blob: 4f2f17b86a58214db748bf02d321db2d9978e3c2 [file] [log] [blame]
/*
* Flash-based transactional key-value store
*
* Copyright (C) 2010 Google, Inc.
* Author: Eugene Surovegin <es@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
*/
#include <linux/crc32.h>
#include <linux/flash_ts.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/reboot.h>
#include <linux/notifier.h>
#define DRV_NAME "fts"
#define DRV_VERSION "0.999"
#define DRV_DESC "MTD-based key-value storage"
MODULE_DESCRIPTION(DRV_DESC);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR("Eugene Surovegin <es@google.com>");
MODULE_LICENSE("GPL");
/* Keep in sync with 'struct flash_ts' */
#define FLASH_TS_HDR_SIZE (4 * sizeof(u32))
#define FLASH_TS_MAX_SIZE (16 * 1024)
#define FLASH_TS_MAX_DATA_SIZE (FLASH_TS_MAX_SIZE - FLASH_TS_HDR_SIZE)
#define FLASH_TS_MAGIC 0x53542a46
/* Physical flash layout */
struct flash_ts {
u32 magic; /* "F*TS" */
u32 crc; /* doesn't include magic and crc fields */
u32 len; /* real size of data */
u32 version; /* generation counter, must be positive */
/* data format is very similar to Unix environment:
* key1=value1\0key2=value2\0\0
*/
char data[FLASH_TS_MAX_DATA_SIZE];
};
/* Internal state */
struct flash_ts_priv {
struct mutex lock;
struct mtd_info *mtd;
/* chunk size, >= sizeof(struct flash_ts) */
size_t chunk;
/* current record offset within MTD device */
loff_t offset;
/* in-memory copy of flash content */
struct flash_ts cache;
/* temporary buffers
* - one backup for failure rollback
* - another for read-after-write verification
*/
struct flash_ts cache_tmp_backup;
struct flash_ts cache_tmp_verify;
};
static struct flash_ts_priv *__ts;
static int flash_is_blank(const void *buf, size_t size)
{
size_t i;
const unsigned int *data = (const unsigned int *)buf;
size /= sizeof(data[0]);
for (i = 0; i < size; i++)
if (data[i] != 0xffffffff)
return 0;
return 1;
}
static void flash_erase_callback(struct erase_info *ctx)
{
wake_up((wait_queue_head_t*)ctx->priv);
}
static int flash_erase(struct mtd_info *mtd, loff_t off)
{
struct erase_info ei = {0};
int res;
wait_queue_head_t waitq;
DECLARE_WAITQUEUE(wait, current);
init_waitqueue_head(&waitq);
ei.mtd = mtd;
ei.len = mtd->erasesize;
ei.addr = off;
ei.callback = flash_erase_callback;
ei.priv = (unsigned long)&waitq;
/* Yes, this is racy, but safer than just leaving
* partition writeable all the time.
*/
mtd->flags |= MTD_WRITEABLE;
res = mtd_erase(mtd, &ei);
if (!res) {
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&waitq, &wait);
if (ei.state != MTD_ERASE_DONE && ei.state != MTD_ERASE_FAILED)
schedule();
remove_wait_queue(&waitq, &wait);
set_current_state(TASK_RUNNING);
res = ei.state == MTD_ERASE_FAILED ? -EIO : 0;
}
mtd->flags &= ~MTD_WRITEABLE;
if (unlikely(res))
printk(KERN_ERR DRV_NAME
": flash_erase(0x%08llx) failed, errno %d\n",
off, res);
return res;
}
/* erases a whole mtd device, skipping bad blocks */
static int flash_erase_all(struct mtd_info *mtd)
{
int res = 0;
loff_t off = 0;
do {
if (mtd_block_isbad(mtd, off)) {
printk(KERN_INFO DRV_NAME
": not erasing bad block @ 0x%08llx\n",
off);
} else {
printk(KERN_INFO DRV_NAME
": erasing block @ 0x%08llx\n",
off);
res = flash_erase(mtd, off);
if (unlikely(res)) {
printk(KERN_ERR DRV_NAME
": flash_erase_all failed, errno %d\n",
res);
break;
}
}
off += mtd->erasesize;
} while (off < mtd->size);
return res;
}
static int flash_write(struct mtd_info *mtd, loff_t off,
const void *buf, size_t size)
{
int res = 0;
mtd->flags |= MTD_WRITEABLE;
while (size) {
size_t retlen;
res = mtd_write(mtd, off, size, &retlen, buf);
if (likely(!res)) {
off += retlen;
buf += retlen;
size -= retlen;
} else {
printk(KERN_ERR DRV_NAME
": flash_write(0x%08llx, %zu) failed, errno %d\n",
off, size, res);
break;
}
}
mtd->flags &= ~MTD_WRITEABLE;
return res;
}
static int flash_read(struct mtd_info *mtd, loff_t off, void *buf, size_t size)
{
int res = 0;
while (size) {
size_t retlen;
res = mtd_read(mtd, off, size, &retlen, buf);
if (!res || res == -EUCLEAN) {
off += retlen;
buf += retlen;
size -= retlen;
} else {
printk(KERN_WARNING DRV_NAME
": flash_read() failed, errno %d\n", res);
break;
}
}
return res;
}
static char *flash_ts_find(struct flash_ts_priv *ts, const char *key,
size_t key_len)
{
char *s = ts->cache.data;
while (*s) {
if (!strncmp(s, key, key_len)) {
if (s[key_len] == '=')
return s;
}
s += strlen(s) + 1;
}
return NULL;
}
static inline u32 flash_ts_crc(const struct flash_ts *cache)
{
/* skip magic and crc fields */
return crc32(0, &cache->len, cache->len + 2 * sizeof(u32)) ^ ~0;
}
static void set_to_default_empty_state(struct flash_ts_priv *ts)
{
ts->offset = ts->mtd->size - ts->chunk;
ts->cache.magic = FLASH_TS_MAGIC;
ts->cache.version = 0;
ts->cache.len = 1;
ts->cache.data[0] = '\0';
ts->cache.crc = flash_ts_crc(&ts->cache);
}
/* Verifies cache consistency and locks it */
static struct flash_ts_priv *__flash_ts_get(void)
{
struct flash_ts_priv *ts = __ts;
if (likely(ts)) {
mutex_lock(&ts->lock);
if (unlikely(ts->cache.crc != flash_ts_crc(&ts->cache))) {
printk(KERN_CRIT DRV_NAME
": memory corruption detected\n");
mutex_lock(&ts->lock);
ts = NULL;
}
} else {
printk(KERN_ERR DRV_NAME ": not initialized yet\n");
}
return ts;
}
static inline void __flash_ts_put(struct flash_ts_priv *ts)
{
mutex_unlock(&ts->lock);
}
static int flash_ts_commit(struct flash_ts_priv *ts)
{
struct mtd_info *mtd = ts->mtd;
loff_t off = ts->offset + ts->chunk;
/* we try to make two passes to handle non-erased blocks
* this should only matter for the inital pass over the whole device.
*/
int max_iterations = mtd_div_by_eb(mtd->size, mtd) * 2;
size_t size = ALIGN(FLASH_TS_HDR_SIZE + ts->cache.len, ts->chunk);
/* fill unused part of data */
memset(ts->cache.data + ts->cache.len, 0xff,
sizeof(ts->cache.data) - ts->cache.len);
while (max_iterations--) {
/* wrap around */
if (off >= mtd->size)
off = 0;
/* new block? */
if (!(off & (mtd->erasesize - 1))) {
if (mtd_block_isbad(mtd, off)) {
/* skip this block */
off += mtd->erasesize;
continue;
}
if (unlikely(flash_erase(mtd, off))) {
/* skip this block */
off += mtd->erasesize;
continue;
}
}
/* write and read back to veryfy */
if (flash_write(mtd, off, &ts->cache, size) ||
flash_read(mtd, off, &ts->cache_tmp_verify, size)) {
/* hmm, probably unclean block, skip it for now */
off = (off + mtd->erasesize) & ~(mtd->erasesize - 1);
continue;
}
/* compare */
if (memcmp(&ts->cache, &ts->cache_tmp_verify, size)) {
printk(KERN_WARNING DRV_NAME
": record v%u read mismatch @ 0x%08llx\n",
ts->cache.version, off);
/* skip this block for now */
off = (off + mtd->erasesize) & ~(mtd->erasesize - 1);
continue;
}
/* for new block, erase the previous block after write done,
* it's to speed up flash_ts_scan
*/
if (!(off & (mtd->erasesize - 1))) {
loff_t pre_block_base = ts->offset & ~(mtd->erasesize - 1);
loff_t cur_block_base = off & ~(mtd->erasesize - 1);
if (cur_block_base != pre_block_base)
flash_erase(mtd, pre_block_base);
}
ts->offset = off;
printk(KERN_DEBUG DRV_NAME ": record v%u commited @ 0x%08llx\n",
ts->cache.version, off);
return 0;
}
printk(KERN_ERR DRV_NAME ": commit failure\n");
return -EIO;
}
static int flash_ts_set(const char *key, const char *value)
{
struct flash_ts_priv *ts;
size_t klen = strlen(key);
size_t vlen = strlen(value);
int res;
char *p;
ts = __flash_ts_get();
if (unlikely(!ts))
return -EINVAL;
/* save current cache contents so we can restore it on failure */
memcpy(&ts->cache_tmp_backup, &ts->cache, sizeof(ts->cache_tmp_backup));
p = flash_ts_find(ts, key, klen);
if (p) {
/* we are replacing existing entry,
* empty value (vlen == 0) removes entry completely.
*/
size_t cur_len = strlen(p) + 1;
size_t new_len = vlen ? klen + 1 + vlen + 1 : 0;
if (cur_len != new_len) {
/* we need to move stuff around */
if ((ts->cache.len - cur_len) + new_len >
sizeof(ts->cache.data))
goto no_space;
memmove(p + new_len, p + cur_len,
ts->cache.len - (p - ts->cache.data + cur_len));
ts->cache.len = (ts->cache.len - cur_len) + new_len;
} else if (!strcmp(p + klen + 1, value)) {
/* skip update if new value is the same as the old one */
res = 0;
goto out;
}
if (vlen) {
p += klen + 1;
memcpy(p, value, vlen);
p[vlen] = '\0';
}
} else {
size_t len = klen + 1 + vlen + 1;
/* don't do anything if value is empty */
if (!vlen) {
res = 0;
goto out;
}
if (ts->cache.len + len > sizeof(ts->cache.data))
goto no_space;
/* add new entry at the end */
p = ts->cache.data + ts->cache.len - 1;
memcpy(p, key, klen);
p += klen;
*p++ = '=';
memcpy(p, value, vlen);
p += vlen;
*p++ = '\0';
*p = '\0';
ts->cache.len += len;
}
++ts->cache.version;
ts->cache.crc = flash_ts_crc(&ts->cache);
res = flash_ts_commit(ts);
if (unlikely(res))
memcpy(&ts->cache, &ts->cache_tmp_backup, sizeof(ts->cache));
goto out;
no_space:
printk(KERN_WARNING DRV_NAME ": no space left for '%s=%s'\n",
key, value);
res = -ENOSPC;
out:
__flash_ts_put(ts);
return res;
}
static void flash_ts_get(const char *key, char *value, unsigned int size)
{
size_t klen = strlen(key);
struct flash_ts_priv *ts;
const char *p;
BUG_ON(!size);
*value = '\0';
ts = __flash_ts_get();
if (unlikely(!ts))
return;
p = flash_ts_find(ts, key, klen);
if (p)
strlcpy(value, p + klen + 1, size);
__flash_ts_put(ts);
}
/* erases the whole mtd device and re-initializes
* the in-memory cache to default empty state
*/
static int flash_reinit(void)
{
int res;
struct flash_ts_priv *ts = __flash_ts_get();
if (unlikely(!ts))
return -EINVAL;
/* erase the whole mtd device */
res = flash_erase_all(ts->mtd);
if (likely(!res)) {
/* restore to default empty state */
set_to_default_empty_state(ts);
/* Fill the unused part of the cache. set_to_default_empty_state
* resets the cache by setting the first character to the null
* terminator and length to 1; this preserves that while wiping
* out any real data remaining in the cache.
*/
memset(ts->cache.data + ts->cache.len, 0xff,
sizeof(ts->cache.data) - ts->cache.len);
}
__flash_ts_put(ts);
return res;
}
static inline u32 flash_ts_check_header(const struct flash_ts *cache)
{
if (cache->magic == FLASH_TS_MAGIC &&
cache->version &&
cache->len && cache->len <= sizeof(cache->data) &&
cache->crc == flash_ts_crc(cache) &&
/* check correct null-termination */
!cache->data[cache->len - 1] &&
(cache->len == 1 || !cache->data[cache->len - 2])) {
/* all is good */
return cache->version;
}
return 0;
}
/* checks integrity of the mtd device and prints info about its contents */
static int flash_ts_check(void)
{
struct mtd_info *mtd;
int res, good_blocks = 0, bad_chunks = 0;
loff_t off = 0;
struct flash_ts_priv *ts = __flash_ts_get();
if (unlikely(!ts))
return -EINVAL;
mtd = ts->mtd;
do {
u32 version;
/* new block? */
if (!(off & (mtd->erasesize - 1))) {
printk(KERN_INFO DRV_NAME
": new block @ 0x%08llx\n", off);
if (mtd_block_isbad(mtd, off)) {
printk(KERN_INFO DRV_NAME
": skipping bad block @ 0x%08llx\n",
off);
off += mtd->erasesize;
continue;
} else {
++good_blocks;
}
}
res = flash_read(mtd, off, &ts->cache_tmp_verify,
sizeof(ts->cache_tmp_verify));
if (res) {
printk(KERN_WARNING DRV_NAME
": could not read flash @ 0x%08llx\n", off);
off += ts->chunk;
continue;
}
version = flash_ts_check_header(&ts->cache_tmp_verify);
if (0 == version) {
if (flash_is_blank(&ts->cache_tmp_verify,
sizeof(ts->cache_tmp_verify))) {
/* skip the whole block if chunk is blank */
printk(KERN_INFO DRV_NAME
": blank chunk @ 0x%08llx\n", off);
off = (off + mtd->erasesize) & ~(mtd->erasesize - 1);
} else {
/* header didn't check out and flash is not blank */
printk(KERN_ERR DRV_NAME
": bad chunk @ 0x%08llx\n", off);
++bad_chunks;
off += ts->chunk;
}
} else {
/* header checked out, so move on */
printk(KERN_INFO DRV_NAME
": record v%u @ 0x%08llx\n", version, off);
off += ts->chunk;
}
} while (off < mtd->size);
if (unlikely(!good_blocks)) {
printk(KERN_ERR DRV_NAME ": no good blocks\n");
__flash_ts_put(ts);
return -ENODEV;
}
if (unlikely(good_blocks < 2))
printk(KERN_WARNING DRV_NAME ": less than 2 good blocks,"
" reliability is not guaranteed\n");
if (unlikely(bad_chunks)) {
printk(KERN_ERR DRV_NAME ": %d bad chunks\n", bad_chunks);
__flash_ts_put(ts);
return -EIO;
}
__flash_ts_put(ts);
return 0;
}
static int __init flash_ts_scan(struct flash_ts_priv *ts)
{
struct mtd_info *mtd = ts->mtd;
int res, good_blocks = 0;
loff_t off = 0;
do {
/* new block ? */
if (!(off & (mtd->erasesize - 1))) {
if (mtd_block_isbad(mtd, off)) {
printk(KERN_INFO DRV_NAME
": skipping bad block @ 0x%08llx\n",
off);
off += mtd->erasesize;
continue;
} else
++good_blocks;
}
res = flash_read(mtd, off, &ts->cache_tmp_verify,
sizeof(ts->cache_tmp_verify));
if (!res) {
u32 version =
flash_ts_check_header(&ts->cache_tmp_verify);
if (version > ts->cache.version) {
memcpy(&ts->cache, &ts->cache_tmp_verify,
sizeof(ts->cache));
ts->offset = off;
}
if (0 == version &&
flash_is_blank(&ts->cache_tmp_verify,
sizeof(ts->cache_tmp_verify))) {
/* skip the whole block if chunk is blank */
off = (off + mtd->erasesize) & ~(mtd->erasesize - 1);
} else {
off += ts->chunk;
}
} else {
off += ts->chunk;
}
} while (off < mtd->size);
if (unlikely(!good_blocks)) {
printk(KERN_ERR DRV_NAME ": no good blocks\n");
return -ENODEV;
}
if (unlikely(good_blocks < 2))
printk(KERN_WARNING DRV_NAME ": less than 2 good blocks,"
" reliability is not guaranteed\n");
return 0;
}
/* User-space access */
struct flash_ts_dev {
struct mutex lock;
struct flash_ts_io_req req;
};
static int flash_ts_open(struct inode *inode, struct file *file)
{
struct flash_ts_dev *dev = kmalloc(sizeof(*dev), GFP_KERNEL);
if (unlikely(!dev))
return -ENOMEM;
mutex_init(&dev->lock);
file->private_data = dev;
return 0;
}
static int flash_ts_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
static long flash_ts_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct flash_ts_dev *dev = file->private_data;
struct flash_ts_io_req *req = &dev->req;
int res;
if (unlikely(mutex_lock_interruptible(&dev->lock)))
return -ERESTARTSYS;
if (unlikely(copy_from_user(req, (const void* __user)arg,
sizeof(*req)))) {
res = -EFAULT;
goto out;
}
req->key[sizeof(req->key) - 1] = '\0';
switch (cmd) {
case FLASH_TS_IO_SET:
req->val[sizeof(req->val) - 1] = '\0';
res = flash_ts_set(req->key, req->val);
break;
case FLASH_TS_IO_GET:
flash_ts_get(req->key, req->val, sizeof(req->val));
res = copy_to_user((void* __user)arg, req,
sizeof(*req)) ? -EFAULT : 0;
break;
case FLASH_TS_IO_REINIT:
res = flash_reinit();
break;
case FLASH_TS_IO_CHECK:
res = flash_ts_check();
break;
default:
res = -ENOTTY;
}
out:
mutex_unlock(&dev->lock);
return res;
}
#ifdef CONFIG_COMPAT
static long flash_ts_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return flash_ts_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
}
#endif
static struct file_operations flash_ts_fops = {
.owner = THIS_MODULE,
.open = flash_ts_open,
.unlocked_ioctl = flash_ts_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = flash_ts_compat_ioctl,
#endif
.release = flash_ts_release,
};
static struct miscdevice flash_ts_miscdev = {
.minor = MISC_DYNAMIC_MINOR,
.name = DRV_NAME,
.fops = &flash_ts_fops,
};
/* Debugging (procfs) */
static void *flash_ts_proc_start(struct seq_file *m, loff_t *pos)
{
if (*pos == 0) {
struct flash_ts_priv *ts = __flash_ts_get();
if (ts) {
BUG_ON(m->private);
m->private = ts;
return ts->cache.data;
}
}
*pos = 0;
return NULL;
}
static void *flash_ts_proc_next(struct seq_file *m, void *v, loff_t *pos)
{
char *s = (char *)v;
s += strlen(s) + 1;
++(*pos);
return *s ? s : NULL;
}
static void flash_ts_proc_stop(struct seq_file *m, void *v)
{
struct flash_ts_priv *ts = m->private;
if (ts) {
m->private = NULL;
__flash_ts_put(ts);
}
}
static int flash_ts_proc_show(struct seq_file *m, void *v)
{
seq_printf(m, "%s\n", (char*)v);
return 0;
}
static struct seq_operations flash_ts_seq_ops = {
.start = flash_ts_proc_start,
.next = flash_ts_proc_next,
.stop = flash_ts_proc_stop,
.show = flash_ts_proc_show,
};
static int flash_ts_proc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &flash_ts_seq_ops);
}
static const struct file_operations flash_ts_proc_fops = {
.owner = THIS_MODULE,
.open = flash_ts_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
/* Round-up to the next power-of-2,
* from "Hacker's Delight" by Henry S. Warren.
*/
static inline u32 clp2(u32 x)
{
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x + 1;
}
/*
* BCB (boot control block) support
* Handle reboot command and set boot params for bootloader
*/
static int bcb_fts_reboot_hook(struct notifier_block *notifier,
unsigned long code, void *cmd)
{
if (code == SYS_RESTART && cmd && !strcmp(cmd, "recovery")) {
if (flash_ts_set("bootloader.command", "boot-recovery") ||
flash_ts_set("bootloader.status", "") ||
flash_ts_set("bootloader.recovery", ""))
printk(KERN_ERR "Failed to set bootloader command\n");
}
if (code == SYS_RESTART && cmd && !strcmp(cmd, "backupsys")) {
if (flash_ts_set("bootloader.command", "boot-backupsys") ||
flash_ts_set("bootloader.status", "") ||
flash_ts_set("bootloader.recovery", ""))
printk(KERN_ERR "Failed to set bootloader command\n");
}
return NOTIFY_DONE;
}
static struct notifier_block reboot_notifier = {
.notifier_call = bcb_fts_reboot_hook,
.priority = 128,
};
static int __init flash_ts_init(void)
{
struct flash_ts_priv *ts;
struct mtd_info *mtd;
int res;
mtd = get_mtd_device_nm(CONFIG_FLASH_TS_PARTITION);
if (unlikely(IS_ERR(mtd))) {
printk(KERN_ERR DRV_NAME
": mtd partition '" CONFIG_FLASH_TS_PARTITION
"' not found\n");
return -ENODEV;
}
/* we need at least two erase blocks */
if (unlikely(mtd->size < 2 * mtd->erasesize)) {
printk(KERN_ERR DRV_NAME ": mtd partition is too small\n");
res = -ENODEV;
goto out_put;
}
/* make sure both page and block sizes are power-of-2
* (this will make chunk size determination simpler).
*/
if (unlikely(!is_power_of_2(mtd->writesize) ||
!is_power_of_2(mtd->erasesize))) {
res = -ENODEV;
printk(KERN_ERR DRV_NAME ": unsupported MTD geometry\n");
goto out_put;
}
ts = kzalloc(sizeof(*ts), GFP_KERNEL);
if (unlikely(!ts)) {
res = -ENOMEM;
printk(KERN_ERR DRV_NAME ": failed to allocate memory\n");
goto out_put;
}
mutex_init(&ts->lock);
ts->mtd = mtd;
/* determine chunk size so it doesn't cross block boundary,
* is multiple of page size and there is no wasted space in a block.
* We assume page and block sizes are power-of-2.
*/
ts->chunk = clp2((sizeof(struct flash_ts) + mtd->writesize - 1) &
~(mtd->writesize - 1));
if (unlikely(ts->chunk > mtd->erasesize)) {
res = -ENODEV;
printk(KERN_ERR DRV_NAME ": MTD block size is too small\n");
goto out_free;
}
/* default empty state */
set_to_default_empty_state(ts);
/* scan flash partition for the most recent record */
res = flash_ts_scan(ts);
if (unlikely(res))
goto out_free;
if (ts->cache.version)
printk(KERN_INFO DRV_NAME ": v%u loaded from 0x%08llx\n",
ts->cache.version, ts->offset);
/* "Protect" MTD partition from direct user-space write access */
mtd->flags &= ~MTD_WRITEABLE;
res = misc_register(&flash_ts_miscdev);
if (unlikely(res))
goto out_free;
smp_mb();
__ts = ts;
proc_create(DRV_NAME, 0, NULL, &flash_ts_proc_fops);
/* Register optional reboot hook */
register_reboot_notifier(&reboot_notifier);
return 0;
out_free:
kfree(ts);
out_put:
put_mtd_device(mtd);
return res;
}
/* Make sure MTD subsystem is already initialized */
late_initcall(flash_ts_init);