == genFmt) {
rc = _fit_img_get_img_sz(hdr_addr, &actualBootImgSz);
if (rc) {
errorP("Fail in check fit image header\n"); return -1;
}
goto load_left;
}
#endif//#if defined(CONFIG_FIT)
#if defined(CONFIG_ZIRCON_BOOT_IMAGE)
if (genFmt == IMAGE_FORMAT_ZIRCON)
{
const zbi_header_t *zbi = (zbi_header_t*)hdr_addr;
actualBootImgSz = zbi->length + sizeof(*zbi);
goto load_left;
}
#endif//#if defined(CONFIG_ZIRCON_BOOT_IMAGE)
if (is_android_r_image((void *) hdr_addr)) {
extern p_vendor_boot_img_t p_vender_boot_img;
p_boot_img_hdr_v3_t hdr_addr_v3 = NULL;
char partname_init[32] = {0};
u64 rc_init;
char *slot_name;
u64 size;
init_boot_ramdisk_size = 0;
slot_name = getenv("slot-suffixes");
if (slot_name && (strcmp(slot_name, "0") == 0))
strcpy((char *)partname_init, "init_boot_a");
else if (slot_name && (strcmp(slot_name, "1") == 0))
strcpy((char *)partname_init, "init_boot_b");
else
strcpy((char *)partname_init, "init_boot");
rc_init = store_get_partition_size((unsigned char *)partname_init, &size);
/*free vendor buffer first*/
if (p_vender_boot_img)
{
free(p_vender_boot_img);
p_vender_boot_img = 0;
}
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
//check image format for rtos
hdr = (image_header_t *)loadaddr;
if (genFmt == IMAGE_FORMAT_LEGACY
&& image_check_type(hdr, IH_TYPE_STANDALONE) ) {
actualBootImgSz = image_get_image_size(hdr);
goto load_left_r;
}
#endif /* CONFIG_IMAGE_FORMAT_LEGACY */
if (!nCheckOffset) {
if (IMAGE_FORMAT_ANDROID != genFmt) {
errorP("Fmt unsupported!genFmt 0x%x != 0x%x\n", genFmt, IMAGE_FORMAT_ANDROID);
return __LINE__;
}
}
hdr_addr_v3 = (p_boot_img_hdr_v3_t)hdr_addr;
kernel_size = ALIGN(hdr_addr_v3->kernel_size,0x1000);
ramdisk_size = ALIGN(hdr_addr_v3->ramdisk_size,0x1000);
MsgP("kernel_size 0x%x, totalSz 0x%x\n", hdr_addr_v3->kernel_size, kernel_size);
MsgP("ramdisk_size 0x%x, totalSz 0x%x\n", hdr_addr_v3->ramdisk_size, ramdisk_size);
actualBootImgSz = kernel_size + ramdisk_size + 0x1000;
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
load_left_r:
#endif
if (actualBootImgSz > IMG_PRELOAD_SZ) {
const unsigned leftSz = actualBootImgSz - IMG_PRELOAD_SZ;
/* auto adjust kernel image load address avoid
* touch iotrace data and secureOS memory space
*/
kernelLoadAddr =
getenv_ulong("loadaddr", 16, KERNEL_DEFAULT_LOAD_ADDR);
kernelEndAddr = kernelLoadAddr + actualBootImgSz;
dtbLoadAddr = getenv_ulong("dtb_mem_addr", 16, DTB_LOAD_ADDR);
if (kernelEndAddr > IOTRACE_LOAD_ADDR) {
kernelLoadAddr = kernelLoadAddr -
ALIGN((kernelEndAddr - IOTRACE_LOAD_ADDR), LOAD_ADDR_ALIGN_LENGTH);
if (kernelLoadAddr <= dtbLoadAddr && kernelLoadAddr < secMemSize)
kernelLoadAddr = KERNEL_LOAD_HIGH_ADDR;
sprintf(strAddr, "%lx", kernelLoadAddr);
memmove((void *)kernelLoadAddr, (void *)loadaddr, IMG_PRELOAD_SZ);
setenv("loadaddr", strAddr);
loadaddr = (unsigned char *)
getenv_ulong("loadaddr", 16, kernelLoadAddr);
printf("kernel overlap iotrace, reset kernelLoadAddr = 0x%lx\n",
kernelLoadAddr);
}
debugP("Left sz 0x%x\n", leftSz);
if (upgrade_step_s && (strcmp(upgrade_step_s, "3") == 0) &&
(strcmp(partName, "recovery") == 0)) {
loff_t len_read;
MsgP("read recovery.img from cache\n");
rc = fs_set_blk_dev("mmc", "1:2", FS_TYPE_EXT);
if (rc) {
errorP("Fail to set blk dev cache\n");
cache_flag = false;
}
if (rc == 0) {
rc = fs_read("/recovery/recovery.img",
(unsigned long)loadaddr,
0, actualBootImgSz, &len_read);
if (rc < 0 || actualBootImgSz != len_read) {
errorP("Fail to read recovery.img from cache\n");
cache_flag = false;
} else {
cache_flag = true;
}
}
}
if (!cache_flag) {
MsgP("read from part: %s\n", partName);
rc = store_read_ops((unsigned char *)partName,
loadaddr + IMG_PRELOAD_SZ, flashReadOff, leftSz);
if (rc) {
errorP("Fail to read 0x%xB from part[%s] at offset 0x%x\n",
leftSz, partName, IMG_PRELOAD_SZ);
return __LINE__;
}
if (rc_init == 0) {
MsgP("read from part: %s\n", partname_init);
unsigned int nflashloadlen_init = 0;
const int preloadsz_init = 0x1000 * 2;
unsigned char *pbuffpreload_init = 0;
nflashloadlen_init = preloadsz_init;
MsgP("sizeof preloadSz=%u\n", nflashloadlen_init);
pbuffpreload_init = malloc(preloadsz_init);
if (!pbuffpreload_init) {
printf("Fail to allocate memory for %s!\n",
partname_init);
return __LINE__;
}
rc = store_read_ops((unsigned char *)partname_init,
pbuffpreload_init, 0,
nflashloadlen_init);
if (rc) {
errorP("Fail to read 0x%xB from part[%s]\n",
nflashloadlen_init, partname_init);
free(pbuffpreload_init);
pbuffpreload_init = 0;
return __LINE__;
}
p_boot_img_hdr_v3_t pinitbootimghdr;
pinitbootimghdr = (p_boot_img_hdr_v3_t)pbuffpreload_init;
ramdisk_size = ALIGN(pinitbootimghdr->ramdisk_size,
0x1000);
MsgP("ramdisk_size 0x%x, totalSz 0x%x\n",
pinitbootimghdr->ramdisk_size, ramdisk_size);
MsgP("init_boot header_version = %d\n",
pinitbootimghdr->header_version);
init_boot_ramdisk_size = pinitbootimghdr->ramdisk_size;
if (init_boot_ramdisk_size != 0) {
MsgP("read ramdisk from part: %s\n", partname_init);
rc = store_read_ops((unsigned char *)partname_init,
loadaddr + kernel_size + BOOT_IMG_V3_HDR_SIZE,
BOOT_IMG_V3_HDR_SIZE,
ramdisk_size);
}
if (rc) {
errorP("Fail to read 0x%xB from part[%s]\n",
ramdisk_size, partname_init);
free(pbuffpreload_init);
pbuffpreload_init = 0;
return __LINE__;
}
free(pbuffpreload_init);
pbuffpreload_init = 0;
}
}
}
debugP("totalSz=0x%x\n", actualBootImgSz);
/*
because secure boot will use DMA which need disable MMU temp
here must update the cache, otherwise nand will fail (eMMC is OK)
*/
flush_cache((unsigned long)loadaddr,(unsigned long)actualBootImgSz);
/*
Android R need read vendor_boot partition
define Android R variable add suffix xxx_r
*/
char partName_r[32] = {0};
int nReturn_r = __LINE__;
uint64_t lflashReadOff_r = 0;
unsigned int nFlashLoadLen_r = 0;
const int preloadSz_r = 0x1000;
unsigned char * pBuffPreload = 0;
int rc_r = 0;
if (slot_name && (strcmp(slot_name, "0") == 0))
strcpy(partName_r, "vendor_boot_a");
else if (slot_name && (strcmp(slot_name, "1") == 0))
strcpy(partName_r, "vendor_boot_b");
else
strcpy(partName_r, "vendor_boot");
MsgP("partName_r = %s\n", partName_r);
nFlashLoadLen_r = preloadSz_r; //head info is one page size == 4k
debugP("sizeof preloadSz=%u\n", nFlashLoadLen_r);
pBuffPreload = malloc(preloadSz_r);
if (!pBuffPreload)
{
printf("aml log : system error! Fail to allocate memory for %s!\n",partName_r);
return __LINE__;
}
if (upgrade_step_s && (strcmp(upgrade_step_s, "3") == 0) &&
(strcmp(partName_r, "vendor_boot") == 0)) {
loff_t len_read;
MsgP("read vendor_boot.img from cache\n");
rc = fs_set_blk_dev("mmc", "1:2", FS_TYPE_EXT);
if (rc) {
errorP("Fail to set blk dev cache\n");
cache_flag = false;
}
if (rc == 0) {
rc = fs_read("/recovery/vendor_boot.img",
(unsigned long)pBuffPreload,
lflashReadOff_r, nFlashLoadLen_r, &len_read);
if (rc < 0 || nFlashLoadLen_r != len_read) {
errorP("Fail to read vendor_boot.img from cache\n");
cache_flag = false;
} else {
cache_flag = true;
}
}
}
if (!cache_flag) {
MsgP("read from part: %s\n", partName_r);
nReturn_r = store_read_ops((unsigned char *)partName_r, pBuffPreload,
lflashReadOff_r, nFlashLoadLen_r);
if (nReturn_r) {
errorP("Fail to read 0x%xB from part[%s] at offset 0\n",
nFlashLoadLen_r, partName_r);
free(pBuffPreload);
pBuffPreload = 0;
return __LINE__;
}
}
p_vendor_boot_img_hdr_t pVendorIMGHDR = (p_vendor_boot_img_hdr_t)pBuffPreload;
rc_r = vendor_boot_image_check_header(pVendorIMGHDR);
if (!rc_r) {
unsigned long ramdisk_size_r,dtb_size_r;
const int pageSz_r = pVendorIMGHDR->page_size;
/* Android R's vendor_boot partition include ramdisk and dtb */
ramdisk_size_r = ALIGN(pVendorIMGHDR->vendor_ramdisk_size, pageSz_r);
dtb_size_r = ALIGN(pVendorIMGHDR->dtb_size, pageSz_r);
nFlashLoadLen_r = ramdisk_size_r + dtb_size_r + 0x1000;
debugP("ramdisk_size_r 0x%x, totalSz 0x%lx\n", pVendorIMGHDR->vendor_ramdisk_size, ramdisk_size_r);
debugP("dtb_size_r 0x%x, totalSz 0x%lx\n", pVendorIMGHDR->dtb_size, dtb_size_r);
if (nFlashLoadLen_r > preloadSz_r)
{
free(pBuffPreload);
pBuffPreload=malloc(nFlashLoadLen_r);
if (!pBuffPreload)
return __LINE__;
if (upgrade_step_s && (strcmp(upgrade_step_s, "3") == 0) &&
(strcmp(partName_r, "vendor_boot") == 0)) {
loff_t len_read;
MsgP("read vendor_boot.img from cache\n");
rc = fs_set_blk_dev("mmc", "1:2", FS_TYPE_EXT);
if (rc) {
errorP("Fail to set blk dev cache\n");
cache_flag = false;
}
if (rc == 0) {
rc = fs_read("/recovery/vendor_boot.img",
(unsigned long)pBuffPreload,
lflashReadOff_r, nFlashLoadLen_r,
&len_read);
if (rc < 0 || nFlashLoadLen_r != len_read) {
errorP("Fail to read from cache\n");
cache_flag = false;
} else {
cache_flag = true;
}
}
}
if (!cache_flag) {
MsgP("read from part: %s\n", partName_r);
rc_r = store_read_ops((unsigned char *)partName_r,
pBuffPreload,
lflashReadOff_r, nFlashLoadLen_r);
if (rc_r) {
errorP("Fail read 0x%xB from part[%s] at 0x%x\n",
(unsigned int)nFlashLoadLen_r, partName_r,
(unsigned int)lflashReadOff_r);
free(pBuffPreload);
pBuffPreload = 0;
return __LINE__;
}
}
}
debugP("totalSz=0x%x\n", nFlashLoadLen_r);
flush_cache((unsigned long)pBuffPreload,nFlashLoadLen_r);
p_vender_boot_img = (p_vendor_boot_img_t)pBuffPreload;
}
else
{
free(pBuffPreload);
pBuffPreload=0;
}
} /*ANDROID R*/
else {
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
//check image format for rtos
genFmt = genimg_get_format(loadaddr);
hdr = (image_header_t *)loadaddr;
if (genFmt == IMAGE_FORMAT_LEGACY
&& image_check_type(hdr, IH_TYPE_STANDALONE) ) {
actualBootImgSz = image_get_image_size(hdr);
goto load_left;
}
#endif /* CONFIG_IMAGE_FORMAT_LEGACY */
if (!nCheckOffset)
{
genFmt = genimg_get_format(hdr_addr);
if (IMAGE_FORMAT_ANDROID != genFmt) {
errorP("Fmt unsupported!genFmt 0x%x != 0x%x\n", genFmt, IMAGE_FORMAT_ANDROID);
return __LINE__;
}
}
//Check if encrypted image
#ifndef CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK
rc = _aml_get_secure_boot_kernel_size(loadaddr, &secureKernelImgSz);
if (rc) {
errorP("Fail in _aml_get_secure_boot_kernel_size, rc=%d\n", rc);
return __LINE__;
}
#endif /* CONFIG_SKIP_KERNEL_DTB_SECBOOT_CHECK */
if (secureKernelImgSz)
{
actualBootImgSz = secureKernelImgSz + nCheckOffset;
MsgP("secureKernelImgSz=0x%x\n", actualBootImgSz);
}
else
{
kernel_size = (hdr_addr->kernel_size + (hdr_addr->page_size-1)+hdr_addr->page_size)&(~(hdr_addr->page_size -1));
ramdisk_size = (hdr_addr->ramdisk_size + (hdr_addr->page_size-1))&(~(hdr_addr->page_size -1));
dtbSz = hdr_addr->second_size;
actualBootImgSz = kernel_size + ramdisk_size + dtbSz;
debugP("kernel_size 0x%x, page_size 0x%x, totalSz 0x%x\n", hdr_addr->kernel_size, hdr_addr->page_size, kernel_size);
debugP("ramdisk_size 0x%x, totalSz 0x%x\n", hdr_addr->ramdisk_size, ramdisk_size);
debugP("dtbSz 0x%x, Total actualBootImgSz 0x%x\n", dtbSz, actualBootImgSz);
}
#if defined(CONFIG_IMAGE_FORMAT_LEGACY) || defined(CONFIG_FIT)
load_left:
#endif
if (actualBootImgSz > IMG_PRELOAD_SZ)
{
const unsigned leftSz = actualBootImgSz - IMG_PRELOAD_SZ;
/* auto adjust kernel image load address avoid
* touch iotrace data and secureOS memory space
*/
kernelLoadAddr =
getenv_ulong("loadaddr", 16, KERNEL_DEFAULT_LOAD_ADDR);
kernelEndAddr = kernelLoadAddr + actualBootImgSz;
dtbLoadAddr = getenv_ulong("dtb_mem_addr", 16, DTB_LOAD_ADDR);
if (kernelEndAddr > IOTRACE_LOAD_ADDR && kernelLoadAddr < secMemSize) {
kernelLoadAddr = kernelLoadAddr -
ALIGN((kernelEndAddr - IOTRACE_LOAD_ADDR), LOAD_ADDR_ALIGN_LENGTH);
if (kernelLoadAddr <= dtbLoadAddr)
kernelLoadAddr = KERNEL_LOAD_HIGH_ADDR;
sprintf(strAddr, "%lx", kernelLoadAddr);
memmove((void *)kernelLoadAddr, (void *)loadaddr, IMG_PRELOAD_SZ);
setenv("loadaddr", strAddr);
loadaddr = (unsigned char *)
getenv_ulong("loadaddr", 16, kernelLoadAddr);
printf("kernel overlap iotrace, reset kernelLoadAddr = 0x%lx\n",
kernelLoadAddr);
}
debugP("Left sz 0x%x\n", leftSz);
rc = store_read_ops((unsigned char*)partName, loadaddr + IMG_PRELOAD_SZ, flashReadOff, leftSz);
if (rc) {
errorP("Fail to read 0x%xB from part[%s] at offset 0x%x\n", leftSz, partName, IMG_PRELOAD_SZ);
return __LINE__;
}
}
debugP("totalSz=0x%x\n", actualBootImgSz);
//because secure boot will use DMA which need disable MMU temp
//here must update the cache, otherwise nand will fail (eMMC is OK)
flush_cache((unsigned long)loadaddr,(unsigned long)actualBootImgSz);
}
#if defined(CONFIG_FIT)
if (IMAGE_FORMAT_FIT == genFmt) {
//fit_print_contents(hdr_addr);
if (!fit_all_image_verify(hdr_addr)) {
errorP("Bad hash in FIT image!\n");
return -__LINE__;
}
}
#endif// #if defined(CONFIG_FIT)
return 0;
}
#define AML_RES_IMG_VERSION_V1 (0x01)
#define AML_RES_IMG_VERSION_V2 (0x02)
#define AML_RES_IMG_V1_MAGIC_LEN 8
#define AML_RES_IMG_V1_MAGIC "AML_RES!"//8 chars
#define AML_RES_IMG_ITEM_ALIGN_SZ 16
#define AML_RES_IMG_HEAD_SZ (AML_RES_IMG_ITEM_ALIGN_SZ * 4)//64
#define AML_RES_ITEM_HEAD_SZ (AML_RES_IMG_ITEM_ALIGN_SZ * 4)//64
//typedef for amlogic resource image
#pragma pack(push, 4)
typedef struct {
__u32 crc; //crc32 value for the resouces image
__s32 version;//current version is 0x01
__u8 magic[AML_RES_IMG_V1_MAGIC_LEN]; //resources images magic
__u32 imgSz; //total image size in byte
__u32 imgItemNum;//total item packed in the image
__u32 alignSz;//AML_RES_IMG_ITEM_ALIGN_SZ
__u8 reserv[AML_RES_IMG_HEAD_SZ - 8 * 3 - 4];
}AmlResImgHead_t;
#pragma pack(pop)
#define LOGO_OLD_FMT_READ_SZ (8U<<20)//if logo format old, read 8M
static int img_res_check_log_header(const AmlResImgHead_t* pResImgHead)
{
int rc = 0;
rc = memcmp(pResImgHead->magic, AML_RES_IMG_V1_MAGIC, AML_RES_IMG_V1_MAGIC_LEN);
if (rc) {
debugP("Magic error for res\n");
return 1;
}
if (AML_RES_IMG_VERSION_V2 != pResImgHead->version) {
errorP("res version 0x%x != 0x%x\n", pResImgHead->version, AML_RES_IMG_VERSION_V2);
return 2;
}
return 0;
}
static int do_image_read_res(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
const char* const partName = argv[1];
unsigned char* loadaddr = 0;
int rc = 0;
AmlResImgHead_t* pResImgHead = NULL;
unsigned totalSz = 0;
uint64_t flashReadOff = 0;
if (2 < argc) {
loadaddr = (unsigned char*)simple_strtoul(argv[2], NULL, 16);
}
else{
loadaddr = (unsigned char *)getenv_hex("loadaddr", 0);
}
pResImgHead = (AmlResImgHead_t*)loadaddr;
rc = store_read_ops((unsigned char*)partName, loadaddr, flashReadOff, IMG_PRELOAD_SZ);
if (rc) {
errorP("Fail to read 0x%xB from part[%s] at offset 0\n", IMG_PRELOAD_SZ, partName);
return __LINE__;
}
flashReadOff = IMG_PRELOAD_SZ;
if (img_res_check_log_header(pResImgHead)) {
errorP("Logo header err.\n");
return __LINE__;
}
//Read the actual size of the new version res image
totalSz = pResImgHead->imgSz;
if (totalSz > IMG_PRELOAD_SZ )
{
const unsigned leftSz = totalSz - flashReadOff;
rc = store_read_ops((unsigned char*)partName, loadaddr + (unsigned)flashReadOff, flashReadOff, leftSz);
if (rc) {
errorP("Fail to read 0x%xB from part[%s] at offset 0x%x\n", leftSz, partName, IMG_PRELOAD_SZ);
return __LINE__;
}
}
debugP("totalSz=0x%x\n", totalSz);
return 0;
}
#define IH_MAGIC 0x27051956 /* Image Magic Number */
#define IH_NMLEN 32 /* Image Name Length */
#pragma pack(push, 1)
typedef struct pack_header{
unsigned int magic; /* Image Header Magic Number */
unsigned int hcrc; /* Image Header CRC Checksum */
unsigned int size; /* Image Data Size */
unsigned int start; /* item data offset in the image*/
unsigned int end; /* Entry Point Address */
unsigned int next; /* Next item head offset in the image*/
unsigned int dcrc; /* Image Data CRC Checksum */
unsigned char index; /* Operating System */
unsigned char nums; /* CPU architecture */
unsigned char type; /* Image Type */
unsigned char comp; /* Compression Type */
char name[IH_NMLEN]; /* Image Name */
}AmlResItemHead_t;
#pragma pack(pop)
#define CONFIG_MAX_PIC_LEN (12 << 20)
static const unsigned char gzip_magic[] = { 0x1f, 0x8b };
//uncompress known format for 'imgread pic'
static int imgread_uncomp_pic(unsigned char* srcAddr, const unsigned srcSz,
unsigned char* dstAddr, const unsigned dstBufSz, unsigned long* dstDatSz)
{
/*debugP("srcAddr[%x, %x]\n", srcAddr[0], srcAddr[1]);*/
if (!memcmp(srcAddr, gzip_magic, sizeof(gzip_magic)))
{
if (dstDatSz) *dstDatSz = srcSz;
else return -__LINE__; //need dstDatSz to check src sz in gunzip
return gunzip(dstAddr, dstBufSz, srcAddr, dstDatSz);
}
return 0;
}
//[imgread pic] logo $pictureName $loadaddr_misc
//if $pictureName=bootup,
// first try find $board_defined_bootup
// last try find bootup
static int do_image_read_pic(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
const char* const partName = argv[1];
unsigned char* loadaddr = 0;
int rc = 0;
const AmlResImgHead_t* pResImgHead = NULL;
uint64_t flashReadOff = 0;
const unsigned PreloadSz = PIC_PRELOAD_SZ;//preload 8k, 124-1 pic header, If you need pack more than 123 items, fix this
unsigned itemIndex = 0;
const AmlResItemHead_t* pItem = NULL;
const char* defPic = argv[2];
const AmlResItemHead_t* itemFound = NULL;
char cmdBuf[256];
const char* bootupOutmode[4] = {NULL, NULL, NULL, NULL};//${bootup_board}_720, ${bootup_board}, bootup_720, bootup
if (argc > 3)
loadaddr = (unsigned char *)simple_strtoul(argv[3], NULL, 16);
else
loadaddr = (unsigned char *)getenv_hex("loadaddr_misc", 0);
pResImgHead = (AmlResImgHead_t*)loadaddr;
debugP("to read pic (%s)\n", defPic);
rc = store_read_ops((unsigned char*)partName, loadaddr, flashReadOff, PreloadSz);
if (rc) {
errorP("Fail to read 0x%xB from part[%s] at offset 0\n", PreloadSz, partName);
return __LINE__;
}
flashReadOff = PreloadSz;
debugP("end read pic sz %d\n", PreloadSz);
if (img_res_check_log_header(pResImgHead)) {
errorP("Logo header err.\n");
return __LINE__;
}
bootupOutmode[3] = defPic;//try it last
//correct bootup
while (!strcmp("bootup", defPic))
{
const char* picName = NULL;
if (getenv("board_defined_bootup")) {//set bootup name is board
bootupOutmode[1] = picName = getenv("board_defined_bootup");
}
char* outputmode = getenv("outputmode");
if (!outputmode)break;//not env outputmode
rc = !strncmp("720", outputmode, 3) || !strncmp("576", outputmode, 3) || !strncmp("480", outputmode, 3);
if (rc) {
bootupOutmode[2] = "bootup_720";
if (picName) {
if (strnlen(picName, sizeof(cmdBuf)/2 + 8) > sizeof(cmdBuf)/2) {
errorP("picName too long\n");
return __LINE__;
}
/*sprintf(cmdBuf, "%s_720", picName);*/
memcpy(cmdBuf, picName, strnlen(picName, sizeof(cmdBuf)/2));
strncpy(&cmdBuf[strlen(cmdBuf)], "_720", 4+1);
bootupOutmode[0] = cmdBuf;
}
break;
}
bootupOutmode[2] = "bootup_1080";
if (picName) {
/*sprintf(cmdBuf, "%s_1080", picName);*/
memcpy(cmdBuf, picName, strnlen(picName, sizeof(cmdBuf)/2));
strncpy(&cmdBuf[strlen(cmdBuf)], "_1080", 5+1);
bootupOutmode[0] = cmdBuf;
}
break;
}
debugP("bootupOutmode %s,%s, %s, %s\n", bootupOutmode[0], bootupOutmode[1], bootupOutmode[2], bootupOutmode[3]);
int i = 0;
for (; i < ARRAY_SIZE(bootupOutmode); ++i) {
const char* thisName = bootupOutmode[i];
if (!thisName) continue;
pItem = (AmlResItemHead_t*)(pResImgHead + 1);
for (itemIndex = 0; itemIndex < pResImgHead->imgItemNum; ++itemIndex, ++pItem) {
if (IH_MAGIC != pItem->magic) {
errorP("item magic 0x%x != 0x%x\n", pItem->magic, IH_MAGIC);
return __LINE__;
}
const char* itemName = pItem->name;
if (!strcmp(thisName, itemName)) {
itemFound = pItem;
debugP("found itemName %s\n", itemName);
break;
}
}
if (itemFound) break;
}
if (!itemFound) {
errorP("cannot find pic for cmd[imgread pic %s]\n", defPic);
return CMD_RET_FAILURE;
}
{
char env_name[IH_NMLEN*2];
char env_data[IH_NMLEN*2];
unsigned long picLoadAddr = (unsigned long)loadaddr + (unsigned)pItem->start;
int itemSz = pItem->size;
int uncompSz = 0;
if (pItem->start + itemSz > flashReadOff)
{
unsigned long rdOff = pItem->start;
unsigned long rdOffAlign = (rdOff >> 11) << 11;//align 2k page for mtd nand, 512 for emmc
rc = store_read_ops((unsigned char*)partName, (unsigned char *)((picLoadAddr>>11)<<11),
rdOffAlign, itemSz + (rdOff & 0x7ff) );
if (rc) {
errorP("Fail to read pic at offset 0x%x\n", pItem->start);
return __LINE__;
}
debugP("pic sz 0x%x\n", itemSz);
}
//uncompress supported format
unsigned long uncompLoadaddr = picLoadAddr + itemSz + 7;
uncompLoadaddr &= ~(0x7U);
rc = imgread_uncomp_pic((unsigned char*)picLoadAddr, itemSz, (unsigned char*)uncompLoadaddr,
CONFIG_MAX_PIC_LEN, (unsigned long*)&uncompSz);
if (rc) {
errorP("Fail in uncomp pic,rc[%d]\n", rc);
return __LINE__;
}
if (uncompSz) {
itemSz = uncompSz;
picLoadAddr = uncompLoadaddr;
}
sprintf(env_name, "%s_offset", defPic);//be bootup_offset ,not bootup_720_offset
sprintf(env_data, "0x%lx", picLoadAddr);
setenv(env_name, env_data);
sprintf(env_name, "%s_size", defPic);
sprintf(env_data, "0x%x", itemSz);
setenv(env_name, env_data);
debugP("end read pic[%s]\n", defPic);
return 0;//success
}
return __LINE__;//fail
}
static cmd_tbl_t cmd_imgread_sub[] = {
U_BOOT_CMD_MKENT(kernel, 4, 0, do_image_read_kernel, "", ""),
U_BOOT_CMD_MKENT(dtb, 4, 0, do_image_read_dtb, "", ""),
U_BOOT_CMD_MKENT(res, 3, 0, do_image_read_res, "", ""),
U_BOOT_CMD_MKENT(pic, 4, 0, do_image_read_pic, "", ""),
};
static int do_image_read(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
cmd_tbl_t *c;
/* Strip off leading 'bmp' command argument */
argc--;
argv++;
c = find_cmd_tbl(argv[0], &cmd_imgread_sub[0], ARRAY_SIZE(cmd_imgread_sub));
if (c) {
return c->cmd(cmdtp, flag, argc, argv);
} else {
cmd_usage(cmdtp);
return 1;
}
}
U_BOOT_CMD(
imgread, //command name
5, //maxargs
0, //repeatable
do_image_read, //command function
"Read the image from internal flash with actual size", //description
" argv: <imageType> <part_name> <loadaddr> \n" //usage
" - <image_type> Current support is kernel/res(ource).\n"
"imgread kernel --- Read image in format IMAGE_FORMAT_ANDROID\n"
"imgread dtb --- Read dtb in format IMAGE_FORMAT_ANDROID\n"
"imgread res --- Read image packed by 'Amlogic resource packer'\n"
"imgread pic --- Read one picture from Amlogic logo"
" - e.g. \n"
" to read boot.img from part boot from flash: <imgread kernel boot loadaddr> \n" //usage
" to read recovery.img from part recovery from flash: <imgread kernel recovery loadaddr $offset> \n" //usage
" to read logo.img from part logo from flash: <imgread res logo loadaddr> \n" //usage
" to read one picture named 'bootup' from logo.img from logo: <imgread pic logo bootup loadaddr> \n" //usage
);
//[imgread pic] logo bootup $loadaddr_misc
static int do_unpackimg(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned char* loadaddr = 0;
const AmlResImgHead_t* pResImgHead = NULL;
unsigned itemIndex = 0;
const AmlResItemHead_t* pItem = NULL;
if (argc > 1) {
loadaddr = (unsigned char *)simple_strtoul(argv[1], NULL, 16);
} else {
loadaddr = (unsigned char *)getenv_hex("loadaddr_misc", 0);
}
pResImgHead = (AmlResImgHead_t*)loadaddr;
const int totalSz = pResImgHead->imgSz;
unsigned char* unCompressBuf = loadaddr + totalSz;
if (img_res_check_log_header(pResImgHead)) {
errorP("Logo header err.\n");
return __LINE__;
}
pItem = (AmlResItemHead_t*)(pResImgHead + 1);
for (itemIndex = 0; itemIndex < pResImgHead->imgItemNum; ++itemIndex, ++pItem)
{
if (IH_MAGIC != pItem->magic) {
errorP("item magic 0x%x != 0x%x\n", pItem->magic, IH_MAGIC);
return __LINE__;
}
char env_name[IH_NMLEN*2];
char env_data[IH_NMLEN*2];
unsigned long picLoadAddr = (unsigned long)loadaddr + (unsigned)pItem->start;
int itemSz = pItem->size;
unsigned long uncompSz = 0;
if ((long)unCompressBuf & 0x7U)
unCompressBuf = (unsigned char*)((((unsigned long)unCompressBuf + 8)>>3) << 3);
imgread_uncomp_pic((unsigned char*)picLoadAddr, pItem->size,
unCompressBuf, CONFIG_MAX_PIC_LEN, &uncompSz);
if (uncompSz) {
picLoadAddr = (unsigned long)unCompressBuf;
itemSz = uncompSz;
unCompressBuf += uncompSz;
}
sprintf(env_name, "%s_offset", pItem->name);//be bootup_offset ,not bootup_720_offset
sprintf(env_data, "0x%lx", picLoadAddr);
setenv(env_name, env_data);
sprintf(env_name, "%s_size", pItem->name);
sprintf(env_data, "0x%x", itemSz);
setenv(env_name, env_data);
}
return 0;//success
}
U_BOOT_CMD(
unpackimg, //command name
2, //maxargs
0, //repeatable
do_unpackimg, //command function
"un pack logo image into pictures", //description
" argv: unpackimg <imgLoadaddr> \n" //usage
" un pack the logo image, which already loaded at <imgLoadaddr>.\n"
);
#if defined(CONFIG_CMD_EXT4)
/*"if ext4load mmc 1:x ${dtb_mem_addr} /recovery/dtb.img; then echo cache dtb.img loaded; fi;"\*/
static int do_load_logo_from_ext4(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
if (3 > argc) {
errorP("argc(%d) < 3 illegal\n", argc);
return CMD_RET_USAGE;
}
int iRet = 0;
const char* ext4Part = argv[1];
void* loadaddr = (void*)simple_strtoul(argv[2], NULL, 16);
if (argc > 3) {
setenv("ext4LogoPath", argv[3]);
} else {
setenv("ext4LogoPath", "/logo_files/bootup.bmp");
}
if (!loadaddr) {
errorP("illegal loadaddr %s\n", argv[2]);
return CMD_RET_FAILURE;
}
if (EMMC_BOOT_FLAG != device_boot_flag) return CMD_RET_FAILURE;
const int partIndex = get_partition_num_by_name((char*)ext4Part);
if (partIndex < 0) {
errorP("invalid partition name(%s)\n", ext4Part);
}
setenv_hex("logoPart", partIndex);
setenv_hex("logoLoadAddr", (ulong)loadaddr);
setenv("ext4logoLoadCmd", "ext4load mmc 1:${logoPart} ${logoLoadAddr} ${ext4LogoPath}");
iRet = run_command("printenv ext4logoLoadCmd; run ext4logoLoadCmd", 0);
if (iRet) {
errorP("Fail in load logo cmd\n"); return CMD_RET_FAILURE;
}
MsgP("load bmp from ext4 part okay\n");
run_command("setenv ext4LogoSz ${filesize}", 0);
const int bmpSz = getenv_hex("filesize", 0);
if (bmpSz <= 0) {
errorP("err bmp sz\n"); return CMD_RET_FAILURE;
}
#if defined(CONFIG_GZIP)
if (memcmp(loadaddr, gzip_magic, sizeof(gzip_magic))) {
return CMD_RET_SUCCESS;
}
MsgP("gunzip bmp logo\n");
void* uncompress = (char*)loadaddr + (((bmpSz + 0xf)>>4)<<4);
unsigned long uncompSz = 0;
iRet = imgread_uncomp_pic((unsigned char*)loadaddr, bmpSz, (unsigned char*)uncompress,
CONFIG_MAX_PIC_LEN, (unsigned long*)&uncompSz);
if (iRet) {
errorP("Fail in uncomp pic,rc[%d]\n", iRet); return __LINE__;
}
if (uncompSz <= 0) {
errorP("Fail uncompress logo bmp\n"); return CMD_RET_FAILURE;
}
memmove(loadaddr, uncompress, uncompSz);
setenv_hex("ext4LogoSz", uncompSz);
#endif//#if defined(CONFIG_GZIP)
return CMD_RET_SUCCESS;
}
U_BOOT_CMD(
rdext4pic, //read ext4 picture
4, //maxargs
0, //repeatable
do_load_logo_from_ext4, //command function
"read logo bmp from ext4 part", //description
" argv: rdext4pic <partName> <memAddr> <logoPath>\n" //usage
" load bmp picture from <logoPath> of <partName> to <memAddr>.\n"
);
#endif// #if defined(CONFIG_CMD_EXT4)