blob: 255d7d28a64f04955dbb9e019c095bab3c83a9d7 [file] [log] [blame]
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <errno.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <linux/list.h>
#include <div64.h>
#include "mmc_private.h"
#include <asm/cpu_id.h>
#include <asm/arch/cpu_sdio.h>
#include <asm/arch/sd_emmc.h>
#include <emmc_partitions.h>
#ifdef CONFIG_STORE_COMPATIBLE
#include <partition_table.h>
#endif
#include <amlogic/secure_storage.h>
#define CONFIG_DISABLE_USER_WP
#define CONFIG_DISABLE_PERM_USER_WP 1
#define USER_WP_VALUE ((1<<4)|(1<<6))
//#define CONFIG_MMC_TRACE 1
#define stamp_after(a, b) ((int)(b) - (int)(a) < 0)
#define KEY_BACKUP
static struct list_head mmc_devices;
static int cur_dev_num = -1;
int amlmmc_is_inited(void) {
return device_boot_flag;
}
struct aml_pattern aml_pattern_table[] = {
AML_PATTERN_ELEMENT(MMC_PATTERN_NAME, CALI_PATTERN),
AML_PATTERN_ELEMENT(MMC_MAGIC_NAME, MAGIC_PATTERN),
AML_PATTERN_ELEMENT(MMC_RANDOM_NAME, RANDOM_PATTERN),
};
#ifdef KEY_BACKUP
static struct aml_key_info key_infos[2] = { {0, 0, 0}, {0, 0, 0} };
#endif
bool emmckey_is_access_range_legal (struct mmc *mmc, ulong start, lbaint_t blkcnt) {
#ifdef CONFIG_STORE_COMPATIBLE
ulong key_start_blk, key_end_blk;
u64 key_glb_offset;
struct partitions * part = NULL;
struct virtual_partition *vpart = NULL;
#ifdef KEY_BACKUP
int cpy = KEY_COPIES;
#endif
#endif
if (aml_is_emmc_tsd(mmc)) {
#ifdef CONFIG_STORE_COMPATIBLE
vpart = aml_get_virtual_partition_by_name(MMC_KEY_NAME);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
key_glb_offset = part->offset + vpart->offset;
key_start_blk = (key_glb_offset / MMC_BLOCK_SIZE);
#ifdef KEY_BACKUP
key_end_blk = ((key_glb_offset + vpart->size * cpy) / MMC_BLOCK_SIZE - 1) + 2;
#else
key_end_blk = ((key_glb_offset + vpart->size) / MMC_BLOCK_SIZE - 1);
#endif
if (!(info_disprotect & DISPROTECT_KEY)) {
if ((key_start_blk <= (start + blkcnt -1))
&& (key_end_blk >= start)
&& (blkcnt != start)) {
printf("%s, keys %ld, keye %ld, start %ld, blkcnt %ld\n", __func__,
key_start_blk, key_end_blk, start, blkcnt);
printf("Emmckey: Access range is illegal!\n");
return 0;
}
}
#endif
}
return 1;
}
__weak int board_mmc_getwp(struct mmc *mmc)
{
return -1;
}
int mmc_getwp(struct mmc *mmc)
{
int wp;
wp = board_mmc_getwp(mmc);
if (wp < 0) {
if (mmc->cfg->ops->getwp)
wp = mmc->cfg->ops->getwp(mmc);
else
wp = 0;
}
return wp;
}
__weak int board_mmc_getcd(struct mmc *mmc)
{
return -1;
}
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
int ret;
#ifdef CONFIG_MMC_TRACE
int i;
u8 *ptr;
printf("CMD_SEND:%d\n", cmd->cmdidx);
printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
switch (cmd->resp_type) {
case MMC_RSP_NONE:
printf("\t\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
cmd->response[0]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[1]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[2]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[3]);
printf("\n");
printf("\t\t\t\t\tDUMPING DATA\n");
for (i = 0; i < 4; i++) {
int j;
printf("\t\t\t\t\t%03d - ", i*4);
ptr = (u8 *)&cmd->response[i];
ptr += 3;
for (j = 0; j < 4; j++)
printf("%02X ", *ptr--);
printf("\n");
}
break;
case MMC_RSP_R3:
printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
cmd->response[0]);
break;
default:
printf("\t\tERROR MMC rsp not supported\n");
break;
}
#else
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
#endif
return ret;
}
int mmc_send_status(struct mmc *mmc, int timeout)
{
struct mmc_cmd cmd;
int err, retries = 5;
#ifdef CONFIG_MMC_TRACE
int status;
#endif
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
if (!mmc_host_is_spi(mmc))
cmd.cmdarg = mmc->rca << 16;
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err) {
if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
(cmd.response[0] & MMC_STATUS_CURR_STATE) !=
MMC_STATE_PRG)
break;
else if (cmd.response[0] & MMC_STATUS_MASK) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Status Error: 0x%08X\n",
cmd.response[0]);
#endif
return COMM_ERR;
}
} else if (--retries < 0)
return err;
udelay(1000);
} while (timeout--);
#ifdef CONFIG_MMC_TRACE
status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
printf("CURR STATE:%d\n", status);
#endif
if (timeout <= 0) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Timeout waiting card ready\n");
#endif
return TIMEOUT;
}
if (cmd.response[0] & MMC_STATUS_SWITCH_ERROR)
return SWITCH_ERR;
return 0;
}
int mmc_set_blocklen(struct mmc *mmc, int len)
{
struct mmc_cmd cmd;
if (mmc->ddr_mode)
return 0;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
return mmc_send_cmd(mmc, &cmd, NULL);
}
struct mmc *find_mmc_device(int dev_num)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->block_dev.dev == dev_num)
return m;
}
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC Device %d not found\n", dev_num);
#endif
return NULL;
}
static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start,
lbaint_t blkcnt)
{
struct mmc_cmd cmd;
struct mmc_data data;
int ret = 0, err = 0, err_flag = 0, retries = 0;
__RETRY:
#ifdef MMC_CMD23
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_SET_BLOCK_COUNT;
cmd.cmdarg = blkcnt & 0xFFFF;
cmd.resp_type = MMC_RSP_R1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
printf("mmc set blkcnt failed\n");
}
#endif
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
data.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
ret = mmc_send_cmd(mmc, &cmd, &data);
#ifndef MMC_CMD23
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("mmc fail to send stop cmd\n");
#endif
}
}
#endif
if ((ret || err) && mmc->refix == 1)
return 0;
if (ret || err) {
if (err_flag == 0) {
err_flag = 1;
retries = 5;
}
if (retries) {
printf("retry read, count: %d\n", retries);
retries--;
goto __RETRY;
}
printf("retry read error !!!\n");
return 0;
}
return blkcnt;
}
ulong mmc_bread(int dev_num, lbaint_t start, lbaint_t blkcnt, void *dst)
{
lbaint_t cur, blocks_todo = blkcnt;
if (blkcnt == 0)
return 0;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return 0;
if ((start + blkcnt) > mmc->block_dev.lba) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n",
start + blkcnt, mmc->block_dev.lba);
#endif
return 0;
}
if (!emmckey_is_access_range_legal(mmc, start, blkcnt))
return 0;
#ifndef MMC_HS400_MODE
if (mmc_set_blocklen(mmc, mmc->read_bl_len))
return 0;
#endif
do {
cur = (blocks_todo > mmc->cfg->b_max) ?
mmc->cfg->b_max : blocks_todo;
if(mmc_read_blocks(mmc, dst, start, cur) != cur)
return 0;
blocks_todo -= cur;
start += cur;
dst += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
static int mmc_go_idle(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
static int sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
(mmc->cfg->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
/* We pass in the cmd since otherwise the init seems to fail */
static int mmc_send_op_cond_iter(struct mmc *mmc, struct mmc_cmd *cmd,
int use_arg)
{
int err;
cmd->cmdidx = MMC_CMD_SEND_OP_COND;
cmd->resp_type = MMC_RSP_R3;
cmd->cmdarg = 0;
if (use_arg && !mmc_host_is_spi(mmc)) {
cmd->cmdarg =
(mmc->cfg->voltages &
(mmc->op_cond_response & OCR_VOLTAGE_MASK)) |
(mmc->op_cond_response & OCR_ACCESS_MODE);
if (mmc->cfg->host_caps & MMC_MODE_HC)
cmd->cmdarg |= OCR_HCS;
}
err = mmc_send_cmd(mmc, cmd, NULL);
if (err)
return err;
mmc->op_cond_response = cmd->response[0];
return 0;
}
static int mmc_send_op_cond(struct mmc *mmc)
{
// struct mmc_cmd cmd;
// int err, i;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
mmc->op_cond_pending = 1;
return IN_PROGRESS;
/*
* for (i = 0; i < 2; i++) {
* err = mmc_send_op_cond_iter(mmc, &cmd, i != 0);
* if (err)
* return err;
*
* if (mmc->op_cond_response & OCR_BUSY)
* return 0;
* }
* return IN_PROGRESS;
*/
}
static int mmc_complete_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int timeout = 1000;
uint start;
int err;
mmc->op_cond_pending = 0;
start = get_timer(0);
do {
err = mmc_send_op_cond_iter(mmc, &cmd, 1);
if (err)
return err;
if (get_timer(start) > timeout)
return UNUSABLE_ERR;
udelay(100);
} while (!(mmc->op_cond_response & OCR_BUSY));
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->version = MMC_VERSION_UNKNOWN;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 1;
return 0;
}
static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
data.dest = (char *)ext_csd;
data.blocks = 1;
data.blocksize = MMC_MAX_BLOCK_LEN;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
#ifdef CONFIG_DISABLE_USER_WP
int mmc_switch_by_bit(struct mmc *mmc, u8 set, u8 index, u8 value)
{
struct mmc_cmd cmd;
int timeout = 1000;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_SET_BITS << 24) |
(index << 16) |
(value << 8);
ret = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
if (!ret)
ret = mmc_send_status(mmc, timeout);
return ret;
}
#endif
int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
{
struct mmc_cmd cmd;
int timeout = 1000;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
ret = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
if (!ret)
ret = mmc_send_status(mmc, timeout);
return ret;
}
int mmc_hwpart_config(struct mmc *mmc,
const struct mmc_hwpart_conf *conf,
enum mmc_hwpart_conf_mode mode)
{
u8 part_attrs = 0;
u32 enh_size_mult;
u32 enh_start_addr;
u32 gp_size_mult[4];
u32 max_enh_size_mult;
u32 tot_enh_size_mult = 0;
u8 wr_rel_set;
int i, pidx, err;
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
if (mode < MMC_HWPART_CONF_CHECK || mode > MMC_HWPART_CONF_COMPLETE)
return -EINVAL;
if (IS_SD(mmc) || (mmc->version < MMC_VERSION_4_41)) {
printf("eMMC >= 4.4 required for enhanced user data area\n");
return -EMEDIUMTYPE;
}
if (!(mmc->part_support & PART_SUPPORT)) {
printf("Card does not support partitioning\n");
return -EMEDIUMTYPE;
}
if (!mmc->hc_wp_grp_size) {
printf("Card does not define HC WP group size\n");
return -EMEDIUMTYPE;
}
/* check partition alignment and total enhanced size */
if (conf->user.enh_size) {
if (conf->user.enh_size % mmc->hc_wp_grp_size ||
conf->user.enh_start % mmc->hc_wp_grp_size) {
printf("User data enhanced area not HC WP group "
"size aligned\n");
return -EINVAL;
}
part_attrs |= EXT_CSD_ENH_USR;
enh_size_mult = conf->user.enh_size / mmc->hc_wp_grp_size;
if (mmc->high_capacity) {
enh_start_addr = conf->user.enh_start;
} else {
enh_start_addr = (conf->user.enh_start << 9);
}
} else {
enh_size_mult = 0;
enh_start_addr = 0;
}
tot_enh_size_mult += enh_size_mult;
for (pidx = 0; pidx < 4; pidx++) {
if (conf->gp_part[pidx].size % mmc->hc_wp_grp_size) {
printf("GP%i partition not HC WP group size "
"aligned\n", pidx+1);
return -EINVAL;
}
gp_size_mult[pidx] = conf->gp_part[pidx].size / mmc->hc_wp_grp_size;
if (conf->gp_part[pidx].size && conf->gp_part[pidx].enhanced) {
part_attrs |= EXT_CSD_ENH_GP(pidx);
tot_enh_size_mult += gp_size_mult[pidx];
}
}
if (part_attrs && ! (mmc->part_support & ENHNCD_SUPPORT)) {
printf("Card does not support enhanced attribute\n");
return -EMEDIUMTYPE;
}
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
max_enh_size_mult =
(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+2] << 16) +
(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+1] << 8) +
ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT];
if (tot_enh_size_mult > max_enh_size_mult) {
printf("Total enhanced size exceeds maximum (%u > %u)\n",
tot_enh_size_mult, max_enh_size_mult);
return -EMEDIUMTYPE;
}
/* The default value of EXT_CSD_WR_REL_SET is device
* dependent, the values can only be changed if the
* EXT_CSD_HS_CTRL_REL bit is set. The values can be
* changed only once and before partitioning is completed. */
wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET];
if (conf->user.wr_rel_change) {
if (conf->user.wr_rel_set)
wr_rel_set |= EXT_CSD_WR_DATA_REL_USR;
else
wr_rel_set &= ~EXT_CSD_WR_DATA_REL_USR;
}
for (pidx = 0; pidx < 4; pidx++) {
if (conf->gp_part[pidx].wr_rel_change) {
if (conf->gp_part[pidx].wr_rel_set)
wr_rel_set |= EXT_CSD_WR_DATA_REL_GP(pidx);
else
wr_rel_set &= ~EXT_CSD_WR_DATA_REL_GP(pidx);
}
}
if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET] &&
!(ext_csd[EXT_CSD_WR_REL_PARAM] & EXT_CSD_HS_CTRL_REL)) {
puts("Card does not support host controlled partition write "
"reliability settings\n");
return -EMEDIUMTYPE;
}
if (ext_csd[EXT_CSD_PARTITION_SETTING] &
EXT_CSD_PARTITION_SETTING_COMPLETED) {
printf("Card already partitioned\n");
puts("\tUser Enhanced Start: ");
u64 temp, j;
for (j = 0, temp = 0; j < 4; j++) {
temp |= ext_csd[EXT_CSD_ENH_START_ADDR + 3 - j];
temp = temp << 8;
}
print_size(temp << 9, "\n");
puts("\tUser Enhanced Size: ");
for (j = 0, temp = 0; j < 3; j++) {
temp |= ext_csd[EXT_CSD_ENH_SIZE_MULT + 2 - j];
temp = temp << 8;
}
temp *= mmc->hc_wp_grp_size;
print_size(temp << 9, "\n");
return -EPERM;
}
if (mode == MMC_HWPART_CONF_CHECK)
return 0;
/* Partitioning requires high-capacity size definitions */
if (!(ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01)) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1);
if (err)
return err;
ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1;
mmc->erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024;
}
/* all OK, write the configuration */
for (i = 0; i < 4; i++) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ENH_START_ADDR+i,
(enh_start_addr >> (i*8)) & 0xFF);
if (err)
return err;
}
for (i = 0; i < 3; i++) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ENH_SIZE_MULT+i,
(enh_size_mult >> (i*8)) & 0xFF);
if (err)
return err;
}
for (pidx = 0; pidx < 4; pidx++) {
for (i = 0; i < 3; i++) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_GP_SIZE_MULT+pidx*3+i,
(gp_size_mult[pidx] >> (i*8)) & 0xFF);
if (err)
return err;
}
}
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PARTITIONS_ATTRIBUTE, part_attrs);
if (err)
return err;
if (mode == MMC_HWPART_CONF_SET)
return 0;
/* The WR_REL_SET is a write-once register but shall be
* written before setting PART_SETTING_COMPLETED. As it is
* write-once we can only write it when completing the
* partitioning. */
if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET]) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_WR_REL_SET, wr_rel_set);
if (err)
return err;
}
/* Setting PART_SETTING_COMPLETED confirms the partition
* configuration but it only becomes effective after power
* cycle, so we do not adjust the partition related settings
* in the mmc struct. */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PARTITION_SETTING,
EXT_CSD_PARTITION_SETTING_COMPLETED);
if (err)
return err;
return 0;
}
u8 ext_csd_w[] = {191, 187, 185, 183, 179, 178, 177, 175,
173, 171, 169, 167, 165, 164, 163, 162,
161, 156, 155, 143, 140, 136, 134, 133,
132, 131, 62, 59, 56, 52, 37, 34,
33, 32, 31, 30, 29, 22, 17, 16, 15};
int mmc_set_ext_csd(struct mmc *mmc, u8 index, u8 value)
{
int ret = SWITCH_ERR, i;
for (i = 0; i < sizeof(ext_csd_w); i++) {
if (ext_csd_w[i] == index)
break;
}
if (i != sizeof(ext_csd_w))
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, index, value);
return ret;
}
int mmc_get_ext_csd(struct mmc *mmc, u8 *ext_csd)
{
return mmc_send_ext_csd(mmc, ext_csd);
}
static int mmc_change_freq(struct mmc *mmc)
{
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
char cardtype;
int err;
mmc->card_caps = MMC_MODE_4BIT | MMC_MODE_8BIT;
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
if (err)
return err == SWITCH_ERR ? 0 : err;
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
/* No high-speed support */
if (!ext_csd[EXT_CSD_HS_TIMING])
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & EXT_CSD_CARD_TYPE_52) {
if (cardtype & EXT_CSD_CARD_TYPE_DDR_1_8V)
mmc->card_caps |= MMC_MODE_DDR_52MHz;
mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
} else {
mmc->card_caps |= MMC_MODE_HS;
}
return 0;
}
static int mmc_set_capacity(struct mmc *mmc, int part_num)
{
switch (part_num) {
case 0:
mmc->capacity = mmc->capacity_user;
break;
case 1:
case 2:
mmc->capacity = mmc->capacity_boot;
break;
case 3:
mmc->capacity = mmc->capacity_rpmb;
break;
case 4:
case 5:
case 6:
case 7:
mmc->capacity = mmc->capacity_gp[part_num - 4];
break;
default:
return -1;
}
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
return 0;
}
int mmc_select_hwpart(int dev_num, int hwpart)
{
struct mmc *mmc = find_mmc_device(dev_num);
int ret;
if (!mmc)
return -ENODEV;
if (mmc->part_num == hwpart)
return 0;
if (mmc->part_config == MMCPART_NOAVAILABLE) {
printf("Card doesn't support part_switch\n");
return -EMEDIUMTYPE;
}
ret = mmc_switch_part(dev_num, hwpart);
if (ret)
return ret;
mmc->part_num = hwpart;
return 0;
}
int mmc_switch_part(int dev_num, unsigned int part_num)
{
struct mmc *mmc = find_mmc_device(dev_num);
int ret;
if (!mmc)
return -1;
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
(mmc->part_config & ~PART_ACCESS_MASK)
| (part_num & PART_ACCESS_MASK));
/*
* Set the capacity if the switch succeeded or was intended
* to return to representing the raw device.
*/
if ((ret == 0) || ((ret == -ENODEV) && (part_num == 0)))
ret = mmc_set_capacity(mmc, part_num);
return ret;
}
int mmc_getcd(struct mmc *mmc)
{
int cd;
cd = board_mmc_getcd(mmc);
if (cd < 0) {
if (mmc->cfg->ops->getcd)
cd = mmc->cfg->ops->getcd(mmc);
else
cd = 1;
}
return cd;
}
static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
static int sd_change_freq(struct mmc *mmc)
{
int err;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
struct mmc_data data;
int timeout;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
timeout = 3;
retry_scr:
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
if ((mmc->scr[0] >> 15) & 0x1)
mmc->version = SD_VERSION_3;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
return 0;
/*
* If the host doesn't support SD_HIGHSPEED, do not switch card to
* HIGHSPEED mode even if the card support SD_HIGHSPEED.
* This can avoid furthur problem when the card runs in different
* mode between the host.
*/
if (!((mmc->cfg->host_caps & MMC_MODE_HS_52MHz) &&
(mmc->cfg->host_caps & MMC_MODE_HS)))
return 0;
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
if (err)
return err;
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
static const int fbase[] = {
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
static const int multipliers[] = {
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
static void mmc_set_ios(struct mmc *mmc)
{
if (mmc->cfg->ops->set_ios)
mmc->cfg->ops->set_ios(mmc);
}
int aml_emmc_refix(struct mmc *mmc)
{
int ret = 0;
mmc->refix = 1;
if (0)
mmc->cfg->ops->calibration(mmc);
if (mmc->cfg->ops->calc_fixed_adj != NULL)
mmc->cfg->ops->calc_fixed_adj(mmc);
else if (mmc->cfg->ops->refix != NULL) {
ret = mmc->cfg->ops->refix(mmc);
if (!ret)
printf("[%s] mmc refix success\n", __func__);
else
printf("[%s] mmc refix error\n", __func__);
}
mmc->refix = 0;
return ret;
}
void mmc_set_clock(struct mmc *mmc, uint clock)
{
if (clock > mmc->cfg->f_max)
clock = mmc->cfg->f_max;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
void mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
//#ifdef CONFIG_DISABLE_USER_WP
int mmc_disable_usr_wp(struct mmc *mmc, u8 *ext_csd)
{
int err= 0;
u8 cur_ext_csd_171 = 0;
u8 user_wp_disable = 0;
cur_ext_csd_171 = (u8)ext_csd[171];
printf("original ext_csd[171] USE_WP field value is %02x\n",cur_ext_csd_171);
user_wp_disable = (cur_ext_csd_171^USER_WP_VALUE)&USER_WP_VALUE;
printf("user_wp_disable is %d\n",user_wp_disable);
if (user_wp_disable) {
err = mmc_switch_by_bit(mmc,MMC_SWITCH_MODE_SET_BITS,EXT_CSD_USER_WP,user_wp_disable);
if (err)
printf("mmc_switch mistake when disable user_wp, err value is %d\n",err);
err = mmc_get_ext_csd(mmc,ext_csd);
if (err)
printf("mmc get ext csd mistake in %d\n",err);
else
printf("ext_csd[171] USER_WP filed value after switch is %02x\n",ext_csd[171]);
}
else {
printf("Disable bits in ext_csd[171] USE_WP field has been set to \"1\"\n");
}
return err;
}
static int mmc_startup(struct mmc *mmc)
{
int err, i;
uint mult, freq;
u64 cmult, csize, capacity;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN);
int timeout = 1000;
#ifdef CONFIG_MMC_SPI_CRC_ON
if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
#endif
/* Put the Card in Identify Mode */
cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
}
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
if (err)
return err;
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
if (mmc->version == MMC_VERSION_UNKNOWN) {
int version = (cmd.response[0] >> 26) & 0xf;
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->tran_speed = freq * mult;
mmc->dsr_imp = ((cmd.response[1] >> 12) & 0x1);
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16
| (mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2
| (mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity_user = (csize + 1) << (cmult + 2);
mmc->capacity_user *= mmc->read_bl_len;
mmc->capacity_boot = 0;
mmc->capacity_rpmb = 0;
for (i = 0; i < 4; i++)
mmc->capacity_gp[i] = 0;
if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN)
mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN)
mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) {
cmd.cmdidx = MMC_CMD_SET_DSR;
cmd.cmdarg = (mmc->dsr & 0xffff) << 16;
cmd.resp_type = MMC_RSP_NONE;
if (mmc_send_cmd(mmc, &cmd, NULL))
printf("MMC: SET_DSR failed\n");
}
/* Select the card, and put it into Transfer Mode */
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
/*
* For SD, its erase group is always one sector
*/
mmc->erase_grp_size = 1;
mmc->part_config = MMCPART_NOAVAILABLE;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (!err && (ext_csd[EXT_CSD_REV] >= 2)) {
/*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB
*/
capacity = (u64)(ext_csd[EXT_CSD_SEC_CNT] << 0
| ext_csd[EXT_CSD_SEC_CNT + 1] << 8
| ext_csd[EXT_CSD_SEC_CNT + 2] << 16
| ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
capacity *= MMC_MAX_BLOCK_LEN;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity_user = capacity;
}
switch (ext_csd[EXT_CSD_REV]) {
case 1:
mmc->version = MMC_VERSION_4_1;
break;
case 2:
mmc->version = MMC_VERSION_4_2;
break;
case 3:
mmc->version = MMC_VERSION_4_3;
break;
case 5:
mmc->version = MMC_VERSION_4_41;
break;
case 6:
mmc->version = MMC_VERSION_4_5;
break;
case 7:
mmc->version = MMC_VERSION_5_0;
break;
case 8:
mmc->version = MMC_VERSION_5_1;
break;
}
/* dev life time estimate type A/B */
mmc->dev_lifetime_est_typ_a
= ext_csd[EXT_CSD_DEV_LIFETIME_EST_TYP_A];
mmc->dev_lifetime_est_typ_b
= ext_csd[EXT_CSD_DEV_LIFETIME_EST_TYP_B];
/*
* Host needs to enable ERASE_GRP_DEF bit if device is
* partitioned. This bit will be lost every time after a reset
* or power off. This will affect erase size.
*/
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) &&
(ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB)) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1);
if (err)
return err;
else
ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1;
/* Read out group size from ext_csd */
mmc->erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024;
/*
* if high capacity and partition setting completed
* SEC_COUNT is valid even if it is smaller than 2 GiB
* JEDEC Standard JESD84-B45, 6.2.4
*/
if (mmc->high_capacity &&
(ext_csd[EXT_CSD_PARTITION_SETTING] &
EXT_CSD_PARTITION_SETTING_COMPLETED)) {
capacity = (u64)((ext_csd[EXT_CSD_SEC_CNT]) |
(ext_csd[EXT_CSD_SEC_CNT + 1] << 8) |
(ext_csd[EXT_CSD_SEC_CNT + 2] << 16) |
(ext_csd[EXT_CSD_SEC_CNT + 3] << 24));
capacity *= MMC_MAX_BLOCK_LEN;
mmc->capacity_user = capacity;
}
} else {
/* Calculate the group size from the csd value. */
int erase_gsz, erase_gmul;
erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
mmc->erase_grp_size = (erase_gsz + 1)
* (erase_gmul + 1);
}
/* store the partition info of emmc */
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) ||
ext_csd[EXT_CSD_BOOT_MULT])
mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] << 17;
mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] << 17;
for (i = 0; i < 4; i++) {
int idx = EXT_CSD_GP_SIZE_MULT + i * 3;
mmc->capacity_gp[i] = (ext_csd[idx + 2] << 16) +
(ext_csd[idx + 1] << 8) + ext_csd[idx];
mmc->capacity_gp[i] *=
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
}
mmc->hc_wp_grp_size = 1024
* ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
* ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
mmc->part_support = ext_csd[EXT_CSD_PARTITIONING_SUPPORT];
}
err = mmc_set_capacity(mmc, mmc->part_num);
if (err)
return err;
if (IS_SD(mmc))
err = sd_change_freq(mmc);
else
err = mmc_change_freq(mmc);
if (err)
return err;
#ifdef CONFIG_DISABLE_USER_WP
// mmc_disable_usr_wp(mmc,ext_csd);
#endif
/* Restrict card's capabilities by what the host can do */
mmc->card_caps &= mmc->cfg->host_caps;
if (IS_SD(mmc)) {
if (mmc->card_caps & MMC_MODE_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 2;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc_set_bus_width(mmc, 4);
}
if (mmc->card_caps & MMC_MODE_HS)
mmc->tran_speed = 50000000;
else
mmc->tran_speed = 25000000;
} else {
int idx;
/* An array of possible bus widths in order of preference */
static unsigned ext_csd_bits[] = {
EXT_CSD_DDR_BUS_WIDTH_8,
EXT_CSD_DDR_BUS_WIDTH_4,
EXT_CSD_BUS_WIDTH_8,
EXT_CSD_BUS_WIDTH_4,
EXT_CSD_BUS_WIDTH_1,
};
/* An array to map CSD bus widths to host cap bits */
static unsigned ext_to_hostcaps[] = {
[EXT_CSD_DDR_BUS_WIDTH_4] =
MMC_MODE_DDR_52MHz | MMC_MODE_4BIT,
[EXT_CSD_DDR_BUS_WIDTH_8] =
MMC_MODE_DDR_52MHz | MMC_MODE_8BIT,
[EXT_CSD_BUS_WIDTH_4] = MMC_MODE_4BIT,
[EXT_CSD_BUS_WIDTH_8] = MMC_MODE_8BIT,
};
/* An array to map chosen bus width to an integer */
static unsigned widths[] = {
8, 4, 8, 4, 1,
};
for (idx=0; idx < ARRAY_SIZE(ext_csd_bits); idx++) {
unsigned int extw = ext_csd_bits[idx];
unsigned int caps = ext_to_hostcaps[extw];
/*
* Check to make sure the card and controller support
* these capabilities
*/
if ((mmc->card_caps & caps) != caps)
continue;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, extw);
if (err)
continue;
mmc->ddr_mode = (caps & MMC_MODE_DDR_52MHz) ? 1 : 0;
mmc_set_bus_width(mmc, widths[idx]);
err = mmc_send_ext_csd(mmc, test_csd);
if (err)
continue;
/* Only compare read only fields */
if (ext_csd[EXT_CSD_PARTITIONING_SUPPORT]
== test_csd[EXT_CSD_PARTITIONING_SUPPORT] &&
ext_csd[EXT_CSD_HC_WP_GRP_SIZE]
== test_csd[EXT_CSD_HC_WP_GRP_SIZE] &&
ext_csd[EXT_CSD_REV]
== test_csd[EXT_CSD_REV] &&
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
== test_csd[EXT_CSD_HC_ERASE_GRP_SIZE] &&
memcmp(&ext_csd[EXT_CSD_SEC_CNT],
&test_csd[EXT_CSD_SEC_CNT], 4) == 0)
break;
else
err = SWITCH_ERR;
}
if (err)
return err;
if (mmc->card_caps & MMC_MODE_HS) {
if (mmc->card_caps & MMC_MODE_HS_52MHz)
mmc->tran_speed = 52000000;
else
mmc->tran_speed = 26000000;
}
}
mmc_set_clock(mmc, mmc->tran_speed);
if (mmc->card_caps & MMC_MODE_HS_52MHz) {
err = aml_emmc_refix(mmc);
if (err)
return err;
}
/* Fix the block length for DDR mode */
if (mmc->ddr_mode) {
mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
}
/* fill in device description */
mmc->block_dev.lun = 0;
mmc->block_dev.type = 0;
mmc->block_dev.blksz = mmc->read_bl_len;
mmc->block_dev.log2blksz = LOG2(mmc->block_dev.blksz);
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
sprintf(mmc->block_dev.vendor, "Man %06x Snr %04x%04x",
mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff),
(mmc->cid[3] >> 16) & 0xffff);
sprintf(mmc->block_dev.product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff,
(mmc->cid[2] >> 24) & 0xff);
sprintf(mmc->block_dev.revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf,
(mmc->cid[2] >> 16) & 0xf);
#else
mmc->block_dev.vendor[0] = 0;
mmc->block_dev.product[0] = 0;
mmc->block_dev.revision[0] = 0;
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT)
init_part(&mmc->block_dev);
#endif
return 0;
}
static int mmc_send_if_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->cfg->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if ((cmd.response[0] & 0xff) != 0xaa)
return UNUSABLE_ERR;
else
mmc->version = SD_VERSION_2;
return 0;
}
/* not used any more */
int __deprecated mmc_register(struct mmc *mmc)
{
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("%s is deprecated! use mmc_create() instead.\n", __func__);
#endif
return -1;
}
struct mmc *mmc_create(const struct mmc_config *cfg, void *priv)
{
struct mmc *mmc;
/* quick validation */
if (cfg == NULL || cfg->ops == NULL || cfg->ops->send_cmd == NULL ||
cfg->f_min == 0 || cfg->f_max == 0 || cfg->b_max == 0)
return NULL;
mmc = calloc(1, sizeof(*mmc));
if (mmc == NULL)
return NULL;
mmc->cfg = cfg;
mmc->priv = priv;
/* the following chunk was mmc_register() */
/* Setup dsr related values */
mmc->dsr_imp = 0;
mmc->dsr = 0xffffffff;
/* Setup the universal parts of the block interface just once */
mmc->block_dev.if_type = IF_TYPE_MMC;
mmc->block_dev.dev = cur_dev_num++;
mmc->block_dev.removable = 1;
mmc->block_dev.block_read = mmc_bread;
mmc->block_dev.block_write = mmc_bwrite;
mmc->block_dev.block_erase = mmc_berase;
/* setup initial part type */
mmc->block_dev.part_type = mmc->cfg->part_type;
INIT_LIST_HEAD(&mmc->link);
list_add_tail(&mmc->link, &mmc_devices);
return mmc;
}
void mmc_destroy(struct mmc *mmc)
{
/* only freeing memory for now */
free(mmc);
}
#ifdef CONFIG_PARTITIONS
block_dev_desc_t *mmc_get_dev(int dev)
{
struct mmc *mmc = find_mmc_device(dev);
if (!mmc || mmc_init(mmc))
return NULL;
return &mmc->block_dev;
}
#endif
/* board-specific MMC power initializations. */
__weak void board_mmc_power_init(void)
{
}
int mmc_start_init(struct mmc *mmc)
{
int err;
/* we pretend there's no card when init is NULL */
if (mmc_getcd(mmc) == 0 || mmc->cfg->ops->init == NULL) {
mmc->has_init = 0;
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC: no card present\n");
#endif
return NO_CARD_ERR;
}
if (mmc->has_init)
return 0;
board_mmc_power_init();
/* made sure it's not NULL earlier */
err = mmc->cfg->ops->init(mmc);
if (err)
return err;
mmc->ddr_mode = 0;
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err)
return err;
/* The internal partition reset to user partition(0) at every CMD0*/
mmc->part_num = 0;
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err == TIMEOUT) {
err = mmc_send_op_cond(mmc);
if (err && err != IN_PROGRESS) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Card did not respond to voltage select!\n");
#endif
return UNUSABLE_ERR;
}
}
if (err == IN_PROGRESS)
mmc->init_in_progress = 1;
return err;
}
void mmc_write_cali_mattern(void *addr, struct aml_pattern *table)
{
int i = 0;
unsigned int s = 10;
u32 *mattern = (u32 *)addr;
struct virtual_partition *vpart =
aml_get_virtual_partition_by_name(table->name);
for (i = 0;i < (vpart->size)/4 - 1;i++) {
if (!strcmp(table->name, "random"))
mattern[i] = rand_r(&s);
else
mattern[i] = table->pattern;
}
mattern[i] = crc32(0, (u8 *)addr, (vpart->size - 4));
return;
}
int mmc_pattern_check(struct mmc *mmc, struct aml_pattern *table)
{
void *addr = NULL;
int dev = EMMC_DTB_DEV;
u64 cnt = 0, n = 0, blk = 0;
u32 *buf = NULL;
u32 crc32_s = 0;
struct partitions *part = NULL;
struct virtual_partition *vpart = NULL;
vpart = aml_get_virtual_partition_by_name(MMC_KEY_NAME);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
addr = (void *)malloc(vpart->size);
if (!addr) {
printf("pattern malloc failed\n");
return 1;
}
vpart = aml_get_virtual_partition_by_name(table->name);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
blk = (part->offset + vpart->offset) / mmc->read_bl_len;
cnt = vpart->size / mmc->read_bl_len;
n = mmc_bread(dev, blk, cnt, addr);
if (n != cnt) {
printf("read pattern failed\n");
free(addr);
return 1;
} else {
buf = (u32 *)addr;
crc32_s = crc32(0, (u8 *)addr, (vpart->size - 4));
if (crc32_s != buf[vpart->size/4 - 1]) {
printf("check %s failed,need to write\n",
table->name);
mmc_write_cali_mattern(addr, table);
n = mmc_bwrite(dev, blk, cnt, addr);
printf("several 0x%x pattern blocks write %s\n",
table->pattern, (n == cnt) ? "OK" : "ERROR");
}
printf("crc32_s:0x%x == storage crc_pattern:0x%x!!!\n",
crc32_s, buf[vpart->size/4 - 1]);
}
free(addr);
return (n == cnt) ? 0 : 1;
}
static int mmc_complete_init(struct mmc *mmc)
{
int err = 0;
if (mmc->op_cond_pending)
err = mmc_complete_op_cond(mmc);
if (!err)
err = mmc_startup(mmc);
if (err)
mmc->has_init = 0;
else
mmc->has_init = 1;
mmc->init_in_progress = 0;
return err;
}
#ifdef MMC_WRITE_CHIP_ID
/* 1. read board chip_id
* 2. read chip_id writed on emmc
* 3. compare two chip_id
* 4. compare vddee
* if same return
* else write chip_id or vddee on emmc
*/
int aml_write_chip_id(struct mmc *mmc)
{
struct aml_card_sd_info *aml_priv = mmc->priv;
struct tuning_para *para;
uint8_t chip_id[16];
void *buf;
int same_para = 1;
int i, blk, off;
int n;
int para_size;
int size;
unsigned int vddee = CONFIG_VDDEE_INIT_VOLTAGE;
para_size = sizeof(struct tuning_para);
blk = (para_size - 1) / 512 + 1;
size = blk * 512;
buf = (void *)malloc(size);
if (!buf) {
printf("buffer malloc failed\n");
return 1;
}
memset(buf, 0, size);
if (get_chip_id(&chip_id[0], sizeof(chip_id)) != 0) {
printf("get chip id error\n");
free(buf);
return 1;
}
off = MMC_TUNING_OFFSET;
n = mmc->block_dev.block_read(1, off, blk, buf);
if (n == blk) {
para = (struct tuning_para *)buf;
for (i = 0; i < sizeof(chip_id); i++) {
if (para->chip_id[i] != chip_id[i]) {
same_para = 0;
break;
}
}
if (vddee != para->vddee)
same_para = 0;
if (same_para == 0) {
printf("chip_id is 0x:");
memset(para, 0, para_size);
para->vddee = vddee;
for (i = 0; i < sizeof(chip_id); i++) {
para->chip_id[i] = chip_id[i];
printf("%02x ", para->chip_id[i]);
}
printf("\n");
mmc->block_dev.block_write(1, off, blk, buf);
}
aml_priv->para = para;
} else {
printf("get tuning parameter failed\n");
free(buf);
return 1;
}
return 0;
}
#endif
#ifdef MMC_HS400_MODE
void reset_all_reg(struct mmc *mmc)
{
struct aml_card_sd_info *aml_priv = mmc->priv;
struct sd_emmc_global_regs *sd_emmc_regs = aml_priv->sd_emmc_reg;
void *buf;
unsigned long addr;
int size;
u64 writeval;
unsigned long byte;
if (aml_priv->sd_emmc_port != 2)
return;
sd_emmc_regs->gclock = 0x1000204;
sd_emmc_regs->gcfg = 0x4791;
sd_emmc_regs->gadjust = 0;
sd_emmc_regs->gdelay = 0;
sd_emmc_regs->gdelay1 = 0;
sd_emmc_regs->gintf3 = 0;
aml_priv->cfg.f_max = 40000000;
size = 4;
byte = size;
addr = CLKSRC_BASE + 0x25c;
writeval = 0x080;
buf = map_sysmem(addr, byte);
*((u32 *)buf) = (u32)writeval;
unmap_sysmem(buf);
}
static long long para_checksum_calc(struct tuning_para *para)
{
int i = 0;
int size = sizeof(struct tuning_para) - 6 * sizeof(unsigned int);
unsigned int *buffer;
long long checksum = 0;
size = size >> 2;
buffer = (unsigned int *)para;
while (i < size)
checksum += buffer[i++];
return checksum;
}
static int mmc_read_single_block(struct mmc *mmc, void *dst, lbaint_t start)
{
struct mmc_cmd cmd;
struct mmc_data data;
int ret = 0;
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
data.dest = dst;
data.blocks = 1;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
ret = mmc_send_cmd(mmc, &cmd, &data);
return ret;
}
/*
* check if tuning parameter is exist
* check if temperature is in the 0~69
* check if the parameter has been tuning
* under the current temperature
* check if the data had been broken by checksum
*
* if all four condition above is yes, the tuning parameter
* could be use directly
* otherwise returning and save parameter
*/
int aml_para_is_exist(struct mmc *mmc)
{
int temperature;
int temp_index;
long long checksum;
struct aml_card_sd_info *aml_priv = mmc->priv;
int ret;
struct tuning_para *para = aml_priv->para;
if (!para)
return 0;
para->update = 1;
ret = r1p1_temp_read(1, &temperature);
if (ret == -1) {
para->update = 0;
printf("get temperature failed\n");
return 0;
}
checksum = para_checksum_calc(para);
if (checksum != para->checksum) {
printf("warning: checksum is not match\n");
return 0;
}
if (para->magic != TUNED_MAGIC) {
printf("[%s] magic is not match\n", __func__);
return 0;
}
if (para->version != TUNED_VERSION) {
printf("[%s] VERSION is not match\n", __func__);
return 0;
}
printf("current temperature is %d\n", temperature);
temp_index = temperature / 10;
para->temperature = temperature;
/* temperature range is 0 ~ 69 */
if (temp_index < 0 || temp_index > 6) {
printf("temperature is out of normal range\n");
return 0;
}
if (para->hs4[temp_index].flag != TUNED_FLAG) {
printf("current temperature %d degree not tuning yet\n",
temperature / 10);
return 0;
}
printf("the hs400 parameter is useful\n");
para->update = 0;
return 1;
}
/*
* read tuning para from reserved partition
* and copy it to pdata->para
*/
int aml_read_tuning_para(struct mmc *mmc)
{
struct aml_card_sd_info *aml_priv = mmc->priv;
struct tuning_para *para = aml_priv->para;
int offset, blk;
int ret;
int para_size;
void *addr;
if (!para)
return -1;
para_size = sizeof(struct tuning_para);
blk = (para_size - 1) / 512 + 1;
offset = MMC_TUNING_OFFSET;
addr = malloc(blk * 512);
if (!addr)
return -1;
memset(addr, 0, blk * 512);
if (blk == 1)
ret = mmc_read_single_block(mmc, addr, offset);
else
ret = mmc_bread(1, offset, blk, addr);
if (ret) {
printf("read tuning parameter failed\n");
free(addr);
return ret;
}
memcpy(para, addr, para_size);
free(addr);
return ret;
}
#endif
int mmc_init(struct mmc *mmc)
{
struct aml_card_sd_info *aml_priv = NULL;
int err = IN_PROGRESS, i;
unsigned start;
if (!mmc)
return -ENODEV;
aml_priv = mmc->priv;
if (mmc->has_init)
return 0;
#ifdef MMC_HS400_MODE
reset_all_reg(mmc);
#endif
start = get_timer(0);
if (!mmc->init_in_progress)
err = mmc_start_init(mmc);
if (!err || err == IN_PROGRESS)
err = mmc_complete_init(mmc);
debug("%s: %d, time %lu\n", __func__, err, get_timer(start));
if (err)
return err;
printf("[%s] mmc init success\n", __func__);
if (mmc->block_dev.dev == CONFIG_SYS_MMC_ENV_DEV) {
device_boot_flag = EMMC_BOOT_FLAG;
secure_storage_set_info(STORAGE_DEV_EMMC);
}
#ifdef CONFIG_STORE_COMPATIBLE
info_disprotect |= DISPROTECT_KEY;
if (aml_is_emmc_tsd(mmc)) { // eMMC OR TSD
if (!is_partition_checked) {
if (mmc_device_init(mmc) == 0) {
is_partition_checked = true;
printf("eMMC/TSD partition table have been checked OK!\n");
for (i = 0; i < ARRAY_SIZE(aml_pattern_table); i++)
mmc_pattern_check(mmc, &aml_pattern_table[i]);
}
}
}
info_disprotect &= ~DISPROTECT_KEY;
#endif
if (aml_priv->sd_emmc_port != 2)
return err;
#ifdef MMC_WRITE_CHIP_ID
err = aml_write_chip_id(mmc);
if (err)
printf("write chip id and vddee failed\n");
#endif
#ifdef MMC_HS400_MODE
err = aml_read_tuning_para(mmc);
if (err)
printf("read tuning parameter failed\n");
#ifdef MMC_SET_TUNING_PARA
if (aml_para_is_exist(mmc) == 0)
return err;
#endif
err = mmc_set_hs200_mode(mmc);
if (err) {
printf("set hs200 mode failed\n");
return err;
}
err = mmc_set_hs400_mode(mmc);
if (err) {
printf("set hs400 mode failed\n");
return err;
}
#endif
return err;
}
int mmc_ffu_op(int dev, u64 ffu_ver, void *addr, u64 cnt)
{
int err, i, supported_modes, fw_cfg, ffu_status;
u64 fw_ver = 0, n;
u8 ext_csd_ffu[512] = {0};
lbaint_t ffu_addr=0;
struct mmc *mmc = find_mmc_device(dev);
if (!mmc)
return -ENODEV;
printf("ffu update start\n");
/* check Manufacturer MID */
if ((mmc->cid[0] >> 24) == SAMSUNG_MID) {
ffu_addr = SAMSUNG_FFU_ADDR;
} else if ((mmc->cid[0] >> 24) == KINGSTON_MID) {
ffu_addr = KINGSTON_FFU_ADDR;
} else if ((mmc->cid[0] >> 24) == BIWIN_MID) {
ffu_addr = BIWIN_FFU_ADDR;
} else if ((mmc->cid[0] >> 24) == TOSHIBA_MID) {
ffu_addr = TOSHIBA_FFU_ADDR;
} else {
printf("FFU update for this manufacturer not support yet\n");
return -1;
}
/*
* check FFU Supportability
* check FFU Prohibited or not
* check current firmware version
*/
memset(ext_csd_ffu, 0, 512);
err = mmc_get_ext_csd(mmc, ext_csd_ffu);
if (err)
return err;
supported_modes = ext_csd_ffu[EXT_CSD_SUPPORTED_MODES] & 0x1;
fw_cfg = ext_csd_ffu[EXT_CSD_FW_CFG] & 0x1;
for (i = 0; i < 8; i++) {
fw_ver |= ext_csd_ffu[EXT_CSD_FW_VERSION + 7 - i];
if (i < 7)
fw_ver <<= 8;
}
if ((mmc->cid[0] >> 24) == BIWIN_MID)
fw_ver = ((fw_ver >> 16) & 0xffffffff);
printf("old fw_ver = %llx\n", fw_ver);
if (!supported_modes || fw_cfg || (fw_ver >= ffu_ver))
return -1;
/* Set FFU Mode */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_MODE_CFG, 1);
if (err) {
printf("Failed: set FFU mode\n");
return err;
}
/* Write patch file at one write command */
n = mmc_ffu_write(dev, ffu_addr, cnt, addr);
if (n != cnt) {
printf("target is %llx block, but only %llx block has been write\n", cnt, n);
return -1;
}
memset(ext_csd_ffu, 0, 512);
err = mmc_get_ext_csd(mmc, ext_csd_ffu);
if (err)
return err;
for (i = 0; i < 8; i++) {
fw_ver |= ext_csd_ffu[EXT_CSD_FW_VERSION + 7 - i];
if (i < 7)
fw_ver <<= 8;
}
if ((mmc->cid[0] >> 24) == BIWIN_MID)
fw_ver = ((fw_ver >> 16) & 0xffffffff);
printf("new fw_ver = %llx\n", fw_ver);
if ((mmc->cid[0] >> 24) == SAMSUNG_MID) {
/* Set Normal Mode */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_MODE_CFG, 0);
if (err)
return err;
}
/* reset devices */
err = mmc_go_idle(mmc);
if (err)
return err;
/* Initialization */
mmc->has_init = 0;
err = mmc_init(mmc);
if (err)
return err;
/* Read ffu_status, check ffu_version */
memset(ext_csd_ffu, 0, 512);
err = mmc_get_ext_csd(mmc, ext_csd_ffu);
if (err)
return err;
ffu_status = ext_csd_ffu[EXT_CSD_FFU_STATUS] & 0xff;
fw_ver = 0;
for (i = 0; i < 8; i++) {
fw_ver |= ext_csd_ffu[EXT_CSD_FW_VERSION + 7 - i];
if (i < 7)
fw_ver <<= 8;
}
if ((mmc->cid[0] >> 24) == BIWIN_MID)
fw_ver = ((fw_ver >> 16) & 0xffffffff);
printf("new fw_ver = %llx\n", fw_ver);
if (ffu_status || (fw_ver != ffu_ver))
return ffu_status;
printf("FFU update ok!\n");
return 0;
}
int get_boot_size(char *name, uint64_t* size)
{
int ret = 0;
struct mmc *mmc = find_mmc_device(1);
/* do nothing */
if (!name)
goto _out;
if (!mmc) {
printf("%s() %d: not valid emmc\n", __func__, __LINE__);
ret = -1;
goto _out;
}
/* make sure mmc is initialized! */
ret = mmc_init(mmc);
if (ret) {
printf("%s() %d: emmc init %d\n", __func__, __LINE__, ret);
ret = -2;
goto _out;
}
if (!strcmp(name, "boot0") || !strcmp(name, "boot1"))
*size = mmc->capacity_boot;
_out:
return ret;
}
int mmc_set_dsr(struct mmc *mmc, u16 val)
{
mmc->dsr = val;
return 0;
}
/* CPU-specific MMC initializations */
__weak int cpu_mmc_init(bd_t *bis)
{
return -1;
}
/* board-specific MMC initializations. */
__weak int board_mmc_init(bd_t *bis)
{
return -1;
}
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
void print_mmc_devices(char separator)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
printf("%s: %d", m->cfg->name, m->block_dev.dev);
if (entry->next != &mmc_devices) {
printf("%c", separator);
if (separator != '\n')
puts (" ");
}
}
printf("\n");
}
#else
void print_mmc_devices(char separator) { }
#endif
int get_mmc_num(void)
{
return cur_dev_num;
}
void mmc_set_preinit(struct mmc *mmc, int preinit)
{
mmc->preinit = preinit;
}
static void do_preinit(void)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->preinit)
mmc_start_init(m);
}
}
int mmc_initialize(bd_t *bis)
{
INIT_LIST_HEAD (&mmc_devices);
cur_dev_num = 0;
if (board_mmc_init(bis) < 0)
cpu_mmc_init(bis);
#ifndef CONFIG_SPL_BUILD
print_mmc_devices(',');
#endif
do_preinit();
return 0;
}
#ifdef CONFIG_SUPPORT_EMMC_BOOT
/*
* This function changes the size of boot partition and the size of rpmb
* partition present on EMMC devices.
*
* Input Parameters:
* struct *mmc: pointer for the mmc device strcuture
* bootsize: size of boot partition
* rpmbsize: size of rpmb partition
*
* Returns 0 on success.
*/
int mmc_boot_partition_size_change(struct mmc *mmc, unsigned long bootsize,
unsigned long rpmbsize)
{
int err;
struct mmc_cmd cmd;
/* Only use this command for raw EMMC moviNAND. Enter backdoor mode */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = MMC_CMD62_ARG1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error1 = %d\n", err);
return err;
}
/* Boot partition changing mode */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = MMC_CMD62_ARG2;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error2 = %d\n", err);
return err;
}
/* boot partition size is multiple of 128KB */
bootsize = (bootsize * 1024) / 128;
/* Arg: boot partition size */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = bootsize;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error3 = %d\n", err);
return err;
}
/* RPMB partition size is multiple of 128KB */
rpmbsize = (rpmbsize * 1024) / 128;
/* Arg: RPMB partition size */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = rpmbsize;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error4 = %d\n", err);
return err;
}
return 0;
}
/*
* Modify EXT_CSD[177] which is BOOT_BUS_WIDTH
* based on the passed in values for BOOT_BUS_WIDTH, RESET_BOOT_BUS_WIDTH
* and BOOT_MODE.
*
* Returns 0 on success.
*/
int mmc_set_boot_bus_width(struct mmc *mmc, u8 width, u8 reset, u8 mode)
{
int err;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_BUS_WIDTH,
EXT_CSD_BOOT_BUS_WIDTH_MODE(mode) |
EXT_CSD_BOOT_BUS_WIDTH_RESET(reset) |
EXT_CSD_BOOT_BUS_WIDTH_WIDTH(width));
if (err)
return err;
return 0;
}
/*
* Modify EXT_CSD[179] which is PARTITION_CONFIG (formerly BOOT_CONFIG)
* based on the passed in values for BOOT_ACK, BOOT_PARTITION_ENABLE and
* PARTITION_ACCESS.
*
* Returns 0 on success.
*/
int mmc_set_part_conf(struct mmc *mmc, u8 ack, u8 part_num, u8 access)
{
int err;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
EXT_CSD_BOOT_ACK(ack) |
EXT_CSD_BOOT_PART_NUM(part_num) |
EXT_CSD_PARTITION_ACCESS(access));
if (err)
return err;
return 0;
}
/*
* Modify EXT_CSD[162] which is RST_n_FUNCTION based on the given value
* for enable. Note that this is a write-once field for non-zero values.
*
* Returns 0 on success.
*/
int mmc_set_rst_n_function(struct mmc *mmc, u8 enable)
{
return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_RST_N_FUNCTION,
enable);
}
#endif
extern ulong mmc_bwrite(int dev_num, lbaint_t start,
lbaint_t blkcnt, const void *src);
extern unsigned long mmc_berase(int dev_num,
lbaint_t start, lbaint_t blkcnt);
static int mmc_reserved_read(const char *name,
unsigned char *buf, unsigned int size)
{
ulong start, start_blk, blkcnt, ret;
int dev = EMMC_DTB_DEV;
struct partitions * part = NULL;
struct virtual_partition *vpart = NULL;
vpart = aml_get_virtual_partition_by_name(name);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
start = part->offset + vpart->offset;
start_blk = (start / MMC_BLOCK_SIZE);
blkcnt = (size / MMC_BLOCK_SIZE);
ret = mmc_bread(dev, start_blk, blkcnt, buf);
if (ret != blkcnt) {
printf("[%s] %d, mmc_bread %s error\n",
__func__, __LINE__, name);
return 1;
}
return 0;
}
static int mmc_reserved_write(const char *name,
unsigned char *buf, unsigned int size)
{
ulong start, start_blk, blkcnt, ret;
int i = 2, dev = EMMC_DTB_DEV;
struct partitions * part = NULL;
struct virtual_partition *vpart = NULL;
vpart = aml_get_virtual_partition_by_name(name);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
start = part->offset + vpart->offset;
start_blk = (start / MMC_BLOCK_SIZE);
blkcnt = (size / MMC_BLOCK_SIZE);
do {
ret = mmc_bwrite(dev, start_blk, blkcnt, buf);
if (ret != blkcnt) {
printf("[%s] %d, mmc_bwrite %s error\n",
__func__, __LINE__, name);
return 1;
}
start_blk += vpart->size / MMC_BLOCK_SIZE;
} while (--i);
return 0;
}
static int mmc_reserved_erase(const char *name, int number)
{
ulong start, start_blk, blkcnt, ret;
struct partitions * part = NULL;
struct virtual_partition *vpart = NULL;
int dev = EMMC_DTB_DEV;
vpart = aml_get_virtual_partition_by_name(name);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
start = part->offset + vpart->offset;
start_blk = (start / MMC_BLOCK_SIZE);
#ifdef KEY_BACKUP
blkcnt = (vpart->size / MMC_BLOCK_SIZE) * number + 2;
#else
blkcnt = (vpart->size / MMC_BLOCK_SIZE) * number;
#endif
ret = mmc_berase(dev, start_blk, blkcnt);
if (ret) {
printf("[%s] %d mmc_berase %s error\n",
__func__, __LINE__, name);
return 1;
}
return 0;
}
#ifdef KEY_BACKUP
/* unifykey backup distribution */
/*--------------------------------------------------------
* offset | 0x12020 | 0x12220 | 0x12420 | 0x12421 |
*--------------------------------------------------------
* size | 200 block | 200 block | 1 block | 1 block |
*--------------------------------------------------------
*content | key1 | key2 | checksum1 | checksum2 |
*--------------------------------------------------------
*/
static u64 _calc_key_checksum(void *addr, int size)
{
int i = 0;
u32 *buffer;
u64 checksum = 0;
if ((u64)addr % 4 != 0)
BUG();
buffer = (u32 *)addr;
size = size >> 2;
while (i < size)
checksum += buffer[i++];
return checksum;
}
static int _key_read(struct mmc *mmc, u64 blk, u64 cnt, void * addr)
{
int dev = EMMC_DTB_DEV;
u64 n;
n = mmc->block_dev.block_read(dev, blk, cnt, addr);
if (n != cnt) {
printf("%s: dev # %d, block # %#llx, count # %#llx ERROR!\n",
__func__, dev, blk, cnt);
}
return (n != cnt);
}
static int _verify_key_checksum(struct mmc *mmc, void *addr, int cpy)
{
u64 checksum;
int ret = 0;
u64 blk, key_glb_offset;
struct partitions * part = NULL;
struct virtual_partition *vpart = NULL;
char checksum_info[512] = {0};
vpart = aml_get_virtual_partition_by_name(MMC_KEY_NAME);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
key_glb_offset = part->offset + vpart->offset;
blk = (key_glb_offset + 2 * (vpart->size)) / MMC_BLOCK_SIZE + cpy;
ret = _key_read(mmc, blk, 1, (void *)checksum_info);
if (ret)
return -1;
memcpy(&key_infos[cpy], checksum_info, sizeof(struct aml_key_info));
checksum = _calc_key_checksum(addr, vpart->size);
printf("calc %llx, store %llx\n", checksum, key_infos[cpy].checksum);
return !(checksum == key_infos[cpy].checksum);
}
static int update_key_info(struct mmc *mmc, unsigned char *addr)
{
int ret = 0;
u64 blk, cnt, key_glb_offset;
int cpy = 1;
struct partitions * part = NULL;
struct virtual_partition *vpart = NULL;
int valid_flag = 0;
vpart = aml_get_virtual_partition_by_name(MMC_KEY_NAME);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
key_glb_offset = part->offset + vpart->offset;
while (cpy >= 0) {
blk = (key_glb_offset + cpy * (vpart->size)) / MMC_BLOCK_SIZE;
cnt = vpart->size / mmc->read_bl_len;
ret = _key_read(mmc, blk, cnt, addr);
if (ret) {
printf("%s: block # %#llx, cnt # %#llx ERROR!\n",
__func__, blk, cnt);
return -1;
}
ret = _verify_key_checksum(mmc, addr, cpy);
if (!ret && key_infos[cpy].magic != 0)
valid_flag += cpy + 1;
else
printf("cpy %d is not valid\n", cpy);
cpy--;
}
if (key_infos[0].stamp > key_infos[1].stamp)
mmc->key_stamp = key_infos[0].stamp;
else
mmc->key_stamp = key_infos[1].stamp;
return valid_flag;
}
static int _key_write(struct mmc *mmc, u64 blk, u64 cnt, void *addr)
{
int dev = EMMC_KEY_DEV;
u32 n;
n = mmc->block_dev.block_write(dev, blk, cnt, addr);
if (n != cnt) {
printf("%s: dev # %d, block # %#llx, count # %#llx ERROR!\n",
__func__, dev, blk, cnt);
}
return (n != cnt);
}
static int write_invalid_key(struct mmc *mmc, void *addr, int valid_flag)
{
u64 blk, cnt, key_glb_offset;
int ret = 0;
struct partitions * part = NULL;
struct virtual_partition *vpart = NULL;
char checksum_info[512] = {0};
if (valid_flag > 2 || valid_flag < 1)
return 1;
vpart = aml_get_virtual_partition_by_name(MMC_KEY_NAME);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
key_glb_offset = part->offset + vpart->offset;
blk = (key_glb_offset + (valid_flag - 1) * (vpart->size)) / MMC_BLOCK_SIZE;
cnt = vpart->size / mmc->read_bl_len;
if (_key_read(mmc, blk, cnt, addr)) {
printf("%s: block # %#llx,cnt # %#llx ERROR!\n",
__func__, blk, cnt);
ret = -2;
}
/* fixme, update the invalid one - key1 */
blk = (key_glb_offset + (valid_flag % 2) * vpart->size) / MMC_BLOCK_SIZE;
if (_key_write(mmc, blk, cnt, addr)) {
printf("%s: block # %#llx,cnt # %#llx ERROR!\n",
__func__, blk, cnt);
ret = -4;
}
memcpy(checksum_info, &key_infos[valid_flag - 1], sizeof(struct aml_key_info));
blk = (key_glb_offset + 2 * (vpart->size)) / MMC_BLOCK_SIZE + valid_flag % 2;
if (_key_write(mmc, blk, 1, checksum_info)) {
printf("%s: block # %#llx,cnt # %#llx ERROR!\n",
__func__, blk, cnt);
ret = -4;
}
return ret;
}
static int update_invalid_key(struct mmc *mmc, void *addr, int valid_flag)
{
int ret = 0, dev = EMMC_KEY_DEV;
u64 blk, cnt, key_glb_offset;
struct partitions * part = NULL;
struct virtual_partition *vpart = NULL;
char checksum_info[512] = {0};
vpart = aml_get_virtual_partition_by_name(MMC_KEY_NAME);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
key_glb_offset = part->offset + vpart->offset;
cnt = vpart->size / mmc->read_bl_len;
if (valid_flag == 2) {
printf("update key1");
ret = write_invalid_key(mmc, addr, valid_flag);
if (ret)
ret = -2;
} else {
printf("update key2");
blk = (key_glb_offset + vpart->size) / MMC_BLOCK_SIZE;
if (_key_write(mmc, blk, cnt, addr)) {
printf("%s: dev # %d, block # %#llx,cnt # %#llx ERROR!\n",
__func__, dev, blk, cnt);
ret = -2;
}
memcpy(checksum_info, &key_infos[valid_flag - 1],
sizeof(struct aml_key_info));
blk = (key_glb_offset + 2 * (vpart->size)) / MMC_BLOCK_SIZE + valid_flag % 2;
if (_key_write(mmc, blk, 1, checksum_info)) {
printf("%s: block # %#llx,cnt # %#llx ERROR!\n",
__func__, blk, cnt);
ret = -4;
}
}
return ret;
}
int update_old_key(struct mmc *mmc, void *addr)
{
int ret = 0;
int valid_flag;
if (stamp_after(key_infos[1].stamp, key_infos[0].stamp)) {
memcpy(&key_infos[1], &key_infos[0], sizeof(struct aml_key_info));
valid_flag = 2;
} else if (stamp_after(key_infos[0].stamp, key_infos[1].stamp)) {
memcpy(&key_infos[0], &key_infos[1], sizeof(struct aml_key_info));
valid_flag = 1;
} else {
printf("do nothing\n");
return ret;
}
ret = write_invalid_key(mmc, addr, valid_flag);
/*update key*/
if (ret)
ret = -3;
mmc->key_stamp = key_infos[0].stamp;
return ret;
}
static struct mmc *_rsv_init(void)
{
struct mmc *mmc = find_mmc_device(EMMC_KEY_DEV);
if (!mmc) {
printf("not find mmc\n");
return NULL;
}
if (mmc_init(mmc)) {
printf("mmc init failed\n");
return NULL;
}
return mmc;
}
static int mmc_key_write_backup(const char *name,
unsigned char *addr, unsigned int size)
{
int ret = 0;
u64 blk, cnt, key_glb_offset;
int cpy;
struct mmc * mmc;
struct partitions * part = NULL;
struct virtual_partition *vpart = NULL;
char checksum_info[512] = {0};
vpart = aml_get_virtual_partition_by_name(MMC_KEY_NAME);
part = aml_get_partition_by_name(MMC_RESERVED_NAME);
key_glb_offset = part->offset + vpart->offset;
mmc = _rsv_init();
if (mmc == NULL)
return -10;
key_infos[0].stamp = mmc->key_stamp + 1;
key_infos[0].magic = 9;
key_infos[0].checksum = _calc_key_checksum(addr, vpart->size);
printf("new stamp %d, checksum 0x%llx, magic %d\n",
key_infos[0].stamp, key_infos[0].checksum, key_infos[0].magic);
memcpy(checksum_info, &key_infos[0], sizeof(struct aml_key_info));
for (cpy = 0; cpy < KEY_COPIES; cpy++) {
blk = (key_glb_offset + cpy * (vpart->size)) / MMC_BLOCK_SIZE;
cnt = vpart->size / mmc->read_bl_len;
ret |= _key_write(mmc, blk, cnt, addr);
blk = (key_glb_offset + 2 * (vpart->size)) / MMC_BLOCK_SIZE + cpy;
ret |= _key_write(mmc, blk, 1, checksum_info);
}
if (ret) {
printf("%s() %d: emmc init %d\n", __func__, __LINE__, ret);
ret = -2;
}
return ret;
}
static int mmc_key_read_backup(const char *name,
unsigned char *addr, unsigned int size)
{
int valid = 0;
struct mmc *mmc;
mmc = _rsv_init();
if (mmc == NULL)
return -10;
/* check valid key flag , addr save the first key content */
valid = update_key_info(mmc, addr);
switch (valid) {
/* none is valid, using the 1st one for compatibility*/
case 0:
goto _out;
break;
/* only first is valid, using the first update the second */
case 1:
update_invalid_key(mmc, addr, 1);
break;
/* only second is valid, using the second */
case 2:
update_invalid_key(mmc, addr, 2);
break;
case 3:
/*update the old key */
update_old_key(mmc, addr);
break;
default:
printf("impossible valid values.\n");
BUG();
break;
}
_out:
return 0;
}
#endif
int mmc_key_write(unsigned char *buf,
unsigned int size, uint32_t *actual_length)
{
int ret;
info_disprotect |= DISPROTECT_KEY;
#ifdef KEY_BACKUP
ret = mmc_key_write_backup(MMC_KEY_NAME, buf, size);
#else
ret = mmc_reserved_write(MMC_KEY_NAME, buf, size);
#endif
info_disprotect &= ~DISPROTECT_KEY;
return ret;
}
int mmc_key_read(unsigned char *buf,
unsigned int size, uint32_t *actual_length)
{
int ret;
info_disprotect |= DISPROTECT_KEY;
#ifdef KEY_BACKUP
ret = mmc_key_read_backup(MMC_KEY_NAME, buf, size);
#else
ret = mmc_reserved_read(MMC_KEY_NAME, buf, size);
#endif
info_disprotect &= ~DISPROTECT_KEY;
/*key size is 256KB*/
*actual_length = 0x40000;
return ret;
}
int mmc_key_erase(void)
{
int ret;
info_disprotect |= DISPROTECT_KEY;
/* when write the 2nd key? */
ret = mmc_reserved_erase(MMC_KEY_NAME, 2);
info_disprotect &= ~DISPROTECT_KEY;
return ret;
}
int mmc_ddr_parameter_read(unsigned char *buf,
unsigned int size)
{
return mmc_reserved_read(MMC_DDR_PARAMETER_NAME, buf, size);
}
int mmc_ddr_parameter_write(unsigned char *buf,
unsigned int size)
{
return mmc_reserved_write(MMC_DDR_PARAMETER_NAME, buf, size);
}
int mmc_ddr_parameter_erase(void)
{
return mmc_reserved_erase(MMC_DDR_PARAMETER_NAME, 1);
}