| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2000-2009 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| */ |
| |
| #ifndef USE_HOSTCC |
| #include <image-android-dt.h> |
| #include <dt_table.h> |
| #include <common.h> |
| #include <bootstage.h> |
| #include <bzlib.h> |
| #include <errno.h> |
| #include <fdt_support.h> |
| #include <lmb.h> |
| #include <malloc.h> |
| #include <mapmem.h> |
| #include <asm/io.h> |
| #include <linux/lzo.h> |
| #include <lzma/LzmaTypes.h> |
| #include <lzma/LzmaDec.h> |
| #include <lzma/LzmaTools.h> |
| #include <android_image.h> |
| #include <amlogic/storage.h> |
| #if defined(CONFIG_CMD_USB) |
| #include <usb.h> |
| #endif |
| #else |
| #include "mkimage.h" |
| #endif |
| |
| #include <command.h> |
| #include <bootm.h> |
| #include <image.h> |
| |
| #ifdef CONFIG_OF_LIBFDT_OVERLAY |
| #include <ext_common.h> |
| #endif |
| |
| #ifndef CONFIG_SYS_BOOTM_LEN |
| /* use 8MByte as default max gunzip size */ |
| #define CONFIG_SYS_BOOTM_LEN 0x800000 |
| #endif |
| |
| #define IH_INITRD_ARCH IH_ARCH_DEFAULT |
| |
| #ifdef CONFIG_MDUMP_COMPRESS |
| #include <ramdump.h> |
| #endif |
| |
| #ifndef USE_HOSTCC |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| bootm_headers_t images; /* pointers to os/initrd/fdt images */ |
| |
| static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc, |
| char * const argv[], bootm_headers_t *images, |
| ulong *os_data, ulong *os_len); |
| |
| __weak void board_quiesce_devices(void) |
| { |
| } |
| |
| #ifdef CONFIG_LMB |
| static void boot_start_lmb(bootm_headers_t *images) |
| { |
| ulong mem_start; |
| phys_size_t mem_size; |
| |
| lmb_init(&images->lmb); |
| |
| mem_start = env_get_bootm_low(); |
| mem_size = env_get_bootm_size(); |
| |
| lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size); |
| |
| arch_lmb_reserve(&images->lmb); |
| board_lmb_reserve(&images->lmb); |
| } |
| #else |
| #define lmb_reserve(lmb, base, size) |
| static inline void boot_start_lmb(bootm_headers_t *images) { } |
| #endif |
| |
| static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, |
| char * const argv[]) |
| { |
| memset((void *)&images, 0, sizeof(images)); |
| images.verify = env_get_yesno("verify"); |
| |
| boot_start_lmb(&images); |
| |
| bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start"); |
| images.state = BOOTM_STATE_START; |
| |
| return 0; |
| } |
| |
| static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc, |
| char * const argv[]) |
| { |
| const void *os_hdr; |
| bool ep_found = false; |
| int ret; |
| |
| /* get kernel image header, start address and length */ |
| os_hdr = boot_get_kernel(cmdtp, flag, argc, argv, |
| &images, &images.os.image_start, &images.os.image_len); |
| if (images.os.image_len == 0) { |
| puts("ERROR: can't get kernel image!\n"); |
| return 1; |
| } |
| |
| /* get image parameters */ |
| switch (genimg_get_format(os_hdr)) { |
| #if defined(CONFIG_IMAGE_FORMAT_LEGACY) |
| case IMAGE_FORMAT_LEGACY: |
| images.os.type = image_get_type(os_hdr); |
| images.os.comp = image_get_comp(os_hdr); |
| images.os.os = image_get_os(os_hdr); |
| |
| images.os.end = image_get_image_end(os_hdr); |
| images.os.load = image_get_load(os_hdr); |
| images.os.arch = image_get_arch(os_hdr); |
| if (images.os.arch == IH_ARCH_ARM) { |
| env_set("initrd_high", "0A000000"); |
| env_set("fdt_high", "0A000000"); |
| } |
| break; |
| #endif |
| #if IMAGE_ENABLE_FIT |
| case IMAGE_FORMAT_FIT: |
| if (fit_image_get_type(images.fit_hdr_os, |
| images.fit_noffset_os, |
| &images.os.type)) { |
| puts("Can't get image type!\n"); |
| bootstage_error(BOOTSTAGE_ID_FIT_TYPE); |
| return 1; |
| } |
| |
| if (fit_image_get_comp(images.fit_hdr_os, |
| images.fit_noffset_os, |
| &images.os.comp)) { |
| puts("Can't get image compression!\n"); |
| bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION); |
| return 1; |
| } |
| |
| if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os, |
| &images.os.os)) { |
| puts("Can't get image OS!\n"); |
| bootstage_error(BOOTSTAGE_ID_FIT_OS); |
| return 1; |
| } |
| |
| if (fit_image_get_arch(images.fit_hdr_os, |
| images.fit_noffset_os, |
| &images.os.arch)) { |
| puts("Can't get image ARCH!\n"); |
| return 1; |
| } |
| |
| images.os.end = fit_get_end(images.fit_hdr_os); |
| |
| if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os, |
| &images.os.load)) { |
| puts("Can't get image load address!\n"); |
| bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR); |
| return 1; |
| } |
| break; |
| #endif |
| #ifdef CONFIG_ANDROID_BOOT_IMAGE |
| case IMAGE_FORMAT_ANDROID: |
| if (image_get_magic((image_header_t *)images.os.image_start) == IH_MAGIC) { |
| env_set("initrd_high", "0A000000"); |
| env_set("fdt_high", "0A000000"); |
| images.os.arch = ((image_header_t *)(images.os.image_start))->ih_arch; |
| images.os.image_start += sizeof(image_header_t); |
| } |
| images.os.type = IH_TYPE_KERNEL; |
| |
| if (images.os.arch == IH_ARCH_ARM) |
| images.os.comp = image_get_comp(os_hdr + 0x800); |
| else |
| images.os.comp = android_image_get_comp(os_hdr); |
| |
| //images.os.comp = android_image_get_comp(os_hdr); |
| images.os.os = IH_OS_LINUX; |
| |
| images.os.end = android_image_get_end(os_hdr); |
| images.os.load = android_image_get_kload(os_hdr); |
| if (images.os.load == 0x10008000) |
| images.os.load = 0x1080000; |
| images.ep = images.os.load; |
| ep_found = true; |
| break; |
| #endif |
| default: |
| puts("ERROR: unknown image format type!\n"); |
| return 1; |
| } |
| |
| /* If we have a valid setup.bin, we will use that for entry (x86) */ |
| if (images.os.arch == IH_ARCH_I386 || |
| images.os.arch == IH_ARCH_X86_64) { |
| ulong len; |
| |
| ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len); |
| if (ret < 0 && ret != -ENOENT) { |
| puts("Could not find a valid setup.bin for x86\n"); |
| return 1; |
| } |
| /* Kernel entry point is the setup.bin */ |
| } else if (images.legacy_hdr_valid) { |
| images.ep = image_get_ep(&images.legacy_hdr_os_copy); |
| #if IMAGE_ENABLE_FIT |
| } else if (images.fit_uname_os) { |
| int ret; |
| |
| ret = fit_image_get_entry(images.fit_hdr_os, |
| images.fit_noffset_os, &images.ep); |
| if (ret) { |
| puts("Can't get entry point property!\n"); |
| return 1; |
| } |
| #endif |
| } else if (!ep_found) { |
| puts("Could not find kernel entry point!\n"); |
| return 1; |
| } |
| |
| if (images.os.type == IH_TYPE_KERNEL_NOLOAD) { |
| if (CONFIG_IS_ENABLED(CMD_BOOTI) && |
| images.os.arch == IH_ARCH_ARM64) { |
| ulong image_addr; |
| ulong image_size; |
| |
| ret = booti_setup(images.os.image_start, &image_addr, |
| &image_size, true); |
| if (ret != 0) |
| return 1; |
| |
| images.os.type = IH_TYPE_KERNEL; |
| images.os.load = image_addr; |
| images.ep = image_addr; |
| } else { |
| images.os.load = images.os.image_start; |
| images.ep += images.os.image_start; |
| } |
| } |
| |
| images.os.start = map_to_sysmem(os_hdr); |
| |
| return 0; |
| } |
| |
| /* |
| * load dtb overlay partition to mem |
| */ |
| #ifdef CONFIG_OF_LIBFDT_OVERLAY |
| static int read_fdto_partition(void) |
| { |
| char cmd[128]; |
| void *dtbo_mem_addr = NULL; |
| char dtbo_partition[32]; |
| char *s1; |
| struct dt_table_header hdr; |
| |
| //run_command("get_valid_slot;", 0); |
| s1 = env_get("active_slot"); |
| printf("active_slot is %s\n", s1); |
| if (strcmp(s1, "normal") == 0) { |
| strcpy(dtbo_partition, "dtbo"); |
| } else if (strcmp(s1, "_a") == 0) { |
| strcpy(dtbo_partition, "dtbo_a"); |
| } else if (strcmp(s1, "_b") == 0) { |
| strcpy(dtbo_partition, "dtbo_b"); |
| } |
| |
| /* |
| * Though it is really no need to parse the dtimg infos |
| * here, but wasting time to read the whole dtbo image |
| * partition is unacceptable |
| */ |
| printf("Start read %s partition datas!\n", dtbo_partition); |
| if (store_read(dtbo_partition, 0, |
| sizeof(struct dt_table_header), &hdr) < 0) { |
| printf("Fail to read header of DTBO partition\n"); |
| return -1; |
| } |
| |
| #ifdef CONFIG_CMD_DTIMG |
| if (!android_dt_check_header((ulong)&hdr)) { |
| printf("DTBO partition header is incorrect\n"); |
| return -1; |
| } |
| #endif |
| |
| dtbo_mem_addr = malloc(fdt32_to_cpu(hdr.total_size)); |
| if (!dtbo_mem_addr) { |
| printf("out of memory\n"); |
| return -1; |
| } else { |
| if (store_read(dtbo_partition, 0, |
| fdt32_to_cpu(hdr.total_size), dtbo_mem_addr) < 0) { |
| printf("Fail to read DTBO partition\n"); |
| free(dtbo_mem_addr); |
| return -1; |
| } |
| else { |
| sprintf(cmd, "0x%p", dtbo_mem_addr); |
| env_set("dtbo_mem_addr",cmd); |
| } |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_OF_LIBFDT_OVERLAY |
| static int get_fdto_totalsize(u32 *tz) |
| { |
| #ifdef CONFIG_CMD_DTIMG |
| unsigned long long dtbo_mem_addr = 0x0; |
| #endif |
| int ret; |
| |
| ret = read_fdto_partition(); |
| if (ret != 0) |
| return ret; |
| |
| #ifdef CONFIG_CMD_DTIMG |
| dtbo_mem_addr = simple_strtoul(env_get("dtbo_mem_addr"), NULL, 16); |
| *tz = android_dt_get_totalsize(dtbo_mem_addr); |
| #endif |
| return 0; |
| } |
| #endif |
| |
| static void add_boot_args(const char *varname, const int varvalue) |
| { |
| // Build cmdline. |
| int ret; |
| char cmdline[/* max= */ 256]; |
| ret = snprintf(cmdline, sizeof(cmdline), "%s=%d", varname, varvalue); |
| if (ret < 0 || ret >= sizeof(cmdline)) { |
| puts("Error: build cmdline in add_boot_args failed!\n"); |
| return; |
| } |
| |
| // Add boot args. |
| char *bootargs = env_get("bootargs"); |
| int newbootargs_size = bootargs |
| ? strlen(bootargs) + 1 /* space */ + strlen(cmdline) + 1 /* null */ |
| : strlen(cmdline) + 1 /* null */; |
| char *newbootargs = malloc(newbootargs_size); |
| if (!newbootargs) { |
| puts("Error: malloc in add_boot_args failed!\n"); |
| return; |
| } |
| |
| if (bootargs) { |
| snprintf(newbootargs, newbootargs_size, "%s %s", bootargs, cmdline); |
| } else { |
| snprintf(newbootargs, newbootargs_size, "%s", cmdline); |
| } |
| |
| env_set("bootargs", newbootargs); |
| free(newbootargs); |
| } |
| |
| #ifdef CONFIG_OF_LIBFDT_OVERLAY |
| static int find_dtbo_idx(const int board_id) |
| { |
| unsigned long long dtbo_mem_addr = env_get_hex("dtbo_mem_addr", 0x0); |
| |
| if (dtbo_mem_addr == 0x0) { |
| printf("No valid dtbo image found\n"); |
| return -1; |
| } |
| |
| #ifdef CONFIG_CMD_DTIMG |
| if (!android_dt_check_header(dtbo_mem_addr)) { |
| printf("Error: DTBO image header is incorrect\n"); |
| return -1; |
| } |
| #endif |
| |
| const struct dt_table_header *hdr; |
| u32 entry_count, entries_offset, entry_size; |
| u32 i; |
| |
| hdr = map_sysmem(dtbo_mem_addr, sizeof(*hdr)); |
| entry_count = fdt32_to_cpu(hdr->dt_entry_count); |
| entries_offset = fdt32_to_cpu(hdr->dt_entries_offset); |
| entry_size = fdt32_to_cpu(hdr->dt_entry_size); |
| |
| unmap_sysmem(hdr); |
| |
| printf("Read board id from dtbo...\n"); |
| for (i = 0; i < entry_count; ++i) { |
| const ulong e_addr = dtbo_mem_addr + entries_offset + i * entry_size; |
| const struct dt_table_entry *entry; |
| |
| entry = map_sysmem(e_addr, sizeof(*entry)); |
| int dtbo_board_id = fdt32_to_cpu(entry->id); |
| |
| unmap_sysmem(entry); |
| |
| if (dtbo_board_id == board_id) { |
| printf("Find dtbo index %d for board id %d\n", i, board_id); |
| return i; |
| } |
| } |
| printf("Can't find dtbo index for board id %d\n", board_id); |
| return -1; |
| } |
| #endif |
| |
| #ifdef CONFIG_OF_LIBFDT_OVERLAY |
| static int do_fdt_overlay(void) |
| { |
| unsigned long long dtbo_mem_addr = 0x0; |
| int dtbo_num = 0; |
| int i; |
| char cmd[128]; |
| unsigned long long dtbo_start; |
| char *dtbo_idx = NULL; |
| char idx[32]; |
| |
| if (!env_get("dtbo_mem_addr")) { |
| printf("No valid dtbo image found\n"); |
| return -1; |
| } |
| |
| dtbo_mem_addr = simple_strtoul(env_get("dtbo_mem_addr"), NULL, 16); |
| #ifdef CONFIG_CMD_DTIMG |
| if (!android_dt_check_header(dtbo_mem_addr)) { |
| printf("Error: DTBO image header is incorrect\n"); |
| return -1; |
| } |
| #endif |
| |
| /* android_dt_print_contents(dtbo_mem_addr); */ |
| dtbo_num = fdt32_to_cpu(( |
| (const struct dt_table_header *)dtbo_mem_addr)->dt_entry_count); |
| printf("find %d dtbos\n", dtbo_num); |
| |
| dtbo_idx = env_get("dtbo_idx"); |
| if (!dtbo_idx) { |
| printf("No dtbo_idx configured\n"); |
| printf("And no dtbos will be applied\n"); |
| return -1; |
| } |
| printf("dtbos to be applied: %s\n", dtbo_idx); |
| |
| #ifndef CONFIG_CMD_DTIMG |
| printf("Error: No dtimg support found\n"); |
| return -1; |
| #endif |
| |
| for (i = 0; i < dtbo_num; i++) { |
| memset(idx, 0x00, sizeof(idx)); |
| sprintf(idx, "%d", i); |
| if (strstr(dtbo_idx, idx)) { |
| printf("Apply dtbo %d\n", i); |
| sprintf(cmd, "dtimg start 0x%llx %d dtbo_start", |
| dtbo_mem_addr, i); |
| run_command(cmd, 0); |
| dtbo_start = simple_strtoul( |
| env_get("dtbo_start"), NULL, 16); |
| |
| sprintf(cmd, "fdt apply 0x%llx", dtbo_start); |
| run_command(cmd, 0); |
| } |
| } |
| |
| free((void *)dtbo_mem_addr); |
| return 0; |
| } |
| #endif |
| |
| /** |
| * bootm_find_images - wrapper to find and locate various images |
| * @flag: Ignored Argument |
| * @argc: command argument count |
| * @argv: command argument list |
| * |
| * boot_find_images() will attempt to load an available ramdisk, |
| * flattened device tree, as well as specifically marked |
| * "loadable" images (loadables are FIT only) |
| * |
| * Note: bootm_find_images will skip an image if it is not found |
| * |
| * @return: |
| * 0, if all existing images were loaded correctly |
| * 1, if an image is found but corrupted, or invalid |
| */ |
| int bootm_find_images(int flag, int argc, char * const argv[]) |
| { |
| int ret; |
| #ifdef CONFIG_OF_LIBFDT_OVERLAY |
| u32 fdto_totalsize = 0; |
| #endif |
| |
| /* find ramdisk */ |
| ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH, |
| &images.rd_start, &images.rd_end); |
| if (ret) { |
| puts("Ramdisk image is corrupt or invalid\n"); |
| return 1; |
| } |
| |
| #if IMAGE_ENABLE_OF_LIBFDT |
| /* find flattened device tree */ |
| #ifdef CONFIG_DTB_MEM_ADDR |
| unsigned long long dtb_mem_addr = -1; |
| char *ft_addr_bak; |
| ulong ft_len_bak; |
| if (env_get("dtb_mem_addr")) |
| dtb_mem_addr = simple_strtoul(env_get("dtb_mem_addr"), NULL, 16); |
| else |
| dtb_mem_addr = CONFIG_DTB_MEM_ADDR; |
| ft_addr_bak = (char *)images.ft_addr; |
| ft_len_bak = images.ft_len; |
| images.ft_addr = (char *)map_sysmem(dtb_mem_addr, 0); |
| images.ft_len = fdt_get_header(dtb_mem_addr, totalsize); |
| #endif /* CONFIG_DTB_MEM_ADDR */ |
| printf("load dtb from 0x%lx ......\n", (unsigned long)(images.ft_addr)); |
| #ifdef CONFIG_MULTI_DTB |
| extern unsigned long get_multi_dt_entry(unsigned long fdt_addr); |
| /* update dtb address, compatible with single dtb and multi dtbs */ |
| images.ft_addr = (char*)get_multi_dt_entry((unsigned long)images.ft_addr); |
| #endif /* CONFIG_MULTI_DTB */ |
| |
| ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images, |
| &images.ft_addr, &images.ft_len); |
| #ifdef CONFIG_DTB_MEM_ADDR |
| if (ret) { |
| images.ft_addr = ft_addr_bak; |
| images.ft_len = ft_len_bak; |
| |
| printf("load dtb from 0x%lx ......\n", |
| (unsigned long)(images.ft_addr)); |
| #ifdef CONFIG_MULTI_DTB |
| extern unsigned long get_multi_dt_entry(unsigned long fdt_addr); |
| /* update dtb address, compatible with single dtb and multi dtbs */ |
| images.ft_addr = (char*)get_multi_dt_entry((unsigned long)images.ft_addr); |
| #endif /* CONFIG_MULTI_DTB */ |
| ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images, |
| &images.ft_addr, &images.ft_len); |
| } |
| #endif /* CONFIG_DTB_MEM_ADDR */ |
| if (ret) { |
| puts("Could not find a valid device tree\n"); |
| return 1; |
| } |
| set_working_fdt_addr(map_to_sysmem(images.ft_addr)); |
| |
| int board_id = env_get_ulong("board_id", 10, -1); |
| if (board_id >= 0) { |
| // Add board id to sys properties. |
| add_boot_args("androidboot.board_id", board_id); |
| } |
| |
| #ifdef CONFIG_OF_LIBFDT_OVERLAY |
| if (get_fdto_totalsize(&fdto_totalsize) == 0) |
| fdt_set_totalsize(images.ft_addr, fdt_get_header(images.ft_addr, |
| totalsize) + fdto_totalsize); |
| images.ft_len = fdt_get_header(images.ft_addr, totalsize); |
| |
| int dtbo_idx = 0; // Default. |
| int board_dtbo_idx = find_dtbo_idx(board_id); |
| if (board_dtbo_idx >= 0) { |
| dtbo_idx = board_dtbo_idx; |
| } |
| |
| add_boot_args("androidboot.dtbo_idx", dtbo_idx); |
| env_set_ulong("dtbo_idx", dtbo_idx); |
| do_fdt_overlay(); |
| #endif |
| #endif |
| |
| #if IMAGE_ENABLE_FIT |
| #if defined(CONFIG_FPGA) |
| /* find bitstreams */ |
| ret = boot_get_fpga(argc, argv, &images, IH_ARCH_DEFAULT, |
| NULL, NULL); |
| if (ret) { |
| printf("FPGA image is corrupted or invalid\n"); |
| return 1; |
| } |
| #endif |
| |
| /* find all of the loadables */ |
| ret = boot_get_loadable(argc, argv, &images, IH_ARCH_DEFAULT, |
| NULL, NULL); |
| if (ret) { |
| printf("Loadable(s) is corrupt or invalid\n"); |
| return 1; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc, |
| char * const argv[]) |
| { |
| if (((images.os.type == IH_TYPE_KERNEL) || |
| (images.os.type == IH_TYPE_KERNEL_NOLOAD) || |
| (images.os.type == IH_TYPE_MULTI)) && |
| (images.os.os == IH_OS_LINUX || |
| images.os.os == IH_OS_VXWORKS)) |
| return bootm_find_images(flag, argc, argv); |
| |
| return 0; |
| } |
| #endif /* USE_HOSTC */ |
| |
| /** |
| * print_decomp_msg() - Print a suitable decompression/loading message |
| * |
| * @type: OS type (IH_OS_...) |
| * @comp_type: Compression type being used (IH_COMP_...) |
| * @is_xip: true if the load address matches the image start |
| */ |
| static void print_decomp_msg(int comp_type, int type, bool is_xip) |
| { |
| const char *name = genimg_get_type_name(type); |
| |
| if (comp_type == IH_COMP_NONE) |
| printf(" %s %s ... ", is_xip ? "XIP" : "Loading", name); |
| else |
| printf(" Uncompressing %s ... ", name); |
| } |
| |
| /** |
| * handle_decomp_error() - display a decompression error |
| * |
| * This function tries to produce a useful message. In the case where the |
| * uncompressed size is the same as the available space, we can assume that |
| * the image is too large for the buffer. |
| * |
| * @comp_type: Compression type being used (IH_COMP_...) |
| * @uncomp_size: Number of bytes uncompressed |
| * @unc_len: Amount of space available for decompression |
| * @ret: Error code to report |
| * @return BOOTM_ERR_RESET, indicating that the board must be reset |
| */ |
| static int handle_decomp_error(int comp_type, size_t uncomp_size, |
| size_t unc_len, int ret) |
| { |
| const char *name = genimg_get_comp_name(comp_type); |
| |
| if (uncomp_size >= unc_len) |
| printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n"); |
| else |
| printf("%s: uncompress error %d\n", name, ret); |
| |
| /* |
| * The decompression routines are now safe, so will not write beyond |
| * their bounds. Probably it is not necessary to reset, but maintain |
| * the current behaviour for now. |
| */ |
| printf("Must RESET board to recover\n"); |
| #ifndef USE_HOSTCC |
| bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); |
| #endif |
| |
| return BOOTM_ERR_RESET; |
| } |
| |
| int bootm_decomp_image(int comp, ulong load, ulong image_start, int type, |
| void *load_buf, void *image_buf, ulong image_len, |
| uint unc_len, ulong *load_end) |
| { |
| int ret = 0; |
| |
| *load_end = load; |
| print_decomp_msg(comp, type, load == image_start); |
| |
| /* |
| * Load the image to the right place, decompressing if needed. After |
| * this, image_len will be set to the number of uncompressed bytes |
| * loaded, ret will be non-zero on error. |
| */ |
| switch (comp) { |
| case IH_COMP_NONE: |
| if (load == image_start) |
| break; |
| if (image_len <= unc_len) |
| memmove_wd(load_buf, image_buf, image_len, CHUNKSZ); |
| else |
| ret = 1; |
| break; |
| #ifdef CONFIG_GZIP |
| case IH_COMP_GZIP: { |
| ret = gunzip(load_buf, unc_len, image_buf, &image_len); |
| break; |
| } |
| #endif /* CONFIG_GZIP */ |
| #ifdef CONFIG_BZIP2 |
| case IH_COMP_BZIP2: { |
| uint size = unc_len; |
| |
| /* |
| * If we've got less than 4 MB of malloc() space, |
| * use slower decompression algorithm which requires |
| * at most 2300 KB of memory. |
| */ |
| ret = BZ2_bzBuffToBuffDecompress(load_buf, &size, |
| image_buf, image_len, |
| CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0); |
| image_len = size; |
| break; |
| } |
| #endif /* CONFIG_BZIP2 */ |
| #ifdef CONFIG_LZMA |
| case IH_COMP_LZMA: { |
| SizeT lzma_len = unc_len; |
| |
| ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len, |
| image_buf, image_len); |
| image_len = lzma_len; |
| break; |
| } |
| #endif /* CONFIG_LZMA */ |
| #ifdef CONFIG_LZO |
| case IH_COMP_LZO: { |
| const char *type_name = genimg_get_type_name(type); |
| size_t size = unc_len; |
| printf(" Uncompressing %s ... ", type_name); |
| ret = lzop_decompress(image_buf, image_len, load_buf, &size); |
| image_len = size; |
| break; |
| } |
| #endif /* CONFIG_LZO */ |
| #ifdef CONFIG_LZ4 |
| case IH_COMP_LZ4: { |
| size_t size = unc_len; |
| |
| ret = ulz4fn(image_buf, image_len, load_buf, &size); |
| image_len = size; |
| break; |
| } |
| #endif /* CONFIG_LZ4 */ |
| default: |
| printf("Unimplemented compression type %d\n", comp); |
| return BOOTM_ERR_UNIMPLEMENTED; |
| } |
| |
| if (ret) |
| return handle_decomp_error(comp, image_len, unc_len, ret); |
| *load_end = load + image_len; |
| |
| puts("OK\n"); |
| |
| return 0; |
| } |
| |
| #ifndef USE_HOSTCC |
| static int bootm_load_os(bootm_headers_t *images, int boot_progress) |
| { |
| image_info_t os = images->os; |
| ulong load = os.load; |
| ulong load_end; |
| ulong blob_start = os.start; |
| ulong blob_end = os.end; |
| ulong image_start = os.image_start; |
| ulong image_len = os.image_len; |
| ulong flush_start = ALIGN_DOWN(load, ARCH_DMA_MINALIGN); |
| ulong flush_len; |
| bool no_overlap; |
| void *load_buf, *image_buf; |
| int err; |
| |
| load_buf = map_sysmem(load, 0); |
| image_buf = map_sysmem(os.image_start, image_len); |
| err = bootm_decomp_image(os.comp, load, os.image_start, os.type, |
| load_buf, image_buf, image_len, |
| CONFIG_SYS_BOOTM_LEN, &load_end); |
| if (err) { |
| bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); |
| return err; |
| } |
| |
| flush_len = load_end - load; |
| if (flush_start < load) |
| flush_len += load - flush_start; |
| |
| flush_cache(flush_start, ALIGN(flush_len, ARCH_DMA_MINALIGN)); |
| |
| debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, load_end); |
| bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED); |
| |
| no_overlap = (os.comp == IH_COMP_NONE && load == image_start); |
| |
| if (!no_overlap && load < blob_end && load_end > blob_start) { |
| debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n", |
| blob_start, blob_end); |
| debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load, |
| load_end); |
| #ifndef CONFIG_ANDROID_BOOT_IMAGE |
| /* Check what type of image this is. */ |
| if (images->legacy_hdr_valid) { |
| if (image_get_type(&images->legacy_hdr_os_copy) |
| == IH_TYPE_MULTI) |
| puts("WARNING: legacy format multi component image overwritten\n"); |
| return BOOTM_ERR_OVERLAP; |
| } else { |
| puts("ERROR: new format image overwritten - must RESET the board to recover\n"); |
| bootstage_error(BOOTSTAGE_ID_OVERWRITTEN); |
| return BOOTM_ERR_RESET; |
| } |
| #endif |
| } |
| |
| lmb_reserve(&images->lmb, images->os.load, (load_end - |
| images->os.load)); |
| return 0; |
| } |
| |
| /** |
| * bootm_disable_interrupts() - Disable interrupts in preparation for load/boot |
| * |
| * @return interrupt flag (0 if interrupts were disabled, non-zero if they were |
| * enabled) |
| */ |
| ulong bootm_disable_interrupts(void) |
| { |
| ulong iflag; |
| |
| /* |
| * We have reached the point of no return: we are going to |
| * overwrite all exception vector code, so we cannot easily |
| * recover from any failures any more... |
| */ |
| iflag = disable_interrupts(); |
| #ifdef CONFIG_NETCONSOLE |
| /* Stop the ethernet stack if NetConsole could have left it up */ |
| eth_halt(); |
| # ifndef CONFIG_DM_ETH |
| eth_unregister(eth_get_dev()); |
| # endif |
| #endif |
| |
| #if defined(CONFIG_CMD_USB) |
| /* |
| * turn off USB to prevent the host controller from writing to the |
| * SDRAM while Linux is booting. This could happen (at least for OHCI |
| * controller), because the HCCA (Host Controller Communication Area) |
| * lies within the SDRAM and the host controller writes continously to |
| * this area (as busmaster!). The HccaFrameNumber is for example |
| * updated every 1 ms within the HCCA structure in SDRAM! For more |
| * details see the OpenHCI specification. |
| */ |
| usb_stop(); |
| #endif |
| return iflag; |
| } |
| |
| #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) |
| |
| #define CONSOLE_ARG "console=" |
| #define CONSOLE_ARG_LEN (sizeof(CONSOLE_ARG) - 1) |
| |
| static void fixup_silent_linux(void) |
| { |
| char *buf; |
| const char *env_val; |
| char *cmdline = env_get("bootargs"); |
| int want_silent; |
| |
| /* |
| * Only fix cmdline when requested. The environment variable can be: |
| * |
| * no - we never fixup |
| * yes - we always fixup |
| * unset - we rely on the console silent flag |
| */ |
| want_silent = env_get_yesno("silent_linux"); |
| if (want_silent == 0) |
| return; |
| else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT)) |
| return; |
| |
| debug("before silent fix-up: %s\n", cmdline); |
| if (cmdline && (cmdline[0] != '\0')) { |
| char *start = strstr(cmdline, CONSOLE_ARG); |
| |
| /* Allocate space for maximum possible new command line */ |
| buf = malloc(strlen(cmdline) + 1 + CONSOLE_ARG_LEN + 1); |
| if (!buf) { |
| debug("%s: out of memory\n", __func__); |
| return; |
| } |
| |
| if (start) { |
| char *end = strchr(start, ' '); |
| int num_start_bytes = start - cmdline + CONSOLE_ARG_LEN; |
| |
| strncpy(buf, cmdline, num_start_bytes); |
| if (end) |
| strcpy(buf + num_start_bytes, end); |
| else |
| buf[num_start_bytes] = '\0'; |
| } else { |
| sprintf(buf, "%s %s", cmdline, CONSOLE_ARG); |
| } |
| env_val = buf; |
| } else { |
| buf = NULL; |
| env_val = CONSOLE_ARG; |
| } |
| |
| env_set("bootargs", env_val); |
| debug("after silent fix-up: %s\n", env_val); |
| free(buf); |
| } |
| #endif /* CONFIG_SILENT_CONSOLE */ |
| |
| /** |
| * Execute selected states of the bootm command. |
| * |
| * Note the arguments to this state must be the first argument, Any 'bootm' |
| * or sub-command arguments must have already been taken. |
| * |
| * Note that if states contains more than one flag it MUST contain |
| * BOOTM_STATE_START, since this handles and consumes the command line args. |
| * |
| * Also note that aside from boot_os_fn functions and bootm_load_os no other |
| * functions we store the return value of in 'ret' may use a negative return |
| * value, without special handling. |
| * |
| * @param cmdtp Pointer to bootm command table entry |
| * @param flag Command flags (CMD_FLAG_...) |
| * @param argc Number of subcommand arguments (0 = no arguments) |
| * @param argv Arguments |
| * @param states Mask containing states to run (BOOTM_STATE_...) |
| * @param images Image header information |
| * @param boot_progress 1 to show boot progress, 0 to not do this |
| * @return 0 if ok, something else on error. Some errors will cause this |
| * function to perform a reboot! If states contains BOOTM_STATE_OS_GO |
| * then the intent is to boot an OS, so this function will not return |
| * unless the image type is standalone. |
| */ |
| int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], |
| int states, bootm_headers_t *images, int boot_progress) |
| { |
| boot_os_fn *boot_fn; |
| ulong iflag = 0; |
| int ret = 0, need_boot_fn; |
| |
| images->state |= states; |
| |
| /* |
| * Work through the states and see how far we get. We stop on |
| * any error. |
| */ |
| if (states & BOOTM_STATE_START) |
| ret = bootm_start(cmdtp, flag, argc, argv); |
| |
| if (!ret && (states & BOOTM_STATE_FINDOS)) |
| ret = bootm_find_os(cmdtp, flag, argc, argv); |
| |
| if (!ret && (states & BOOTM_STATE_FINDOTHER)) |
| ret = bootm_find_other(cmdtp, flag, argc, argv); |
| |
| #ifdef CONFIG_MDUMP_COMPRESS |
| check_ramdump(); |
| #endif |
| |
| /* Load the OS */ |
| if (!ret && (states & BOOTM_STATE_LOADOS)) { |
| iflag = bootm_disable_interrupts(); |
| ret = bootm_load_os(images, 0); |
| if (ret && ret != BOOTM_ERR_OVERLAP) |
| goto err; |
| else if (ret == BOOTM_ERR_OVERLAP) |
| ret = 0; |
| } |
| |
| /* Relocate the ramdisk */ |
| #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH |
| if (!ret && (states & BOOTM_STATE_RAMDISK)) { |
| ulong rd_len = images->rd_end - images->rd_start; |
| |
| ret = boot_ramdisk_high(&images->lmb, images->rd_start, |
| rd_len, &images->initrd_start, &images->initrd_end); |
| if (!ret) { |
| env_set_hex("initrd_start", images->initrd_start); |
| env_set_hex("initrd_end", images->initrd_end); |
| } |
| } |
| #endif |
| #if IMAGE_ENABLE_OF_LIBFDT && defined(CONFIG_LMB) |
| if (!ret && (states & BOOTM_STATE_FDT)) { |
| boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr); |
| ret = boot_relocate_fdt(&images->lmb, &images->ft_addr, |
| &images->ft_len); |
| } |
| #endif |
| |
| /* Check reserved memory region */ |
| #ifdef CONFIG_CMD_RSVMEM |
| ret = run_command("rsvmem check", 0); |
| if (ret) { |
| puts("rsvmem check failed\n"); |
| return ret; |
| } |
| #endif |
| |
| /* From now on, we need the OS boot function */ |
| if (ret) |
| return ret; |
| boot_fn = bootm_os_get_boot_func(images->os.os); |
| need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE | |
| BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP | |
| BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO); |
| if (boot_fn == NULL && need_boot_fn) { |
| if (iflag) |
| enable_interrupts(); |
| printf("ERROR: booting os '%s' (%d) is not supported\n", |
| genimg_get_os_name(images->os.os), images->os.os); |
| bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS); |
| return 1; |
| } |
| |
| |
| /* Call various other states that are not generally used */ |
| if (!ret && (states & BOOTM_STATE_OS_CMDLINE)) |
| ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images); |
| if (!ret && (states & BOOTM_STATE_OS_BD_T)) |
| ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images); |
| if (!ret && (states & BOOTM_STATE_OS_PREP)) { |
| #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) |
| if (images->os.os == IH_OS_LINUX) |
| fixup_silent_linux(); |
| #endif |
| ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images); |
| } |
| |
| #ifdef CONFIG_TRACE |
| /* Pretend to run the OS, then run a user command */ |
| if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) { |
| char *cmd_list = env_get("fakegocmd"); |
| |
| ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO, |
| images, boot_fn); |
| if (!ret && cmd_list) |
| ret = run_command_list(cmd_list, -1, flag); |
| } |
| #endif |
| |
| /* Check for unsupported subcommand. */ |
| if (ret) { |
| puts("subcommand not supported\n"); |
| return ret; |
| } |
| |
| /* Now run the OS! We hope this doesn't return */ |
| if (!ret && (states & BOOTM_STATE_OS_GO)) { |
| ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO, |
| images, boot_fn); |
| } |
| /* Deal with any fallout */ |
| err: |
| if (iflag) |
| enable_interrupts(); |
| |
| if (ret == BOOTM_ERR_UNIMPLEMENTED) |
| bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL); |
| else if (ret == BOOTM_ERR_RESET) |
| do_reset(cmdtp, flag, argc, argv); |
| |
| return ret; |
| } |
| |
| #if defined(CONFIG_IMAGE_FORMAT_LEGACY) |
| /** |
| * image_get_kernel - verify legacy format kernel image |
| * @img_addr: in RAM address of the legacy format image to be verified |
| * @verify: data CRC verification flag |
| * |
| * image_get_kernel() verifies legacy image integrity and returns pointer to |
| * legacy image header if image verification was completed successfully. |
| * |
| * returns: |
| * pointer to a legacy image header if valid image was found |
| * otherwise return NULL |
| */ |
| static image_header_t *image_get_kernel(ulong img_addr, int verify) |
| { |
| image_header_t *hdr = (image_header_t *)img_addr; |
| |
| if (!image_check_magic(hdr)) { |
| puts("Bad Magic Number\n"); |
| bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC); |
| return NULL; |
| } |
| bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER); |
| |
| if (!image_check_hcrc(hdr)) { |
| puts("Bad Header Checksum\n"); |
| bootstage_error(BOOTSTAGE_ID_CHECK_HEADER); |
| return NULL; |
| } |
| |
| bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM); |
| image_print_contents(hdr); |
| |
| if (verify) { |
| puts(" Verifying Checksum ... "); |
| if (!image_check_dcrc(hdr)) { |
| printf("Bad Data CRC\n"); |
| bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM); |
| return NULL; |
| } |
| puts("OK\n"); |
| } |
| bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH); |
| |
| if (!image_check_target_arch(hdr)) { |
| printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr)); |
| bootstage_error(BOOTSTAGE_ID_CHECK_ARCH); |
| return NULL; |
| } |
| return hdr; |
| } |
| #endif |
| |
| /** |
| * boot_get_kernel - find kernel image |
| * @os_data: pointer to a ulong variable, will hold os data start address |
| * @os_len: pointer to a ulong variable, will hold os data length |
| * |
| * boot_get_kernel() tries to find a kernel image, verifies its integrity |
| * and locates kernel data. |
| * |
| * returns: |
| * pointer to image header if valid image was found, plus kernel start |
| * address and length, otherwise NULL |
| */ |
| static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc, |
| char * const argv[], bootm_headers_t *images, |
| ulong *os_data, ulong *os_len) |
| { |
| #if defined(CONFIG_IMAGE_FORMAT_LEGACY) |
| image_header_t *hdr; |
| #endif |
| ulong img_addr; |
| const void *buf; |
| const char *fit_uname_config = NULL; |
| const char *fit_uname_kernel = NULL; |
| |
| char *avb_s; |
| avb_s = env_get("avb2"); |
| printf("avb2: %s\n", avb_s); |
| if (strcmp(avb_s, "1") != 0) { |
| #ifdef CONFIG_AML_ANTIROLLBACK |
| boot_img_hdr_t **tmp_img_hdr = (boot_img_hdr_t **)&buf; |
| #endif |
| } |
| |
| #if IMAGE_ENABLE_FIT |
| int os_noffset; |
| #endif |
| |
| img_addr = genimg_get_kernel_addr_fit(argc < 1 ? NULL : argv[0], |
| &fit_uname_config, |
| &fit_uname_kernel); |
| |
| bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC); |
| |
| /* check image type, for FIT images get FIT kernel node */ |
| *os_data = *os_len = 0; |
| buf = map_sysmem(img_addr, 0); |
| switch (genimg_get_format(buf)) { |
| #if defined(CONFIG_IMAGE_FORMAT_LEGACY) |
| case IMAGE_FORMAT_LEGACY: |
| printf("## Booting kernel from Legacy Image at %08lx ...\n", |
| img_addr); |
| hdr = image_get_kernel(img_addr, images->verify); |
| if (!hdr) |
| return NULL; |
| bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE); |
| |
| /* get os_data and os_len */ |
| switch (image_get_type(hdr)) { |
| case IH_TYPE_KERNEL: |
| case IH_TYPE_KERNEL_NOLOAD: |
| *os_data = image_get_data(hdr); |
| *os_len = image_get_data_size(hdr); |
| break; |
| case IH_TYPE_MULTI: |
| image_multi_getimg(hdr, 0, os_data, os_len); |
| break; |
| case IH_TYPE_STANDALONE: |
| *os_data = image_get_data(hdr); |
| *os_len = image_get_data_size(hdr); |
| break; |
| default: |
| printf("Wrong Image Type for %s command\n", |
| cmdtp->name); |
| bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE); |
| return NULL; |
| } |
| |
| /* |
| * copy image header to allow for image overwrites during |
| * kernel decompression. |
| */ |
| memmove(&images->legacy_hdr_os_copy, hdr, |
| sizeof(image_header_t)); |
| |
| /* save pointer to image header */ |
| images->legacy_hdr_os = hdr; |
| |
| images->legacy_hdr_valid = 1; |
| bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE); |
| break; |
| #endif |
| #if IMAGE_ENABLE_FIT |
| case IMAGE_FORMAT_FIT: |
| os_noffset = fit_image_load(images, img_addr, |
| &fit_uname_kernel, &fit_uname_config, |
| IH_ARCH_DEFAULT, IH_TYPE_KERNEL, |
| BOOTSTAGE_ID_FIT_KERNEL_START, |
| FIT_LOAD_IGNORED, os_data, os_len); |
| if (os_noffset < 0) |
| return NULL; |
| |
| images->fit_hdr_os = map_sysmem(img_addr, 0); |
| images->fit_uname_os = fit_uname_kernel; |
| images->fit_uname_cfg = fit_uname_config; |
| images->fit_noffset_os = os_noffset; |
| break; |
| #endif |
| #ifdef CONFIG_ANDROID_BOOT_IMAGE |
| case IMAGE_FORMAT_ANDROID: |
| printf("## Booting Android Image at 0x%08lx ...\n", img_addr); |
| if (!android_image_need_move(&img_addr, buf)) |
| buf = map_sysmem(img_addr, 0); |
| else |
| return NULL; |
| if (android_image_get_kernel(buf, images->verify, |
| os_data, os_len)) |
| return NULL; |
| |
| if (strcmp(avb_s, "1") != 0) { |
| #ifdef CONFIG_AML_ANTIROLLBACK |
| if (!check_antirollback((*tmp_img_hdr)->kernel_version)) { |
| *os_len = 0; |
| return NULL; |
| } |
| #endif |
| } |
| |
| break; |
| #endif |
| default: |
| printf("Wrong Image Format for %s command\n", cmdtp->name); |
| bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO); |
| return NULL; |
| } |
| |
| debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n", |
| *os_data, *os_len, *os_len); |
| |
| return buf; |
| } |
| #else /* USE_HOSTCC */ |
| |
| void memmove_wd(void *to, void *from, size_t len, ulong chunksz) |
| { |
| memmove(to, from, len); |
| } |
| |
| static int bootm_host_load_image(const void *fit, int req_image_type) |
| { |
| const char *fit_uname_config = NULL; |
| ulong data, len; |
| bootm_headers_t images; |
| int noffset; |
| ulong load_end; |
| uint8_t image_type; |
| uint8_t imape_comp; |
| void *load_buf; |
| int ret; |
| |
| memset(&images, '\0', sizeof(images)); |
| images.verify = 1; |
| noffset = fit_image_load(&images, (ulong)fit, |
| NULL, &fit_uname_config, |
| IH_ARCH_DEFAULT, req_image_type, -1, |
| FIT_LOAD_IGNORED, &data, &len); |
| if (noffset < 0) |
| return noffset; |
| if (fit_image_get_type(fit, noffset, &image_type)) { |
| puts("Can't get image type!\n"); |
| return -EINVAL; |
| } |
| |
| if (fit_image_get_comp(fit, noffset, &imape_comp)) { |
| puts("Can't get image compression!\n"); |
| return -EINVAL; |
| } |
| |
| /* Allow the image to expand by a factor of 4, should be safe */ |
| load_buf = malloc((1 << 20) + len * 4); |
| ret = bootm_decomp_image(imape_comp, 0, data, image_type, load_buf, |
| (void *)data, len, CONFIG_SYS_BOOTM_LEN, |
| &load_end); |
| free(load_buf); |
| |
| if (ret && ret != BOOTM_ERR_UNIMPLEMENTED) |
| return ret; |
| |
| return 0; |
| } |
| |
| int bootm_host_load_images(const void *fit, int cfg_noffset) |
| { |
| static uint8_t image_types[] = { |
| IH_TYPE_KERNEL, |
| IH_TYPE_FLATDT, |
| IH_TYPE_RAMDISK, |
| }; |
| int err = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(image_types); i++) { |
| int ret; |
| |
| ret = bootm_host_load_image(fit, image_types[i]); |
| if (!err && ret && ret != -ENOENT) |
| err = ret; |
| } |
| |
| /* Return the first error we found */ |
| return err; |
| } |
| |
| #endif /* ndef USE_HOSTCC */ |