blob: 94de4a7490f0b671a97666b956a4fcf72d1a5bd3 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "record_file.h"
#include <fcntl.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include "event_attr.h"
#include "perf_event.h"
#include "record.h"
#include "utils.h"
using namespace PerfFileFormat;
std::unique_ptr<RecordFileWriter> RecordFileWriter::CreateInstance(const std::string& filename) {
// Remove old perf.data to avoid file ownership problems.
std::string err;
if (!android::base::RemoveFileIfExists(filename, &err)) {
LOG(ERROR) << "failed to remove file " << filename << ": " << err;
return nullptr;
}
FILE* fp = fopen(filename.c_str(), "web+");
if (fp == nullptr) {
PLOG(ERROR) << "failed to open record file '" << filename << "'";
return nullptr;
}
return std::unique_ptr<RecordFileWriter>(new RecordFileWriter(filename, fp));
}
RecordFileWriter::RecordFileWriter(const std::string& filename, FILE* fp)
: filename_(filename),
record_fp_(fp),
attr_section_offset_(0),
attr_section_size_(0),
data_section_offset_(0),
data_section_size_(0),
feature_count_(0),
current_feature_index_(0) {
}
RecordFileWriter::~RecordFileWriter() {
if (record_fp_ != nullptr) {
Close();
}
}
bool RecordFileWriter::WriteAttrSection(const std::vector<AttrWithId>& attr_ids) {
if (attr_ids.empty()) {
return false;
}
// Skip file header part.
if (fseek(record_fp_, sizeof(FileHeader), SEEK_SET) == -1) {
return false;
}
// Write id section.
off_t id_section_offset = ftello(record_fp_);
if (id_section_offset == -1) {
return false;
}
for (auto& attr_id : attr_ids) {
if (!Write(attr_id.ids.data(), attr_id.ids.size() * sizeof(uint64_t))) {
return false;
}
}
// Write attr section.
off_t attr_section_offset = ftello(record_fp_);
if (attr_section_offset == -1) {
return false;
}
for (auto& attr_id : attr_ids) {
FileAttr file_attr;
file_attr.attr = *attr_id.attr;
file_attr.ids.offset = id_section_offset;
file_attr.ids.size = attr_id.ids.size() * sizeof(uint64_t);
id_section_offset += file_attr.ids.size;
if (!Write(&file_attr, sizeof(file_attr))) {
return false;
}
}
off_t data_section_offset = ftello(record_fp_);
if (data_section_offset == -1) {
return false;
}
attr_section_offset_ = attr_section_offset;
attr_section_size_ = data_section_offset - attr_section_offset;
data_section_offset_ = data_section_offset;
// Save event_attr for use when reading records.
event_attr_ = *attr_ids[0].attr;
return true;
}
bool RecordFileWriter::WriteRecord(const Record& record) {
// linux-tools-perf only accepts records with size <= 65535 bytes. To make
// perf.data generated by simpleperf be able to be parsed by linux-tools-perf,
// Split simpleperf custom records which are > 65535 into a bunch of
// RECORD_SPLIT records, followed by a RECORD_SPLIT_END record.
constexpr uint32_t RECORD_SIZE_LIMIT = 65535;
if (record.size() <= RECORD_SIZE_LIMIT) {
WriteData(record.Binary(), record.size());
return true;
}
CHECK_GT(record.type(), SIMPLE_PERF_RECORD_TYPE_START);
const char* p = record.Binary();
uint32_t left_bytes = static_cast<uint32_t>(record.size());
RecordHeader header;
header.type = SIMPLE_PERF_RECORD_SPLIT;
char header_buf[Record::header_size()];
char* header_p;
while (left_bytes > 0) {
uint32_t bytes_to_write = std::min(RECORD_SIZE_LIMIT - Record::header_size(), left_bytes);
header.size = bytes_to_write + Record::header_size();
header_p = header_buf;
header.MoveToBinaryFormat(header_p);
if (!WriteData(header_buf, Record::header_size())) {
return false;
}
if (!WriteData(p, bytes_to_write)) {
return false;
}
p += bytes_to_write;
left_bytes -= bytes_to_write;
}
header.type = SIMPLE_PERF_RECORD_SPLIT_END;
header.size = Record::header_size();
header_p = header_buf;
header.MoveToBinaryFormat(header_p);
return WriteData(header_buf, Record::header_size());
}
bool RecordFileWriter::WriteData(const void* buf, size_t len) {
if (!Write(buf, len)) {
return false;
}
data_section_size_ += len;
return true;
}
bool RecordFileWriter::Write(const void* buf, size_t len) {
if (fwrite(buf, len, 1, record_fp_) != 1) {
PLOG(ERROR) << "failed to write to record file '" << filename_ << "'";
return false;
}
return true;
}
std::unique_ptr<Record> RecordFileWriter::ReadRecordFromFile(FILE* fp, std::vector<char>& buf) {
if (buf.size() < sizeof(perf_event_header)) {
buf.resize(sizeof(perf_event_header));
}
auto pheader = reinterpret_cast<perf_event_header*>(buf.data());
if (fread(pheader, sizeof(*pheader), 1, fp) != 1) {
PLOG(ERROR) << "read failed";
return nullptr;
}
if (pheader->size > sizeof(*pheader)) {
if (pheader->size > buf.size()) {
buf.resize(pheader->size);
}
pheader = reinterpret_cast<perf_event_header*>(buf.data());
if (fread(pheader + 1, pheader->size - sizeof(*pheader), 1, fp) != 1) {
PLOG(ERROR) << "read failed";
return nullptr;
}
}
return ReadRecordFromBuffer(event_attr_, pheader->type, buf.data());
}
bool RecordFileWriter::WriteRecordToFile(FILE* fp, std::unique_ptr<Record> r) {
if (fwrite(r->Binary(), r->size(), 1, fp) != 1) {
PLOG(ERROR) << "write failed";
return false;
}
return true;
}
// SortDataSection() sorts records in data section in time order.
// This method is suitable for the situation that there is only one buffer
// between kernel and simpleperf for each cpu. The order of records in each
// cpu buffer is already sorted, so we only need to merge records from different
// cpu buffers.
// 1. Create one temporary file for each cpu, and write records to different
// temporary files according to their cpu value.
// 2. Use RecordCache to merge records from different temporary files.
bool RecordFileWriter::SortDataSection() {
if (!IsTimestampSupported(event_attr_) || !IsCpuSupported(event_attr_)) {
// Omit the sort if either timestamp or cpu is not recorded.
return true;
}
struct CpuData {
std::string path;
FILE* fp;
std::vector<char> buf;
uint64_t data_size;
explicit CpuData(const std::string& path) : path(path), fp(nullptr), data_size(0) {
fp = fopen(path.c_str(), "web+");
}
~CpuData() {
fclose(fp);
unlink(path.c_str());
}
};
std::unordered_map<uint32_t, std::unique_ptr<CpuData>> cpu_map;
if (fseek(record_fp_, data_section_offset_, SEEK_SET) == -1) {
PLOG(ERROR) << "fseek() failed";
return false;
}
uint64_t cur_size = 0;
std::vector<char> global_buf;
while (cur_size < data_section_size_) {
std::unique_ptr<Record> r = ReadRecordFromFile(record_fp_, global_buf);
if (r == nullptr) {
return false;
}
cur_size += r->size();
std::unique_ptr<CpuData>& cpu_data = cpu_map[r->Cpu()];
if (cpu_data == nullptr) {
// Create temporary file in the same directory as filename_, because we
// may not have permission to create temporary file in other directories.
cpu_data.reset(new CpuData(filename_ + "." + std::to_string(r->Cpu())));
if (cpu_data->fp == nullptr) {
PLOG(ERROR) << "failed to open tmpfile " << cpu_data->path;
return false;
}
}
cpu_data->data_size += r->size();
if (!WriteRecordToFile(cpu_data->fp, std::move(r))) {
return false;
}
}
if (fseek(record_fp_, data_section_offset_, SEEK_SET) == -1) {
PLOG(ERROR) << "fseek() failed";
return false;
}
RecordCache global_cache(true);
for (auto it = cpu_map.begin(); it != cpu_map.end(); ++it) {
if (fseek(it->second->fp, 0, SEEK_SET) == -1) {
PLOG(ERROR) << "fseek() failed";
return false;
}
std::unique_ptr<Record> r = ReadRecordFromFile(it->second->fp, it->second->buf);
if (r == nullptr) {
return false;
}
it->second->data_size -= r->size();
global_cache.Push(std::move(r));
}
while (true) {
std::unique_ptr<Record> r = global_cache.ForcedPop();
if (r == nullptr) {
break;
}
uint32_t cpu = r->Cpu();
if (!WriteRecordToFile(record_fp_, std::move(r))) {
return false;
}
// Each time writing one record of a cpu, push the next record from the
// temporary file belong to that cpu into the record cache.
std::unique_ptr<CpuData>& cpu_data = cpu_map[cpu];
if (cpu_data->data_size > 0) {
r = ReadRecordFromFile(cpu_data->fp, cpu_data->buf);
if (r == nullptr) {
return false;
}
cpu_data->data_size -= r->size();
global_cache.Push(std::move(r));
}
}
return true;
}
bool RecordFileWriter::SeekFileEnd(uint64_t* file_end) {
if (fseek(record_fp_, 0, SEEK_END) == -1) {
PLOG(ERROR) << "fseek() failed";
return false;
}
off_t offset = ftello(record_fp_);
if (offset == -1) {
PLOG(ERROR) << "ftello() failed";
return false;
}
*file_end = static_cast<uint64_t>(offset);
return true;
}
bool RecordFileWriter::WriteFeatureHeader(size_t feature_count) {
feature_count_ = feature_count;
current_feature_index_ = 0;
uint64_t feature_header_size = feature_count * sizeof(SectionDesc);
// Reserve enough space in the record file for the feature header.
std::vector<unsigned char> zero_data(feature_header_size);
if (fseek(record_fp_, data_section_offset_ + data_section_size_, SEEK_SET) == -1) {
PLOG(ERROR) << "fseek() failed";
return false;
}
return Write(zero_data.data(), zero_data.size());
}
bool RecordFileWriter::WriteBuildIdFeature(const std::vector<BuildIdRecord>& build_id_records) {
uint64_t start_offset;
if (!WriteFeatureBegin(&start_offset)) {
return false;
}
for (auto& record : build_id_records) {
if (!Write(record.Binary(), record.size())) {
return false;
}
}
return WriteFeatureEnd(FEAT_BUILD_ID, start_offset);
}
bool RecordFileWriter::WriteFeatureString(int feature, const std::string& s) {
uint64_t start_offset;
if (!WriteFeatureBegin(&start_offset)) {
return false;
}
uint32_t len = static_cast<uint32_t>(Align(s.size() + 1, 64));
if (!Write(&len, sizeof(len))) {
return false;
}
std::vector<char> v(len, '\0');
std::copy(s.begin(), s.end(), v.begin());
if (!Write(v.data(), v.size())) {
return false;
}
return WriteFeatureEnd(feature, start_offset);
}
bool RecordFileWriter::WriteCmdlineFeature(const std::vector<std::string>& cmdline) {
uint64_t start_offset;
if (!WriteFeatureBegin(&start_offset)) {
return false;
}
uint32_t arg_count = cmdline.size();
if (!Write(&arg_count, sizeof(arg_count))) {
return false;
}
for (auto& arg : cmdline) {
uint32_t len = static_cast<uint32_t>(Align(arg.size() + 1, 64));
if (!Write(&len, sizeof(len))) {
return false;
}
std::vector<char> array(len, '\0');
std::copy(arg.begin(), arg.end(), array.begin());
if (!Write(array.data(), array.size())) {
return false;
}
}
return WriteFeatureEnd(FEAT_CMDLINE, start_offset);
}
bool RecordFileWriter::WriteBranchStackFeature() {
uint64_t start_offset;
if (!WriteFeatureBegin(&start_offset)) {
return false;
}
return WriteFeatureEnd(FEAT_BRANCH_STACK, start_offset);
}
bool RecordFileWriter::WriteFeatureBegin(uint64_t* start_offset) {
CHECK_LT(current_feature_index_, feature_count_);
if (!SeekFileEnd(start_offset)) {
return false;
}
return true;
}
bool RecordFileWriter::WriteFeatureEnd(int feature, uint64_t start_offset) {
uint64_t end_offset;
if (!SeekFileEnd(&end_offset)) {
return false;
}
SectionDesc desc;
desc.offset = start_offset;
desc.size = end_offset - start_offset;
uint64_t feature_offset = data_section_offset_ + data_section_size_;
if (fseek(record_fp_, feature_offset + current_feature_index_ * sizeof(SectionDesc), SEEK_SET) ==
-1) {
PLOG(ERROR) << "fseek() failed";
return false;
}
if (!Write(&desc, sizeof(SectionDesc))) {
return false;
}
++current_feature_index_;
features_.push_back(feature);
return true;
}
bool RecordFileWriter::WriteFileHeader() {
FileHeader header;
memset(&header, 0, sizeof(header));
memcpy(header.magic, PERF_MAGIC, sizeof(header.magic));
header.header_size = sizeof(header);
header.attr_size = sizeof(FileAttr);
header.attrs.offset = attr_section_offset_;
header.attrs.size = attr_section_size_;
header.data.offset = data_section_offset_;
header.data.size = data_section_size_;
for (auto& feature : features_) {
int i = feature / 8;
int j = feature % 8;
header.features[i] |= (1 << j);
}
if (fseek(record_fp_, 0, SEEK_SET) == -1) {
return false;
}
if (!Write(&header, sizeof(header))) {
return false;
}
return true;
}
bool RecordFileWriter::Close() {
CHECK(record_fp_ != nullptr);
bool result = true;
// Write file header. We gather enough information to write file header only after
// writing data section and feature section.
if (!WriteFileHeader()) {
result = false;
}
if (fclose(record_fp_) != 0) {
PLOG(ERROR) << "failed to close record file '" << filename_ << "'";
result = false;
}
record_fp_ = nullptr;
return result;
}