blob: d9acbaf7d8bcb7051396b0aecc1ab63eeacf0d87 [file] [log] [blame]
/*
* hwclock.c
*
* clock.c was written by Charles Hedrick, hedrick@cs.rutgers.edu, Apr 1992
* Modified for clock adjustments - Rob Hooft <hooft@chem.ruu.nl>, Nov 1992
* Improvements by Harald Koenig <koenig@nova.tat.physik.uni-tuebingen.de>
* and Alan Modra <alan@spri.levels.unisa.edu.au>.
*
* Major rewrite by Bryan Henderson <bryanh@giraffe-data.com>, 96.09.19.
* The new program is called hwclock. New features:
*
* - You can set the hardware clock without also modifying the system
* clock.
* - You can read and set the clock with finer than 1 second precision.
* - When you set the clock, hwclock automatically refigures the drift
* rate, based on how far off the clock was before you set it.
*
* Reshuffled things, added sparc code, and re-added alpha stuff
* by David Mosberger <davidm@azstarnet.com>
* and Jay Estabrook <jestabro@amt.tay1.dec.com>
* and Martin Ostermann <ost@coments.rwth-aachen.de>, aeb@cwi.nl, 990212.
*
* Fix for Award 2094 bug, Dave Coffin (dcoffin@shore.net) 11/12/98
* Change of local time handling, Stefan Ring <e9725446@stud3.tuwien.ac.at>
* Change of adjtime handling, James P. Rutledge <ao112@rgfn.epcc.edu>.
*
* Distributed under GPL
*/
/*
* Explanation of `adjusting' (Rob Hooft):
*
* The problem with my machine is that its CMOS clock is 10 seconds
* per day slow. With this version of clock.c, and my '/etc/rc.local'
* reading '/etc/clock -au' instead of '/etc/clock -u -s', this error
* is automatically corrected at every boot.
*
* To do this job, the program reads and writes the file '/etc/adjtime'
* to determine the correction, and to save its data. In this file are
* three numbers:
*
* 1) the correction in seconds per day. (So if your clock runs 5
* seconds per day fast, the first number should read -5.0)
* 2) the number of seconds since 1/1/1970 the last time the program
* was used
* 3) the remaining part of a second which was leftover after the last
* adjustment
*
* Installation and use of this program:
*
* a) create a file '/etc/adjtime' containing as the first and only
* line: '0.0 0 0.0'
* b) run 'clock -au' or 'clock -a', depending on whether your cmos is
* in universal or local time. This updates the second number.
* c) set your system time using the 'date' command.
* d) update your cmos time using 'clock -wu' or 'clock -w'
* e) replace the first number in /etc/adjtime by your correction.
* f) put the command 'clock -au' or 'clock -a' in your '/etc/rc.local'
*/
#include <errno.h>
#include <getopt.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#include "c.h"
#include "closestream.h"
#include "nls.h"
#include "optutils.h"
#include "pathnames.h"
#include "hwclock.h"
#include "timeutils.h"
#include "env.h"
#include "xalloc.h"
#include "path.h"
#include "strutils.h"
#ifdef HAVE_LIBAUDIT
#include <libaudit.h>
static int hwaudit_fd = -1;
#endif
UL_DEBUG_DEFINE_MASK(hwclock);
UL_DEBUG_DEFINE_MASKNAMES(hwclock) = UL_DEBUG_EMPTY_MASKNAMES;
/* The struct that holds our hardware access routines */
static struct clock_ops *ur;
/* Maximal clock adjustment in seconds per day.
(adjtime() glibc call has 2145 seconds limit on i386, so it is good enough for us as well,
43219 is a maximal safe value preventing exact_adjustment overflow.) */
#define MAX_DRIFT 2145.0
struct adjtime {
/*
* This is information we keep in the adjtime file that tells us how
* to do drift corrections. Elements are all straight from the
* adjtime file, so see documentation of that file for details.
* Exception is <dirty>, which is an indication that what's in this
* structure is not what's in the disk file (because it has been
* updated since read from the disk file).
*/
int dirty;
/* line 1 */
double drift_factor;
time_t last_adj_time;
double not_adjusted;
/* line 2 */
time_t last_calib_time;
/*
* The most recent time that we set the clock from an external
* authority (as opposed to just doing a drift adjustment)
*/
/* line 3 */
enum a_local_utc { UTC = 0, LOCAL, UNKNOWN } local_utc;
/*
* To which time zone, local or UTC, we most recently set the
* hardware clock.
*/
};
static void hwclock_init_debug(const char *str)
{
__UL_INIT_DEBUG_FROM_STRING(hwclock, HWCLOCK_DEBUG_, 0, str);
DBG(INIT, ul_debug("hwclock debug mask: 0x%04x", hwclock_debug_mask));
DBG(INIT, ul_debug("hwclock version: %s", PACKAGE_STRING));
}
/* FOR TESTING ONLY: inject random delays of up to 1000ms */
static void up_to_1000ms_sleep(void)
{
int usec = random() % 1000000;
DBG(RANDOM_SLEEP, ul_debug("sleeping ~%d usec", usec));
xusleep(usec);
}
/*
* time_t to timeval conversion.
*/
static struct timeval t2tv(time_t timet)
{
struct timeval rettimeval;
rettimeval.tv_sec = timet;
rettimeval.tv_usec = 0;
return rettimeval;
}
/*
* The difference in seconds between two times in "timeval" format.
*/
double time_diff(struct timeval subtrahend, struct timeval subtractor)
{
return (subtrahend.tv_sec - subtractor.tv_sec)
+ (subtrahend.tv_usec - subtractor.tv_usec) / 1E6;
}
/*
* The time, in "timeval" format, which is <increment> seconds after the
* time <addend>. Of course, <increment> may be negative.
*/
static struct timeval time_inc(struct timeval addend, double increment)
{
struct timeval newtime;
newtime.tv_sec = addend.tv_sec + (int)increment;
newtime.tv_usec = addend.tv_usec + (increment - (int)increment) * 1E6;
/*
* Now adjust it so that the microsecond value is between 0 and 1
* million.
*/
if (newtime.tv_usec < 0) {
newtime.tv_usec += 1E6;
newtime.tv_sec -= 1;
} else if (newtime.tv_usec >= 1E6) {
newtime.tv_usec -= 1E6;
newtime.tv_sec += 1;
}
return newtime;
}
static int
hw_clock_is_utc(const struct hwclock_control *ctl,
const struct adjtime adjtime)
{
int ret;
if (ctl->utc)
ret = 1; /* --utc explicitly given on command line */
else if (ctl->local_opt)
ret = 0; /* --localtime explicitly given */
else
/* get info from adjtime file - default is UTC */
ret = (adjtime.local_utc != LOCAL);
if (ctl->verbose)
printf(_("Assuming hardware clock is kept in %s time.\n"),
ret ? _("UTC") : _("local"));
return ret;
}
/*
* Read the adjustment parameters out of the /etc/adjtime file.
*
* Return them as the adjtime structure <*adjtime_p>. Its defaults are
* initialized in main().
*/
static int read_adjtime(const struct hwclock_control *ctl,
struct adjtime *adjtime_p)
{
FILE *adjfile;
char line1[81]; /* String: first line of adjtime file */
char line2[81]; /* String: second line of adjtime file */
char line3[81]; /* String: third line of adjtime file */
if (access(ctl->adj_file_name, R_OK) != 0)
return EXIT_SUCCESS;
adjfile = fopen(ctl->adj_file_name, "r"); /* open file for reading */
if (adjfile == NULL) {
warn(_("cannot open %s"), ctl->adj_file_name);
return EXIT_FAILURE;
}
if (!fgets(line1, sizeof(line1), adjfile))
line1[0] = '\0'; /* In case fgets fails */
if (!fgets(line2, sizeof(line2), adjfile))
line2[0] = '\0'; /* In case fgets fails */
if (!fgets(line3, sizeof(line3), adjfile))
line3[0] = '\0'; /* In case fgets fails */
fclose(adjfile);
sscanf(line1, "%lf %ld %lf",
&adjtime_p->drift_factor,
&adjtime_p->last_adj_time,
&adjtime_p->not_adjusted);
sscanf(line2, "%ld", &adjtime_p->last_calib_time);
if (!strcmp(line3, "UTC\n")) {
adjtime_p->local_utc = UTC;
} else if (!strcmp(line3, "LOCAL\n")) {
adjtime_p->local_utc = LOCAL;
} else {
adjtime_p->local_utc = UNKNOWN;
if (line3[0]) {
warnx(_("Warning: unrecognized third line in adjtime file\n"
"(Expected: `UTC' or `LOCAL' or nothing.)"));
}
}
if (ctl->verbose) {
printf(_
("Last drift adjustment done at %ld seconds after 1969\n"),
(long)adjtime_p->last_adj_time);
printf(_("Last calibration done at %ld seconds after 1969\n"),
(long)adjtime_p->last_calib_time);
printf(_("Hardware clock is on %s time\n"),
(adjtime_p->local_utc ==
LOCAL) ? _("local") : (adjtime_p->local_utc ==
UTC) ? _("UTC") : _("unknown"));
}
return EXIT_SUCCESS;
}
/*
* Wait until the falling edge of the Hardware Clock's update flag so that
* any time that is read from the clock immediately after we return will be
* exact.
*
* The clock only has 1 second precision, so it gives the exact time only
* once per second, right on the falling edge of the update flag.
*
* We wait (up to one second) either blocked waiting for an rtc device or in
* a CPU spin loop. The former is probably not very accurate.
*
* Return 0 if it worked, nonzero if it didn't.
*/
static int synchronize_to_clock_tick(const struct hwclock_control *ctl)
{
int rc;
if (ctl->verbose)
printf(_("Waiting for clock tick...\n"));
rc = ur->synchronize_to_clock_tick(ctl);
if (ctl->verbose) {
if (rc)
printf(_("...synchronization failed\n"));
else
printf(_("...got clock tick\n"));
}
return rc;
}
/*
* Convert a time in broken down format (hours, minutes, etc.) into standard
* unix time (seconds into epoch). Return it as *systime_p.
*
* The broken down time is argument <tm>. This broken down time is either
* in local time zone or UTC, depending on value of logical argument
* "universal". True means it is in UTC.
*
* If the argument contains values that do not constitute a valid time, and
* mktime() recognizes this, return *valid_p == false and *systime_p
* undefined. However, mktime() sometimes goes ahead and computes a
* fictional time "as if" the input values were valid, e.g. if they indicate
* the 31st day of April, mktime() may compute the time of May 1. In such a
* case, we return the same fictional value mktime() does as *systime_p and
* return *valid_p == true.
*/
static int
mktime_tz(const struct hwclock_control *ctl, struct tm tm,
time_t *systime_p)
{
int valid;
if (ctl->universal)
*systime_p = timegm(&tm);
else
*systime_p = mktime(&tm);
if (*systime_p == -1) {
/*
* This apparently (not specified in mktime() documentation)
* means the 'tm' structure does not contain valid values
* (however, not containing valid values does _not_ imply
* mktime() returns -1).
*/
valid = 0;
if (ctl->verbose)
printf(_("Invalid values in hardware clock: "
"%4d/%.2d/%.2d %.2d:%.2d:%.2d\n"),
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
} else {
valid = 1;
if (ctl->verbose)
printf(_
("Hw clock time : %4d/%.2d/%.2d %.2d:%.2d:%.2d = "
"%ld seconds since 1969\n"), tm.tm_year + 1900,
tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min,
tm.tm_sec, (long)*systime_p);
}
return valid;
}
/*
* Read the hardware clock and return the current time via <tm> argument.
*
* Use the method indicated by <method> argument to access the hardware
* clock.
*/
static int
read_hardware_clock(const struct hwclock_control *ctl,
int *valid_p, time_t *systime_p)
{
struct tm tm;
int err;
err = ur->read_hardware_clock(ctl, &tm);
if (err)
return err;
if (ctl->verbose)
printf(_
("Time read from Hardware Clock: %4d/%.2d/%.2d %02d:%02d:%02d\n"),
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour,
tm.tm_min, tm.tm_sec);
*valid_p = mktime_tz(ctl, tm, systime_p);
return 0;
}
/*
* Set the Hardware Clock to the time <newtime>, in local time zone or UTC,
* according to <universal>.
*/
static void
set_hardware_clock(const struct hwclock_control *ctl, const time_t newtime)
{
struct tm new_broken_time;
/*
* Time to which we will set Hardware Clock, in broken down format,
* in the time zone of caller's choice
*/
if (ctl->universal)
gmtime_r(&newtime, &new_broken_time);
else
localtime_r(&newtime, &new_broken_time);
if (ctl->verbose)
printf(_("Setting Hardware Clock to %.2d:%.2d:%.2d "
"= %ld seconds since 1969\n"),
new_broken_time.tm_hour, new_broken_time.tm_min,
new_broken_time.tm_sec, (long)newtime);
if (!ctl->testing)
ur->set_hardware_clock(ctl, &new_broken_time);
}
static double
get_hardware_delay(const struct hwclock_control *ctl)
{
const char *devpath, *rtcname;
char name[128 + 1];
struct path_cxt *pc;
int rc;
devpath = ur->get_device_path();
if (!devpath)
goto unknown;
rtcname = strrchr(devpath, '/');
if (!rtcname || !*(rtcname + 1))
goto unknown;
rtcname++;
pc = ul_new_path("/sys/class/rtc/%s", rtcname);
if (!pc)
goto unknown;
rc = ul_path_scanf(pc, "name", "%128[^\n ]", &name);
ul_unref_path(pc);
if (rc != 1 || !*name)
goto unknown;
if (ctl->verbose)
printf(_("RTC type: '%s'\n"), name);
/* MC146818A-compatible (x86) */
if (strcmp(name, "rtc_cmos") == 0)
return 0.5;
/* Another HW */
return 0;
unknown:
/* Let's be backwardly compatible */
return 0.5;
}
/*
* Set the Hardware Clock to the time "sethwtime", in local time zone or
* UTC, according to "universal".
*
* Wait for a fraction of a second so that "sethwtime" is the value of the
* Hardware Clock as of system time "refsystime", which is in the past. For
* example, if "sethwtime" is 14:03:05 and "refsystime" is 12:10:04.5 and
* the current system time is 12:10:06.0: Wait .5 seconds (to make exactly 2
* seconds since "refsystime") and then set the Hardware Clock to 14:03:07,
* thus getting a precise and retroactive setting of the clock. The .5 delay is
* default on x86, see --delay and get_hardware_delay().
*
* (Don't be confused by the fact that the system clock and the Hardware
* Clock differ by two hours in the above example. That's just to remind you
* that there are two independent time scales here).
*
* This function ought to be able to accept set times as fractional times.
* Idea for future enhancement.
*/
static void
set_hardware_clock_exact(const struct hwclock_control *ctl,
const time_t sethwtime,
const struct timeval refsystime)
{
/*
* The Hardware Clock can only be set to any integer time plus one
* half second. The integer time is required because there is no
* interface to set or get a fractional second. The additional half
* second is because the Hardware Clock updates to the following
* second precisely 500 ms (not 1 second!) after you release the
* divider reset (after setting the new time) - see description of
* DV2, DV1, DV0 in Register A in the MC146818A data sheet (and note
* that although that document doesn't say so, real-world code seems
* to expect that the SET bit in Register B functions the same way).
* That means that, e.g., when you set the clock to 1:02:03, it
* effectively really sets it to 1:02:03.5, because it will update to
* 1:02:04 only half a second later. Our caller passes the desired
* integer Hardware Clock time in sethwtime, and the corresponding
* system time (which may have a fractional part, and which may or may
* not be the same!) in refsystime. In an ideal situation, we would
* then apply sethwtime to the Hardware Clock at refsystime+500ms, so
* that when the Hardware Clock ticks forward to sethwtime+1s half a
* second later at refsystime+1000ms, everything is in sync. So we
* spin, waiting for gettimeofday() to return a time at or after that
* time (refsystime+500ms) up to a tolerance value, initially 1ms. If
* we miss that time due to being preempted for some other process,
* then we increase the margin a little bit (initially 1ms, doubling
* each time), add 1 second (or more, if needed to get a time that is
* in the future) to both the time for which we are waiting and the
* time that we will apply to the Hardware Clock, and start waiting
* again.
*
* For example, the caller requests that we set the Hardware Clock to
* 1:02:03, with reference time (current system time) = 6:07:08.250.
* We want the Hardware Clock to update to 1:02:04 at 6:07:09.250 on
* the system clock, and the first such update will occur 0.500
* seconds after we write to the Hardware Clock, so we spin until the
* system clock reads 6:07:08.750. If we get there, great, but let's
* imagine the system is so heavily loaded that our process is
* preempted and by the time we get to run again, the system clock
* reads 6:07:11.990. We now want to wait until the next xx:xx:xx.750
* time, which is 6:07:12.750 (4.5 seconds after the reference time),
* at which point we will set the Hardware Clock to 1:02:07 (4 seconds
* after the originally requested time). If we do that successfully,
* then at 6:07:13.250 (5 seconds after the reference time), the
* Hardware Clock will update to 1:02:08 (5 seconds after the
* originally requested time), and all is well thereafter.
*/
time_t newhwtime = sethwtime;
double target_time_tolerance_secs = 0.001; /* initial value */
double tolerance_incr_secs = 0.001; /* initial value */
double delay;
struct timeval rtc_set_delay_tv;
struct timeval targetsystime;
struct timeval nowsystime;
struct timeval prevsystime = refsystime;
double deltavstarget;
if (ctl->rtc_delay != -1.0) /* --delay specified */
delay = ctl->rtc_delay;
else
delay = get_hardware_delay(ctl);
if (ctl->verbose)
printf(_("Using delay: %.6f seconds\n"), delay);
rtc_set_delay_tv.tv_sec = 0;
rtc_set_delay_tv.tv_usec = delay * 1E6;
timeradd(&refsystime, &rtc_set_delay_tv, &targetsystime);
while (1) {
double ticksize;
ON_DBG(RANDOM_SLEEP, up_to_1000ms_sleep());
gettimeofday(&nowsystime, NULL);
deltavstarget = time_diff(nowsystime, targetsystime);
ticksize = time_diff(nowsystime, prevsystime);
prevsystime = nowsystime;
if (ticksize < 0) {
if (ctl->verbose)
printf(_("time jumped backward %.6f seconds "
"to %ld.%06ld - retargeting\n"),
ticksize, nowsystime.tv_sec,
nowsystime.tv_usec);
/* The retarget is handled at the end of the loop. */
} else if (deltavstarget < 0) {
/* deltavstarget < 0 if current time < target time */
DBG(DELTA_VS_TARGET,
ul_debug("%ld.%06ld < %ld.%06ld (%.6f)",
nowsystime.tv_sec, nowsystime.tv_usec,
targetsystime.tv_sec,
targetsystime.tv_usec, deltavstarget));
continue; /* not there yet - keep spinning */
} else if (deltavstarget <= target_time_tolerance_secs) {
/* Close enough to the target time; done waiting. */
break;
} else /* (deltavstarget > target_time_tolerance_secs) */ {
/*
* We missed our window. Increase the tolerance and
* aim for the next opportunity.
*/
if (ctl->verbose)
printf(_("missed it - %ld.%06ld is too far "
"past %ld.%06ld (%.6f > %.6f)\n"),
nowsystime.tv_sec,
nowsystime.tv_usec,
targetsystime.tv_sec,
targetsystime.tv_usec,
deltavstarget,
target_time_tolerance_secs);
target_time_tolerance_secs += tolerance_incr_secs;
tolerance_incr_secs *= 2;
}
/*
* Aim for the same offset (tv_usec) within the second in
* either the current second (if that offset hasn't arrived
* yet), or the next second.
*/
if (nowsystime.tv_usec < targetsystime.tv_usec)
targetsystime.tv_sec = nowsystime.tv_sec;
else
targetsystime.tv_sec = nowsystime.tv_sec + 1;
}
newhwtime = sethwtime
+ (int)(time_diff(nowsystime, refsystime)
- delay /* don't count this */
+ 0.5 /* for rounding */);
if (ctl->verbose)
printf(_("%ld.%06ld is close enough to %ld.%06ld (%.6f < %.6f)\n"
"Set RTC to %ld (%ld + %d; refsystime = %ld.%06ld)\n"),
nowsystime.tv_sec, nowsystime.tv_usec,
targetsystime.tv_sec, targetsystime.tv_usec,
deltavstarget, target_time_tolerance_secs,
newhwtime, sethwtime,
(int)(newhwtime - sethwtime),
refsystime.tv_sec, refsystime.tv_usec);
set_hardware_clock(ctl, newhwtime);
}
static int
display_time(struct timeval hwctime)
{
char buf[ISO_BUFSIZ];
if (strtimeval_iso(&hwctime, ISO_TIMESTAMP_DOT, buf, sizeof(buf)))
return EXIT_FAILURE;
printf("%s\n", buf);
return EXIT_SUCCESS;
}
/*
* Adjusts System time, sets the kernel's timezone and RTC timescale.
*
* The kernel warp_clock function adjusts the System time according to the
* tz.tz_minuteswest argument and sets PCIL (see below). At boot settimeofday(2)
* has one-shot access to this function as shown in the table below.
*
* +-------------------------------------------------------------------+
* | settimeofday(tv, tz) |
* |-------------------------------------------------------------------|
* | Arguments | System Time | PCIL | | warp_clock |
* | tv | tz | set | warped | set | firsttime | locked |
* |---------|---------|---------------|------|-----------|------------|
* | pointer | NULL | yes | no | no | 1 | no |
* | pointer | pointer | yes | no | no | 0 | yes |
* | NULL | ptr2utc | no | no | no | 0 | yes |
* | NULL | pointer | no | yes | yes | 0 | yes |
* +-------------------------------------------------------------------+
* ptr2utc: tz.tz_minuteswest is zero (UTC).
* PCIL: persistent_clock_is_local, sets the "11 minute mode" timescale.
* firsttime: locks the warp_clock function (initialized to 1 at boot).
*
* +---------------------------------------------------------------------------+
* | op | RTC scale | settimeofday calls |
* |---------|-----------|-----------------------------------------------------|
* | systz | Local | 1) warps system time*, sets PCIL* and kernel tz |
* | systz | UTC | 1st) locks warp_clock* 2nd) sets kernel tz |
* | hctosys | Local | 1st) sets PCIL* 2nd) sets system time and kernel tz |
* | hctosys | UTC | 1) sets system time and kernel tz |
* +---------------------------------------------------------------------------+
* * only on first call after boot
*/
static int
set_system_clock(const struct hwclock_control *ctl,
const struct timeval newtime)
{
struct tm broken;
int minuteswest;
int rc = 0;
const struct timezone tz_utc = { 0 };
localtime_r(&newtime.tv_sec, &broken);
minuteswest = -get_gmtoff(&broken) / 60;
if (ctl->verbose) {
if (ctl->hctosys && !ctl->universal)
printf(_("Calling settimeofday(NULL, %d) to set "
"persistent_clock_is_local.\n"), minuteswest);
if (ctl->systz && ctl->universal)
puts(_("Calling settimeofday(NULL, 0) "
"to lock the warp function."));
if (ctl->hctosys)
printf(_("Calling settimeofday(%ld.%06ld, %d)\n"),
newtime.tv_sec, newtime.tv_usec, minuteswest);
else {
printf(_("Calling settimeofday(NULL, %d) "), minuteswest);
if (ctl->universal)
puts(_("to set the kernel timezone."));
else
puts(_("to warp System time."));
}
}
if (!ctl->testing) {
const struct timezone tz = { minuteswest };
if (ctl->hctosys && !ctl->universal) /* set PCIL */
rc = settimeofday(NULL, &tz);
if (ctl->systz && ctl->universal) /* lock warp_clock */
rc = settimeofday(NULL, &tz_utc);
if (!rc && ctl->hctosys)
rc = settimeofday(&newtime, &tz);
else if (!rc)
rc = settimeofday(NULL, &tz);
if (rc) {
warn(_("settimeofday() failed"));
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
/*
* Refresh the last calibrated and last adjusted timestamps in <*adjtime_p>
* to facilitate future drift calculations based on this set point.
*
* With the --update-drift option:
* Update the drift factor in <*adjtime_p> based on the fact that the
* Hardware Clock was just calibrated to <nowtime> and before that was
* set to the <hclocktime> time scale.
*/
static void
adjust_drift_factor(const struct hwclock_control *ctl,
struct adjtime *adjtime_p,
const struct timeval nowtime,
const struct timeval hclocktime)
{
if (!ctl->update) {
if (ctl->verbose)
printf(_("Not adjusting drift factor because the "
"--update-drift option was not used.\n"));
} else if (adjtime_p->last_calib_time == 0) {
if (ctl->verbose)
printf(_("Not adjusting drift factor because last "
"calibration time is zero,\n"
"so history is bad and calibration startover "
"is necessary.\n"));
} else if ((hclocktime.tv_sec - adjtime_p->last_calib_time) < 4 * 60 * 60) {
if (ctl->verbose)
printf(_("Not adjusting drift factor because it has "
"been less than four hours since the last "
"calibration.\n"));
} else {
/*
* At adjustment time we drift correct the hardware clock
* according to the contents of the adjtime file and refresh
* its last adjusted timestamp.
*
* At calibration time we set the Hardware Clock and refresh
* both timestamps in <*adjtime_p>.
*
* Here, with the --update-drift option, we also update the
* drift factor in <*adjtime_p>.
*
* Let us do computation in doubles. (Floats almost suffice,
* but 195 days + 1 second equals 195 days in floats.)
*/
const double sec_per_day = 24.0 * 60.0 * 60.0;
double factor_adjust;
double drift_factor;
struct timeval last_calib;
last_calib = t2tv(adjtime_p->last_calib_time);
/*
* Correction to apply to the current drift factor.
*
* Simplified: uncorrected_drift / days_since_calibration.
*
* hclocktime is fully corrected with the current drift factor.
* Its difference from nowtime is the missed drift correction.
*/
factor_adjust = time_diff(nowtime, hclocktime) /
(time_diff(nowtime, last_calib) / sec_per_day);
drift_factor = adjtime_p->drift_factor + factor_adjust;
if (fabs(drift_factor) > MAX_DRIFT) {
if (ctl->verbose)
printf(_("Clock drift factor was calculated as "
"%f seconds/day.\n"
"It is far too much. Resetting to zero.\n"),
drift_factor);
drift_factor = 0;
} else {
if (ctl->verbose)
printf(_("Clock drifted %f seconds in the past "
"%f seconds\nin spite of a drift factor of "
"%f seconds/day.\n"
"Adjusting drift factor by %f seconds/day\n"),
time_diff(nowtime, hclocktime),
time_diff(nowtime, last_calib),
adjtime_p->drift_factor, factor_adjust);
}
adjtime_p->drift_factor = drift_factor;
}
adjtime_p->last_calib_time = nowtime.tv_sec;
adjtime_p->last_adj_time = nowtime.tv_sec;
adjtime_p->not_adjusted = 0;
adjtime_p->dirty = 1;
}
/*
* Calculate the drift correction currently needed for the
* Hardware Clock based on the last time it was adjusted,
* and the current drift factor, as stored in the adjtime file.
*
* The total drift adjustment needed is stored at tdrift_p.
*
*/
static void
calculate_adjustment(const struct hwclock_control *ctl,
const double factor,
const time_t last_time,
const double not_adjusted,
const time_t systime, struct timeval *tdrift_p)
{
double exact_adjustment;
exact_adjustment =
((double)(systime - last_time)) * factor / (24 * 60 * 60)
+ not_adjusted;
tdrift_p->tv_sec = (time_t) floor(exact_adjustment);
tdrift_p->tv_usec = (exact_adjustment -
(double)tdrift_p->tv_sec) * 1E6;
if (ctl->verbose) {
printf(P_("Time since last adjustment is %ld second\n",
"Time since last adjustment is %ld seconds\n",
(systime - last_time)),
(systime - last_time));
printf(_("Calculated Hardware Clock drift is %ld.%06ld seconds\n"),
tdrift_p->tv_sec, tdrift_p->tv_usec);
}
}
/*
* Write the contents of the <adjtime> structure to its disk file.
*
* But if the contents are clean (unchanged since read from disk), don't
* bother.
*/
static int save_adjtime(const struct hwclock_control *ctl,
const struct adjtime *adjtime)
{
char *content; /* Stuff to write to disk file */
FILE *fp;
xasprintf(&content, "%f %ld %f\n%ld\n%s\n",
adjtime->drift_factor,
adjtime->last_adj_time,
adjtime->not_adjusted,
adjtime->last_calib_time,
(adjtime->local_utc == LOCAL) ? "LOCAL" : "UTC");
if (ctl->verbose){
printf(_("New %s data:\n%s"),
ctl->adj_file_name, content);
}
if (!ctl->testing) {
fp = fopen(ctl->adj_file_name, "w");
if (fp == NULL) {
warn(_("cannot open %s"), ctl->adj_file_name);
return EXIT_FAILURE;
} else if (fputs(content, fp) < 0 || close_stream(fp) != 0) {
warn(_("cannot update %s"), ctl->adj_file_name);
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
/*
* Do the adjustment requested, by 1) setting the Hardware Clock (if
* necessary), and 2) updating the last-adjusted time in the adjtime
* structure.
*
* Do not update anything if the Hardware Clock does not currently present a
* valid time.
*
* <hclocktime> is the drift corrected time read from the Hardware Clock.
*
* <read_time> was the system time when the <hclocktime> was read, which due
* to computational delay could be a short time ago. It is used to define a
* trigger point for setting the Hardware Clock. The fractional part of the
* Hardware clock set time is subtracted from read_time to 'refer back', or
* delay, the trigger point. Fractional parts must be accounted for in this
* way, because the Hardware Clock can only be set to a whole second.
*
* <universal>: the Hardware Clock is kept in UTC.
*
* <testing>: We are running in test mode (no updating of clock).
*
*/
static void
do_adjustment(const struct hwclock_control *ctl, struct adjtime *adjtime_p,
const struct timeval hclocktime,
const struct timeval read_time)
{
if (adjtime_p->last_adj_time == 0) {
if (ctl->verbose)
printf(_("Not setting clock because last adjustment time is zero, "
"so history is bad.\n"));
} else if (fabs(adjtime_p->drift_factor) > MAX_DRIFT) {
if (ctl->verbose)
printf(_("Not setting clock because drift factor %f is far too high.\n"),
adjtime_p->drift_factor);
} else {
set_hardware_clock_exact(ctl, hclocktime.tv_sec,
time_inc(read_time,
-(hclocktime.tv_usec / 1E6)));
adjtime_p->last_adj_time = hclocktime.tv_sec;
adjtime_p->not_adjusted = 0;
adjtime_p->dirty = 1;
}
}
static void determine_clock_access_method(const struct hwclock_control *ctl)
{
ur = NULL;
if (ctl->directisa)
ur = probe_for_cmos_clock();
#ifdef __linux__
if (!ur)
ur = probe_for_rtc_clock(ctl);
#endif
if (ur) {
if (ctl->verbose)
puts(ur->interface_name);
} else {
if (ctl->verbose)
printf(_("No usable clock interface found.\n"));
warnx(_("Cannot access the Hardware Clock via "
"any known method."));
if (!ctl->verbose)
warnx(_("Use the --verbose option to see the "
"details of our search for an access "
"method."));
hwclock_exit(ctl, EXIT_FAILURE);
}
}
/* Do all the normal work of hwclock - read, set clock, etc. */
static int
manipulate_clock(const struct hwclock_control *ctl, const time_t set_time,
const struct timeval startup_time, struct adjtime *adjtime)
{
/* The time at which we read the Hardware Clock */
struct timeval read_time;
/*
* The Hardware Clock gives us a valid time, or at
* least something close enough to fool mktime().
*/
int hclock_valid = 0;
/*
* Tick synchronized time read from the Hardware Clock and
* then drift corrected for all operations except --show.
*/
struct timeval hclocktime = { 0 };
/*
* hclocktime correlated to startup_time. That is, what drift
* corrected Hardware Clock time would have been at start up.
*/
struct timeval startup_hclocktime = { 0 };
/* Total Hardware Clock drift correction needed. */
struct timeval tdrift;
if ((ctl->set || ctl->systohc || ctl->adjust) &&
(adjtime->local_utc == UTC) != ctl->universal) {
adjtime->local_utc = ctl->universal ? UTC : LOCAL;
adjtime->dirty = 1;
}
/*
* Negate the drift correction, because we want to 'predict' a
* Hardware Clock time that includes drift.
*/
if (ctl->predict) {
hclocktime = t2tv(set_time);
calculate_adjustment(ctl, adjtime->drift_factor,
adjtime->last_adj_time,
adjtime->not_adjusted,
hclocktime.tv_sec, &tdrift);
hclocktime = time_inc(hclocktime, (double)
-(tdrift.tv_sec + tdrift.tv_usec / 1E6));
if (ctl->verbose) {
printf(_ ("Target date: %ld\n"), set_time);
printf(_ ("Predicted RTC: %ld\n"), hclocktime.tv_sec);
}
return display_time(hclocktime);
}
if (ctl->systz)
return set_system_clock(ctl, startup_time);
if (ur->get_permissions())
return EXIT_FAILURE;
/*
* Read and drift correct RTC time; except for RTC set functions
* without the --update-drift option because: 1) it's not needed;
* 2) it enables setting a corrupted RTC without reading it first;
* 3) it significantly reduces system shutdown time.
*/
if ( ! ((ctl->set || ctl->systohc) && !ctl->update)) {
/*
* Timing critical - do not change the order of, or put
* anything between the follow three statements.
* Synchronization failure MUST exit, because all drift
* operations are invalid without it.
*/
if (synchronize_to_clock_tick(ctl))
return EXIT_FAILURE;
read_hardware_clock(ctl, &hclock_valid, &hclocktime.tv_sec);
gettimeofday(&read_time, NULL);
if (!hclock_valid) {
warnx(_("RTC read returned an invalid value."));
return EXIT_FAILURE;
}
/*
* Calculate and apply drift correction to the Hardware Clock
* time for everything except --show
*/
calculate_adjustment(ctl, adjtime->drift_factor,
adjtime->last_adj_time,
adjtime->not_adjusted,
hclocktime.tv_sec, &tdrift);
if (!ctl->show)
hclocktime = time_inc(tdrift, hclocktime.tv_sec);
startup_hclocktime =
time_inc(hclocktime, time_diff(startup_time, read_time));
}
if (ctl->show || ctl->get) {
return display_time(startup_hclocktime);
} else if (ctl->set) {
set_hardware_clock_exact(ctl, set_time, startup_time);
if (!ctl->noadjfile)
adjust_drift_factor(ctl, adjtime, t2tv(set_time),
startup_hclocktime);
} else if (ctl->adjust) {
if (tdrift.tv_sec > 0 || tdrift.tv_sec < -1)
do_adjustment(ctl, adjtime, hclocktime, read_time);
else
printf(_("Needed adjustment is less than one second, "
"so not setting clock.\n"));
} else if (ctl->systohc) {
struct timeval nowtime, reftime;
/*
* We can only set_hardware_clock_exact to a
* whole seconds time, so we set it with
* reference to the most recent whole
* seconds time.
*/
gettimeofday(&nowtime, NULL);
reftime.tv_sec = nowtime.tv_sec;
reftime.tv_usec = 0;
set_hardware_clock_exact(ctl, (time_t) reftime.tv_sec, reftime);
if (!ctl->noadjfile)
adjust_drift_factor(ctl, adjtime, nowtime,
hclocktime);
} else if (ctl->hctosys) {
return set_system_clock(ctl, hclocktime);
}
if (!ctl->noadjfile && adjtime->dirty)
return save_adjtime(ctl, adjtime);
return EXIT_SUCCESS;
}
/**
* Get or set the kernel RTC driver's epoch on Alpha machines.
* ISA machines are hard coded for 1900.
*/
#if defined(__linux__) && defined(__alpha__)
static void
manipulate_epoch(const struct hwclock_control *ctl)
{
if (ctl->getepoch) {
unsigned long epoch;
if (get_epoch_rtc(ctl, &epoch))
warnx(_("unable to read the RTC epoch."));
else
printf(_("The RTC epoch is set to %lu.\n"), epoch);
} else if (ctl->setepoch) {
if (!ctl->epoch_option)
warnx(_("--epoch is required for --setepoch."));
else if (!ctl->testing)
if (set_epoch_rtc(ctl))
warnx(_("unable to set the RTC epoch."));
}
}
#endif /* __linux__ __alpha__ */
static void out_version(void)
{
printf(UTIL_LINUX_VERSION);
}
static void __attribute__((__noreturn__))
usage(void)
{
fputs(USAGE_HEADER, stdout);
printf(_(" %s [function] [option...]\n"), program_invocation_short_name);
fputs(USAGE_SEPARATOR, stdout);
puts(_("Time clocks utility."));
fputs(USAGE_FUNCTIONS, stdout);
puts(_(" -r, --show display the RTC time"));
puts(_(" --get display drift corrected RTC time"));
puts(_(" --set set the RTC according to --date"));
puts(_(" -s, --hctosys set the system time from the RTC"));
puts(_(" -w, --systohc set the RTC from the system time"));
puts(_(" --systz send timescale configurations to the kernel"));
puts(_(" -a, --adjust adjust the RTC to account for systematic drift"));
#if defined(__linux__) && defined(__alpha__)
puts(_(" --getepoch display the RTC epoch"));
puts(_(" --setepoch set the RTC epoch according to --epoch"));
#endif
puts(_(" --predict predict the drifted RTC time according to --date"));
fputs(USAGE_OPTIONS, stdout);
puts(_(" -u, --utc the RTC timescale is UTC"));
puts(_(" -l, --localtime the RTC timescale is Local"));
#ifdef __linux__
printf(_(
" -f, --rtc <file> use an alternate file to %1$s\n"), _PATH_RTC_DEV);
#endif
printf(_(
" --directisa use the ISA bus instead of %1$s access\n"), _PATH_RTC_DEV);
puts(_(" --date <time> date/time input for --set and --predict"));
puts(_(" --delay <sec> delay used when set new RTC time"));
#if defined(__linux__) && defined(__alpha__)
puts(_(" --epoch <year> epoch input for --setepoch"));
#endif
puts(_(" --update-drift update the RTC drift factor"));
printf(_(
" --noadjfile do not use %1$s\n"), _PATH_ADJTIME);
printf(_(
" --adjfile <file> use an alternate file to %1$s\n"), _PATH_ADJTIME);
puts(_(" --test dry run; implies --verbose"));
puts(_(" -v, --verbose display more details"));
fputs(USAGE_SEPARATOR, stdout);
printf(USAGE_HELP_OPTIONS(22));
printf(USAGE_MAN_TAIL("hwclock(8)"));
exit(EXIT_SUCCESS);
}
int main(int argc, char **argv)
{
struct hwclock_control ctl = {
.show = 1, /* default op is show */
.rtc_delay = -1.0 /* unspecified */
};
struct timeval startup_time;
struct adjtime adjtime = { 0 };
struct timespec when = { 0 };
/*
* The time we started up, in seconds into the epoch, including
* fractions.
*/
time_t set_time = 0; /* Time to which user said to set Hardware Clock */
int rc, c;
/* Long only options. */
enum {
OPT_ADJFILE = CHAR_MAX + 1,
OPT_DATE,
OPT_DELAY,
OPT_DIRECTISA,
OPT_EPOCH,
OPT_GET,
OPT_GETEPOCH,
OPT_NOADJFILE,
OPT_PREDICT,
OPT_SET,
OPT_SETEPOCH,
OPT_SYSTZ,
OPT_TEST,
OPT_UPDATE
};
static const struct option longopts[] = {
{ "adjust", no_argument, NULL, 'a' },
{ "help", no_argument, NULL, 'h' },
{ "localtime", no_argument, NULL, 'l' },
{ "show", no_argument, NULL, 'r' },
{ "hctosys", no_argument, NULL, 's' },
{ "utc", no_argument, NULL, 'u' },
{ "version", no_argument, NULL, 'V' },
{ "systohc", no_argument, NULL, 'w' },
{ "debug", no_argument, NULL, 'D' },
{ "ul-debug", required_argument, NULL, 'd' },
{ "verbose", no_argument, NULL, 'v' },
{ "set", no_argument, NULL, OPT_SET },
#if defined(__linux__) && defined(__alpha__)
{ "getepoch", no_argument, NULL, OPT_GETEPOCH },
{ "setepoch", no_argument, NULL, OPT_SETEPOCH },
{ "epoch", required_argument, NULL, OPT_EPOCH },
#endif
{ "noadjfile", no_argument, NULL, OPT_NOADJFILE },
{ "directisa", no_argument, NULL, OPT_DIRECTISA },
{ "test", no_argument, NULL, OPT_TEST },
{ "date", required_argument, NULL, OPT_DATE },
{ "delay", required_argument, NULL, OPT_DELAY },
#ifdef __linux__
{ "rtc", required_argument, NULL, 'f' },
#endif
{ "adjfile", required_argument, NULL, OPT_ADJFILE },
{ "systz", no_argument, NULL, OPT_SYSTZ },
{ "predict", no_argument, NULL, OPT_PREDICT },
{ "get", no_argument, NULL, OPT_GET },
{ "update-drift", no_argument, NULL, OPT_UPDATE },
{ NULL, 0, NULL, 0 }
};
static const ul_excl_t excl[] = { /* rows and cols in ASCII order */
{ 'a','r','s','w',
OPT_GET, OPT_GETEPOCH, OPT_PREDICT,
OPT_SET, OPT_SETEPOCH, OPT_SYSTZ },
{ 'l', 'u' },
{ OPT_ADJFILE, OPT_NOADJFILE },
{ OPT_NOADJFILE, OPT_UPDATE },
{ 0 }
};
int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;
/* Remember what time we were invoked */
gettimeofday(&startup_time, NULL);
#ifdef HAVE_LIBAUDIT
hwaudit_fd = audit_open();
if (hwaudit_fd < 0 && !(errno == EINVAL || errno == EPROTONOSUPPORT ||
errno == EAFNOSUPPORT)) {
/*
* You get these error codes only when the kernel doesn't
* have audit compiled in.
*/
warnx(_("Unable to connect to audit system"));
return EXIT_FAILURE;
}
#endif
setlocale(LC_ALL, "");
#ifdef LC_NUMERIC
/*
* We need LC_CTYPE and LC_TIME and LC_MESSAGES, but must avoid
* LC_NUMERIC since it gives problems when we write to /etc/adjtime.
* - gqueri@mail.dotcom.fr
*/
setlocale(LC_NUMERIC, "C");
#endif
bindtextdomain(PACKAGE, LOCALEDIR);
textdomain(PACKAGE);
atexit(close_stdout);
while ((c = getopt_long(argc, argv,
"hvVDd:alrsuwf:", longopts, NULL)) != -1) {
err_exclusive_options(c, longopts, excl, excl_st);
switch (c) {
case 'D':
warnx(_("use --verbose, --debug has been deprecated."));
break;
case 'v':
ctl.verbose = 1;
break;
case 'd':
hwclock_init_debug(optarg);
break;
case 'a':
ctl.adjust = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case 'l':
ctl.local_opt = 1; /* --localtime */
break;
case 'r':
ctl.show = 1;
break;
case 's':
ctl.hctosys = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case 'u':
ctl.utc = 1;
break;
case 'w':
ctl.systohc = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case OPT_SET:
ctl.set = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
#if defined(__linux__) && defined(__alpha__)
case OPT_GETEPOCH:
ctl.getepoch = 1;
ctl.show = 0;
break;
case OPT_SETEPOCH:
ctl.setepoch = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case OPT_EPOCH:
ctl.epoch_option = optarg; /* --epoch */
break;
#endif
case OPT_NOADJFILE:
ctl.noadjfile = 1;
break;
case OPT_DIRECTISA:
ctl.directisa = 1;
break;
case OPT_TEST:
ctl.testing = 1; /* --test */
ctl.verbose = 1;
break;
case OPT_DATE:
ctl.date_opt = optarg; /* --date */
break;
case OPT_DELAY:
ctl.rtc_delay = strtod_or_err(optarg, "invalid --delay argument");
break;
case OPT_ADJFILE:
ctl.adj_file_name = optarg; /* --adjfile */
break;
case OPT_SYSTZ:
ctl.systz = 1; /* --systz */
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case OPT_PREDICT:
ctl.predict = 1; /* --predict */
ctl.show = 0;
break;
case OPT_GET:
ctl.get = 1; /* --get */
ctl.show = 0;
break;
case OPT_UPDATE:
ctl.update = 1; /* --update-drift */
break;
#ifdef __linux__
case 'f':
ctl.rtc_dev_name = optarg; /* --rtc */
break;
#endif
case 'V': /* --version */
out_version();
return 0;
case 'h': /* --help */
usage();
default:
errtryhelp(EXIT_FAILURE);
}
}
if (argc -= optind) {
warnx(_("%d too many arguments given"), argc);
errtryhelp(EXIT_FAILURE);
}
if (!ctl.adj_file_name)
ctl.adj_file_name = _PATH_ADJTIME;
if (ctl.update && !ctl.set && !ctl.systohc) {
warnx(_("--update-drift requires --set or --systohc"));
exit(EXIT_FAILURE);
}
if (ctl.noadjfile && !ctl.utc && !ctl.local_opt) {
warnx(_("With --noadjfile, you must specify "
"either --utc or --localtime"));
exit(EXIT_FAILURE);
}
if (ctl.set || ctl.predict) {
if (!ctl.date_opt) {
warnx(_("--date is required for --set or --predict"));
exit(EXIT_FAILURE);
}
if (parse_date(&when, ctl.date_opt, NULL))
set_time = when.tv_sec;
else {
warnx(_("invalid date '%s'"), ctl.date_opt);
exit(EXIT_FAILURE);
}
}
#if defined(__linux__) && defined(__alpha__)
if (ctl.getepoch || ctl.setepoch) {
manipulate_epoch(&ctl);
hwclock_exit(&ctl, EXIT_SUCCESS);
}
#endif
if (ctl.verbose) {
out_version();
printf(_("System Time: %ld.%06ld\n"),
startup_time.tv_sec, startup_time.tv_usec);
}
if (!ctl.systz && !ctl.predict)
determine_clock_access_method(&ctl);
if (!ctl.noadjfile && !(ctl.systz && (ctl.utc || ctl.local_opt))) {
if ((rc = read_adjtime(&ctl, &adjtime)) != 0)
hwclock_exit(&ctl, rc);
} else
/* Avoid writing adjtime file if we don't have to. */
adjtime.dirty = 0;
ctl.universal = hw_clock_is_utc(&ctl, adjtime);
rc = manipulate_clock(&ctl, set_time, startup_time, &adjtime);
if (ctl.testing)
puts(_("Test mode: nothing was changed."));
hwclock_exit(&ctl, rc);
return rc; /* Not reached */
}
void
hwclock_exit(const struct hwclock_control *ctl
#ifndef HAVE_LIBAUDIT
__attribute__((__unused__))
#endif
, int status)
{
#ifdef HAVE_LIBAUDIT
if (ctl->hwaudit_on && !ctl->testing) {
audit_log_user_message(hwaudit_fd, AUDIT_USYS_CONFIG,
"op=change-system-time", NULL, NULL, NULL,
status);
}
close(hwaudit_fd);
#endif
exit(status);
}
/*
* History of this program:
*
* 98.08.12 BJH Version 2.4
*
* Don't use century byte from Hardware Clock. Add comments telling why.
*
* 98.06.20 BJH Version 2.3.
*
* Make --hctosys set the kernel timezone from TZ environment variable
* and/or /usr/lib/zoneinfo. From Klaus Ripke (klaus@ripke.com).
*
* 98.03.05 BJH. Version 2.2.
*
* Add --getepoch and --setepoch.
*
* Fix some word length things so it works on Alpha.
*
* Make it work when /dev/rtc doesn't have the interrupt functions. In this
* case, busywait for the top of a second instead of blocking and waiting
* for the update complete interrupt.
*
* Fix a bunch of bugs too numerous to mention.
*
* 97.06.01: BJH. Version 2.1. Read and write the century byte (Byte 50) of
* the ISA Hardware Clock when using direct ISA I/O. Problem discovered by
* job (jei@iclnl.icl.nl).
*
* Use the rtc clock access method in preference to the KDGHWCLK method.
* Problem discovered by Andreas Schwab <schwab@LS5.informatik.uni-dortmund.de>.
*
* November 1996: Version 2.0.1. Modifications by Nicolai Langfeldt
* (janl@math.uio.no) to make it compile on linux 1.2 machines as well as
* more recent versions of the kernel. Introduced the NO_CLOCK access method
* and wrote feature test code to detect absence of rtc headers.
*
***************************************************************************
* Maintenance notes
*
* To compile this, you must use GNU compiler optimization (-O option) in
* order to make the "extern inline" functions from asm/io.h (inb(), etc.)
* compile. If you don't optimize, which means the compiler will generate no
* inline functions, the references to these functions in this program will
* be compiled as external references. Since you probably won't be linking
* with any functions by these names, you will have unresolved external
* references when you link.
*
* Here's some info on how we must deal with the time that elapses while
* this program runs: There are two major delays as we run:
*
* 1) Waiting up to 1 second for a transition of the Hardware Clock so
* we are synchronized to the Hardware Clock.
* 2) Running the "date" program to interpret the value of our --date
* option.
*
* Reading the /etc/adjtime file is the next biggest source of delay and
* uncertainty.
*
* The user wants to know what time it was at the moment he invoked us, not
* some arbitrary time later. And in setting the clock, he is giving us the
* time at the moment we are invoked, so if we set the clock some time
* later, we have to add some time to that.
*
* So we check the system time as soon as we start up, then run "date" and
* do file I/O if necessary, then wait to synchronize with a Hardware Clock
* edge, then check the system time again to see how much time we spent. We
* immediately read the clock then and (if appropriate) report that time,
* and additionally, the delay we measured.
*
* If we're setting the clock to a time given by the user, we wait some more
* so that the total delay is an integral number of seconds, then set the
* Hardware Clock to the time the user requested plus that integral number
* of seconds. N.B. The Hardware Clock can only be set in integral seconds.
*
* If we're setting the clock to the system clock value, we wait for the
* system clock to reach the top of a second, and then set the Hardware
* Clock to the system clock's value.
*
* Here's an interesting point about setting the Hardware Clock: On my
* machine, when you set it, it sets to that precise time. But one can
* imagine another clock whose update oscillator marches on a steady one
* second period, so updating the clock between any two oscillator ticks is
* the same as updating it right at the earlier tick. To avoid any
* complications that might cause, we set the clock as soon as possible
* after an oscillator tick.
*
* About synchronizing to the Hardware Clock when reading the time: The
* precision of the Hardware Clock counters themselves is one second. You
* can't read the counters and find out that is 12:01:02.5. But if you
* consider the location in time of the counter's ticks as part of its
* value, then its precision is as infinite as time is continuous! What I'm
* saying is this: To find out the _exact_ time in the hardware clock, we
* wait until the next clock tick (the next time the second counter changes)
* and measure how long we had to wait. We then read the value of the clock
* counters and subtract the wait time and we know precisely what time it
* was when we set out to query the time.
*
* hwclock uses this method, and considers the Hardware Clock to have
* infinite precision.
*/