blob: 955b6c8a87380ce1eb4905d28712c381a6f390d4 [file] [log] [blame]
/*
* Support for Intel Camera Imaging ISP subsystem.
* Copyright (c) 2015, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include "type_support.h"
#include "math_support.h"
#include "sh_css_defs.h"
#include "ia_css_types.h"
#ifdef ISP2401
#include "assert_support.h"
#endif
#include "ia_css_xnr3.host.h"
/* Maximum value for alpha on ISP interface */
#define XNR_MAX_ALPHA ((1 << (ISP_VEC_ELEMBITS - 1)) - 1)
/* Minimum value for sigma on host interface. Lower values translate to
* max_alpha.
*/
#define XNR_MIN_SIGMA (IA_CSS_XNR3_SIGMA_SCALE / 100)
/*
#ifdef ISP2401
* division look-up table
* Refers to XNR3.0.5
*/
#define XNR3_LOOK_UP_TABLE_POINTS 16
static const int16_t x[XNR3_LOOK_UP_TABLE_POINTS] = {
1024, 1164, 1320, 1492, 1680, 1884, 2108, 2352,
2616, 2900, 3208, 3540, 3896, 4276, 4684, 5120};
static const int16_t a[XNR3_LOOK_UP_TABLE_POINTS] = {
-7213, -5580, -4371, -3421, -2722, -2159, -6950, -5585,
-4529, -3697, -3010, -2485, -2070, -1727, -1428, 0};
static const int16_t b[XNR3_LOOK_UP_TABLE_POINTS] = {
4096, 3603, 3178, 2811, 2497, 2226, 1990, 1783,
1603, 1446, 1307, 1185, 1077, 981, 895, 819};
static const int16_t c[XNR3_LOOK_UP_TABLE_POINTS] = {
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/*
#endif
* Default kernel parameters. In general, default is bypass mode or as close
* to the ineffective values as possible. Due to the chroma down+upsampling,
* perfect bypass mode is not possible for xnr3 filter itself. Instead, the
* 'blending' parameter is used to create a bypass.
*/
const struct ia_css_xnr3_config default_xnr3_config = {
/* sigma */
{ 0, 0, 0, 0, 0, 0 },
/* coring */
{ 0, 0, 0, 0 },
/* blending */
{ 0 }
};
/*
* Compute an alpha value for the ISP kernel from sigma value on the host
* parameter interface as: alpha_scale * 1/(sigma/sigma_scale)
*/
static int32_t
compute_alpha(int sigma)
{
int32_t alpha;
#if defined(XNR_ATE_ROUNDING_BUG)
int32_t alpha_unscaled;
#else
int offset = sigma / 2;
#endif
if (sigma < XNR_MIN_SIGMA) {
alpha = XNR_MAX_ALPHA;
} else {
#if defined(XNR_ATE_ROUNDING_BUG)
/* The scale factor for alpha must be the same as on the ISP,
* For sigma, it must match the public interface. The code
* below mimics the rounding and unintended loss of precision
* of the ATE reference code. It computes an unscaled alpha,
* rounds down, and then scales it to get the required fixed
* point representation. It would have been more precise to
* round after scaling. */
alpha_unscaled = IA_CSS_XNR3_SIGMA_SCALE / sigma;
alpha = alpha_unscaled * XNR_ALPHA_SCALE_FACTOR;
#else
alpha = ((IA_CSS_XNR3_SIGMA_SCALE * XNR_ALPHA_SCALE_FACTOR) + offset)/ sigma;
#endif
if (alpha > XNR_MAX_ALPHA)
alpha = XNR_MAX_ALPHA;
}
return alpha;
}
/*
* Compute the scaled coring value for the ISP kernel from the value on the
* host parameter interface.
*/
static int32_t
compute_coring(int coring)
{
int32_t isp_coring;
int32_t isp_scale = XNR_CORING_SCALE_FACTOR;
int32_t host_scale = IA_CSS_XNR3_CORING_SCALE;
int32_t offset = host_scale / 2; /* fixed-point 0.5 */
/* Convert from public host-side scale factor to isp-side scale
* factor. Clip to [0, isp_scale-1).
*/
isp_coring = ((coring * isp_scale) + offset) / host_scale;
return min(max(isp_coring, 0), isp_scale - 1);
}
/*
* Compute the scaled blending strength for the ISP kernel from the value on
* the host parameter interface.
*/
static int32_t
compute_blending(int strength)
{
int32_t isp_strength;
int32_t isp_scale = XNR_BLENDING_SCALE_FACTOR;
int32_t host_scale = IA_CSS_XNR3_BLENDING_SCALE;
int32_t offset = host_scale / 2; /* fixed-point 0.5 */
/* Convert from public host-side scale factor to isp-side scale
* factor. The blending factor is positive on the host side, but
* negative on the ISP side because +1.0 cannot be represented
* exactly as s0.11 fixed point, but -1.0 can.
*/
isp_strength = -(((strength * isp_scale) + offset) / host_scale);
return max(min(isp_strength, 0), -XNR_BLENDING_SCALE_FACTOR);
}
void
ia_css_xnr3_encode(
struct sh_css_isp_xnr3_params *to,
const struct ia_css_xnr3_config *from,
unsigned size)
{
int kernel_size = XNR_FILTER_SIZE;
/* The adjust factor is the next power of 2
w.r.t. the kernel size*/
int adjust_factor = ceil_pow2(kernel_size);
int32_t max_diff = (1 << (ISP_VEC_ELEMBITS - 1)) - 1;
int32_t min_diff = -(1 << (ISP_VEC_ELEMBITS - 1));
int32_t alpha_y0 = compute_alpha(from->sigma.y0);
int32_t alpha_y1 = compute_alpha(from->sigma.y1);
int32_t alpha_u0 = compute_alpha(from->sigma.u0);
int32_t alpha_u1 = compute_alpha(from->sigma.u1);
int32_t alpha_v0 = compute_alpha(from->sigma.v0);
int32_t alpha_v1 = compute_alpha(from->sigma.v1);
int32_t alpha_ydiff = (alpha_y1 - alpha_y0) * adjust_factor / kernel_size;
int32_t alpha_udiff = (alpha_u1 - alpha_u0) * adjust_factor / kernel_size;
int32_t alpha_vdiff = (alpha_v1 - alpha_v0) * adjust_factor / kernel_size;
int32_t coring_u0 = compute_coring(from->coring.u0);
int32_t coring_u1 = compute_coring(from->coring.u1);
int32_t coring_v0 = compute_coring(from->coring.v0);
int32_t coring_v1 = compute_coring(from->coring.v1);
int32_t coring_udiff = (coring_u1 - coring_u0) * adjust_factor / kernel_size;
int32_t coring_vdiff = (coring_v1 - coring_v0) * adjust_factor / kernel_size;
int32_t blending = compute_blending(from->blending.strength);
(void)size;
/* alpha's are represented in qN.5 format */
to->alpha.y0 = alpha_y0;
to->alpha.u0 = alpha_u0;
to->alpha.v0 = alpha_v0;
to->alpha.ydiff = min(max(alpha_ydiff, min_diff), max_diff);
to->alpha.udiff = min(max(alpha_udiff, min_diff), max_diff);
to->alpha.vdiff = min(max(alpha_vdiff, min_diff), max_diff);
/* coring parameters are expressed in q1.NN format */
to->coring.u0 = coring_u0;
to->coring.v0 = coring_v0;
to->coring.udiff = min(max(coring_udiff, min_diff), max_diff);
to->coring.vdiff = min(max(coring_vdiff, min_diff), max_diff);
/* blending strength is expressed in q1.NN format */
to->blending.strength = blending;
}
#ifdef ISP2401
/* (void) = ia_css_xnr3_vmem_encode(*to, *from)
* -----------------------------------------------
* VMEM Encode Function to translate UV parameters from userspace into ISP space
*/
void
ia_css_xnr3_vmem_encode(
struct sh_css_isp_xnr3_vmem_params *to,
const struct ia_css_xnr3_config *from,
unsigned size)
{
unsigned i, j, base;
const unsigned total_blocks = 4;
const unsigned shuffle_block = 16;
(void)from;
(void)size;
/* Init */
for (i = 0; i < ISP_VEC_NELEMS; i++) {
to->x[0][i] = 0;
to->a[0][i] = 0;
to->b[0][i] = 0;
to->c[0][i] = 0;
}
/* Constraints on "x":
* - values should be greater or equal to 0.
* - values should be ascending.
*/
assert(x[0] >= 0);
for (j = 1; j < XNR3_LOOK_UP_TABLE_POINTS; j++) {
assert(x[j] >= 0);
assert(x[j] > x[j - 1]);
}
/* The implementation of the calulating 1/x is based on the availability
* of the OP_vec_shuffle16 operation.
* A 64 element vector is split up in 4 blocks of 16 element. Each array is copied to
* a vector 4 times, (starting at 0, 16, 32 and 48). All array elements are copied or
* initialised as described in the KFS. The remaining elements of a vector are set to 0.
*/
/* TODO: guard this code with above assumptions */
for (i = 0; i < total_blocks; i++) {
base = shuffle_block * i;
for (j = 0; j < XNR3_LOOK_UP_TABLE_POINTS; j++) {
to->x[0][base + j] = x[j];
to->a[0][base + j] = a[j];
to->b[0][base + j] = b[j];
to->c[0][base + j] = c[j];
}
}
}
#endif
/* Dummy Function added as the tool expects it*/
void
ia_css_xnr3_debug_dtrace(
const struct ia_css_xnr3_config *config,
unsigned level)
{
(void)config;
(void)level;
}