blob: 706bd43e8b1b7b863f88a7f2850bc03bbc8bca21 [file] [log] [blame]
/*
* Support for Medifield PNW Camera Imaging ISP subsystem.
*
* Copyright (c) 2010 Intel Corporation. All Rights Reserved.
*
* Copyright (c) 2010 Silicon Hive www.siliconhive.com.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*/
/*
* ISP MMU management wrap code
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/gfp.h>
#include <linux/mm.h> /* for GFP_ATOMIC */
#include <linux/slab.h> /* for kmalloc */
#include <linux/list.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/sizes.h>
#ifdef CONFIG_X86
#include <asm/set_memory.h>
#endif
#include "atomisp_internal.h"
#include "mmu/isp_mmu.h"
/*
* 64-bit x86 processor physical address layout:
* 0 - 0x7fffffff DDR RAM (2GB)
* 0x80000000 - 0xffffffff MMIO (2GB)
* 0x100000000 - 0x3fffffffffff DDR RAM (64TB)
* So if the system has more than 2GB DDR memory, the lower 2GB occupies the
* physical address 0 - 0x7fffffff and the rest will start from 0x100000000.
* We have to make sure memory is allocated from the lower 2GB for devices
* that are only 32-bit capable(e.g. the ISP MMU).
*
* For any confusion, contact bin.gao@intel.com.
*/
#define NR_PAGES_2GB (SZ_2G / PAGE_SIZE)
static void free_mmu_map(struct isp_mmu *mmu, unsigned int start_isp_virt,
unsigned int end_isp_virt);
static unsigned int atomisp_get_pte(phys_addr_t pt, unsigned int idx)
{
unsigned int *pt_virt = phys_to_virt(pt);
return *(pt_virt + idx);
}
static void atomisp_set_pte(phys_addr_t pt,
unsigned int idx, unsigned int pte)
{
unsigned int *pt_virt = phys_to_virt(pt);
*(pt_virt + idx) = pte;
}
static void *isp_pt_phys_to_virt(phys_addr_t phys)
{
return phys_to_virt(phys);
}
static phys_addr_t isp_pte_to_pgaddr(struct isp_mmu *mmu,
unsigned int pte)
{
return mmu->driver->pte_to_phys(mmu, pte);
}
static unsigned int isp_pgaddr_to_pte_valid(struct isp_mmu *mmu,
phys_addr_t phys)
{
unsigned int pte = mmu->driver->phys_to_pte(mmu, phys);
return (unsigned int) (pte | ISP_PTE_VALID_MASK(mmu));
}
/*
* allocate a uncacheable page table.
* return physical address.
*/
static phys_addr_t alloc_page_table(struct isp_mmu *mmu)
{
int i;
phys_addr_t page;
void *virt;
/*page table lock may needed here*/
/*
* The slab allocator(kmem_cache and kmalloc family) doesn't handle
* GFP_DMA32 flag, so we have to use buddy allocator.
*/
if (totalram_pages > (unsigned long)NR_PAGES_2GB)
virt = (void *)__get_free_page(GFP_KERNEL | GFP_DMA32);
else
virt = kmem_cache_zalloc(mmu->tbl_cache, GFP_KERNEL);
if (!virt)
return (phys_addr_t)NULL_PAGE;
/*
* we need a uncacheable page table.
*/
#ifdef CONFIG_X86
set_memory_uc((unsigned long)virt, 1);
#endif
page = virt_to_phys(virt);
for (i = 0; i < 1024; i++) {
/* NEED CHECK */
atomisp_set_pte(page, i, mmu->driver->null_pte);
}
return page;
}
static void free_page_table(struct isp_mmu *mmu, phys_addr_t page)
{
void *virt;
page &= ISP_PAGE_MASK;
/*
* reset the page to write back before free
*/
virt = phys_to_virt(page);
#ifdef CONFIG_X86
set_memory_wb((unsigned long)virt, 1);
#endif
kmem_cache_free(mmu->tbl_cache, virt);
}
static void mmu_remap_error(struct isp_mmu *mmu,
phys_addr_t l1_pt, unsigned int l1_idx,
phys_addr_t l2_pt, unsigned int l2_idx,
unsigned int isp_virt, phys_addr_t old_phys,
phys_addr_t new_phys)
{
dev_err(atomisp_dev, "address remap:\n\n"
"\tL1 PT: virt = %p, phys = 0x%llx, "
"idx = %d\n"
"\tL2 PT: virt = %p, phys = 0x%llx, "
"idx = %d\n"
"\told: isp_virt = 0x%x, phys = 0x%llx\n"
"\tnew: isp_virt = 0x%x, phys = 0x%llx\n",
isp_pt_phys_to_virt(l1_pt),
(u64)l1_pt, l1_idx,
isp_pt_phys_to_virt(l2_pt),
(u64)l2_pt, l2_idx, isp_virt,
(u64)old_phys, isp_virt,
(u64)new_phys);
}
static void mmu_unmap_l2_pte_error(struct isp_mmu *mmu,
phys_addr_t l1_pt, unsigned int l1_idx,
phys_addr_t l2_pt, unsigned int l2_idx,
unsigned int isp_virt, unsigned int pte)
{
dev_err(atomisp_dev, "unmap unvalid L2 pte:\n\n"
"\tL1 PT: virt = %p, phys = 0x%llx, "
"idx = %d\n"
"\tL2 PT: virt = %p, phys = 0x%llx, "
"idx = %d\n"
"\tisp_virt = 0x%x, pte(page phys) = 0x%x\n",
isp_pt_phys_to_virt(l1_pt),
(u64)l1_pt, l1_idx,
isp_pt_phys_to_virt(l2_pt),
(u64)l2_pt, l2_idx, isp_virt,
pte);
}
static void mmu_unmap_l1_pte_error(struct isp_mmu *mmu,
phys_addr_t l1_pt, unsigned int l1_idx,
unsigned int isp_virt, unsigned int pte)
{
dev_err(atomisp_dev, "unmap unvalid L1 pte (L2 PT):\n\n"
"\tL1 PT: virt = %p, phys = 0x%llx, "
"idx = %d\n"
"\tisp_virt = 0x%x, l1_pte(L2 PT) = 0x%x\n",
isp_pt_phys_to_virt(l1_pt),
(u64)l1_pt, l1_idx, (unsigned int)isp_virt,
pte);
}
static void mmu_unmap_l1_pt_error(struct isp_mmu *mmu, unsigned int pte)
{
dev_err(atomisp_dev, "unmap unvalid L1PT:\n\n"
"L1PT = 0x%x\n", (unsigned int)pte);
}
/*
* Update L2 page table according to isp virtual address and page physical
* address
*/
static int mmu_l2_map(struct isp_mmu *mmu, phys_addr_t l1_pt,
unsigned int l1_idx, phys_addr_t l2_pt,
unsigned int start, unsigned int end, phys_addr_t phys)
{
unsigned int ptr;
unsigned int idx;
unsigned int pte;
l2_pt &= ISP_PAGE_MASK;
start = start & ISP_PAGE_MASK;
end = ISP_PAGE_ALIGN(end);
phys &= ISP_PAGE_MASK;
ptr = start;
do {
idx = ISP_PTR_TO_L2_IDX(ptr);
pte = atomisp_get_pte(l2_pt, idx);
if (ISP_PTE_VALID(mmu, pte)) {
mmu_remap_error(mmu, l1_pt, l1_idx,
l2_pt, idx, ptr, pte, phys);
/* free all mapped pages */
free_mmu_map(mmu, start, ptr);
return -EINVAL;
}
pte = isp_pgaddr_to_pte_valid(mmu, phys);
atomisp_set_pte(l2_pt, idx, pte);
mmu->l2_pgt_refcount[l1_idx]++;
ptr += (1U << ISP_L2PT_OFFSET);
phys += (1U << ISP_L2PT_OFFSET);
} while (ptr < end && idx < ISP_L2PT_PTES - 1);
return 0;
}
/*
* Update L1 page table according to isp virtual address and page physical
* address
*/
static int mmu_l1_map(struct isp_mmu *mmu, phys_addr_t l1_pt,
unsigned int start, unsigned int end,
phys_addr_t phys)
{
phys_addr_t l2_pt;
unsigned int ptr, l1_aligned;
unsigned int idx;
unsigned int l2_pte;
int ret;
l1_pt &= ISP_PAGE_MASK;
start = start & ISP_PAGE_MASK;
end = ISP_PAGE_ALIGN(end);
phys &= ISP_PAGE_MASK;
ptr = start;
do {
idx = ISP_PTR_TO_L1_IDX(ptr);
l2_pte = atomisp_get_pte(l1_pt, idx);
if (!ISP_PTE_VALID(mmu, l2_pte)) {
l2_pt = alloc_page_table(mmu);
if (l2_pt == NULL_PAGE) {
dev_err(atomisp_dev,
"alloc page table fail.\n");
/* free all mapped pages */
free_mmu_map(mmu, start, ptr);
return -ENOMEM;
}
l2_pte = isp_pgaddr_to_pte_valid(mmu, l2_pt);
atomisp_set_pte(l1_pt, idx, l2_pte);
mmu->l2_pgt_refcount[idx] = 0;
}
l2_pt = isp_pte_to_pgaddr(mmu, l2_pte);
l1_aligned = (ptr & ISP_PAGE_MASK) + (1U << ISP_L1PT_OFFSET);
if (l1_aligned < end) {
ret = mmu_l2_map(mmu, l1_pt, idx,
l2_pt, ptr, l1_aligned, phys);
phys += (l1_aligned - ptr);
ptr = l1_aligned;
} else {
ret = mmu_l2_map(mmu, l1_pt, idx,
l2_pt, ptr, end, phys);
phys += (end - ptr);
ptr = end;
}
if (ret) {
dev_err(atomisp_dev, "setup mapping in L2PT fail.\n");
/* free all mapped pages */
free_mmu_map(mmu, start, ptr);
return -EINVAL;
}
} while (ptr < end && idx < ISP_L1PT_PTES);
return 0;
}
/*
* Update page table according to isp virtual address and page physical
* address
*/
static int mmu_map(struct isp_mmu *mmu, unsigned int isp_virt,
phys_addr_t phys, unsigned int pgnr)
{
unsigned int start, end;
phys_addr_t l1_pt;
int ret;
mutex_lock(&mmu->pt_mutex);
if (!ISP_PTE_VALID(mmu, mmu->l1_pte)) {
/*
* allocate 1 new page for L1 page table
*/
l1_pt = alloc_page_table(mmu);
if (l1_pt == NULL_PAGE) {
dev_err(atomisp_dev, "alloc page table fail.\n");
mutex_unlock(&mmu->pt_mutex);
return -ENOMEM;
}
/*
* setup L1 page table physical addr to MMU
*/
ret = mmu->driver->set_pd_base(mmu, l1_pt);
if (ret) {
dev_err(atomisp_dev,
"set page directory base address fail.\n");
mutex_unlock(&mmu->pt_mutex);
return ret;
}
mmu->base_address = l1_pt;
mmu->l1_pte = isp_pgaddr_to_pte_valid(mmu, l1_pt);
memset(mmu->l2_pgt_refcount, 0, sizeof(int) * ISP_L1PT_PTES);
}
l1_pt = isp_pte_to_pgaddr(mmu, mmu->l1_pte);
start = (isp_virt) & ISP_PAGE_MASK;
end = start + (pgnr << ISP_PAGE_OFFSET);
phys &= ISP_PAGE_MASK;
ret = mmu_l1_map(mmu, l1_pt, start, end, phys);
if (ret)
dev_err(atomisp_dev, "setup mapping in L1PT fail.\n");
mutex_unlock(&mmu->pt_mutex);
return ret;
}
/*
* Free L2 page table according to isp virtual address and page physical
* address
*/
static void mmu_l2_unmap(struct isp_mmu *mmu, phys_addr_t l1_pt,
unsigned int l1_idx, phys_addr_t l2_pt,
unsigned int start, unsigned int end)
{
unsigned int ptr;
unsigned int idx;
unsigned int pte;
l2_pt &= ISP_PAGE_MASK;
start = start & ISP_PAGE_MASK;
end = ISP_PAGE_ALIGN(end);
ptr = start;
do {
idx = ISP_PTR_TO_L2_IDX(ptr);
pte = atomisp_get_pte(l2_pt, idx);
if (!ISP_PTE_VALID(mmu, pte))
mmu_unmap_l2_pte_error(mmu, l1_pt, l1_idx,
l2_pt, idx, ptr, pte);
atomisp_set_pte(l2_pt, idx, mmu->driver->null_pte);
mmu->l2_pgt_refcount[l1_idx]--;
ptr += (1U << ISP_L2PT_OFFSET);
} while (ptr < end && idx < ISP_L2PT_PTES - 1);
if (mmu->l2_pgt_refcount[l1_idx] == 0) {
free_page_table(mmu, l2_pt);
atomisp_set_pte(l1_pt, l1_idx, mmu->driver->null_pte);
}
}
/*
* Free L1 page table according to isp virtual address and page physical
* address
*/
static void mmu_l1_unmap(struct isp_mmu *mmu, phys_addr_t l1_pt,
unsigned int start, unsigned int end)
{
phys_addr_t l2_pt;
unsigned int ptr, l1_aligned;
unsigned int idx;
unsigned int l2_pte;
l1_pt &= ISP_PAGE_MASK;
start = start & ISP_PAGE_MASK;
end = ISP_PAGE_ALIGN(end);
ptr = start;
do {
idx = ISP_PTR_TO_L1_IDX(ptr);
l2_pte = atomisp_get_pte(l1_pt, idx);
if (!ISP_PTE_VALID(mmu, l2_pte)) {
mmu_unmap_l1_pte_error(mmu, l1_pt, idx, ptr, l2_pte);
continue;
}
l2_pt = isp_pte_to_pgaddr(mmu, l2_pte);
l1_aligned = (ptr & ISP_PAGE_MASK) + (1U << ISP_L1PT_OFFSET);
if (l1_aligned < end) {
mmu_l2_unmap(mmu, l1_pt, idx, l2_pt, ptr, l1_aligned);
ptr = l1_aligned;
} else {
mmu_l2_unmap(mmu, l1_pt, idx, l2_pt, ptr, end);
ptr = end;
}
/*
* use the same L2 page next time, so we dont
* need to invalidate and free this PT.
*/
/* atomisp_set_pte(l1_pt, idx, NULL_PTE); */
} while (ptr < end && idx < ISP_L1PT_PTES);
}
/*
* Free page table according to isp virtual address and page physical
* address
*/
static void mmu_unmap(struct isp_mmu *mmu, unsigned int isp_virt,
unsigned int pgnr)
{
unsigned int start, end;
phys_addr_t l1_pt;
mutex_lock(&mmu->pt_mutex);
if (!ISP_PTE_VALID(mmu, mmu->l1_pte)) {
mmu_unmap_l1_pt_error(mmu, mmu->l1_pte);
mutex_unlock(&mmu->pt_mutex);
return;
}
l1_pt = isp_pte_to_pgaddr(mmu, mmu->l1_pte);
start = (isp_virt) & ISP_PAGE_MASK;
end = start + (pgnr << ISP_PAGE_OFFSET);
mmu_l1_unmap(mmu, l1_pt, start, end);
mutex_unlock(&mmu->pt_mutex);
}
/*
* Free page tables according to isp start virtual address and end virtual
* address.
*/
static void free_mmu_map(struct isp_mmu *mmu, unsigned int start_isp_virt,
unsigned int end_isp_virt)
{
unsigned int pgnr;
unsigned int start, end;
start = (start_isp_virt) & ISP_PAGE_MASK;
end = (end_isp_virt) & ISP_PAGE_MASK;
pgnr = (end - start) >> ISP_PAGE_OFFSET;
mmu_unmap(mmu, start, pgnr);
}
int isp_mmu_map(struct isp_mmu *mmu, unsigned int isp_virt,
phys_addr_t phys, unsigned int pgnr)
{
return mmu_map(mmu, isp_virt, phys, pgnr);
}
void isp_mmu_unmap(struct isp_mmu *mmu, unsigned int isp_virt,
unsigned int pgnr)
{
mmu_unmap(mmu, isp_virt, pgnr);
}
static void isp_mmu_flush_tlb_range_default(struct isp_mmu *mmu,
unsigned int start,
unsigned int size)
{
isp_mmu_flush_tlb(mmu);
}
/*MMU init for internal structure*/
int isp_mmu_init(struct isp_mmu *mmu, struct isp_mmu_client *driver)
{
if (!mmu) /* error */
return -EINVAL;
if (!driver) /* error */
return -EINVAL;
if (!driver->name)
dev_warn(atomisp_dev, "NULL name for MMU driver...\n");
mmu->driver = driver;
if (!driver->set_pd_base || !driver->tlb_flush_all) {
dev_err(atomisp_dev,
"set_pd_base or tlb_flush_all operation "
"not provided.\n");
return -EINVAL;
}
if (!driver->tlb_flush_range)
driver->tlb_flush_range = isp_mmu_flush_tlb_range_default;
if (!driver->pte_valid_mask) {
dev_err(atomisp_dev, "PTE_MASK is missing from mmu driver\n");
return -EINVAL;
}
mmu->l1_pte = driver->null_pte;
mutex_init(&mmu->pt_mutex);
mmu->tbl_cache = kmem_cache_create("iopte_cache", ISP_PAGE_SIZE,
ISP_PAGE_SIZE, SLAB_HWCACHE_ALIGN,
NULL);
if (!mmu->tbl_cache)
return -ENOMEM;
return 0;
}
/*Free L1 and L2 page table*/
void isp_mmu_exit(struct isp_mmu *mmu)
{
unsigned int idx;
unsigned int pte;
phys_addr_t l1_pt, l2_pt;
if (!mmu)
return;
if (!ISP_PTE_VALID(mmu, mmu->l1_pte)) {
dev_warn(atomisp_dev, "invalid L1PT: pte = 0x%x\n",
(unsigned int)mmu->l1_pte);
return;
}
l1_pt = isp_pte_to_pgaddr(mmu, mmu->l1_pte);
for (idx = 0; idx < ISP_L1PT_PTES; idx++) {
pte = atomisp_get_pte(l1_pt, idx);
if (ISP_PTE_VALID(mmu, pte)) {
l2_pt = isp_pte_to_pgaddr(mmu, pte);
free_page_table(mmu, l2_pt);
}
}
free_page_table(mmu, l1_pt);
kmem_cache_destroy(mmu->tbl_cache);
}