blob: 587d23de78a82f28c4700340eef625aa94df1e47 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "record.h"
#include <inttypes.h>
#include <algorithm>
#include <unordered_map>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "dso.h"
#include "environment.h"
#include "perf_regs.h"
#include "tracing.h"
#include "utils.h"
static std::string RecordTypeToString(int record_type) {
static std::unordered_map<int, std::string> record_type_names = {
{PERF_RECORD_MMAP, "mmap"},
{PERF_RECORD_LOST, "lost"},
{PERF_RECORD_COMM, "comm"},
{PERF_RECORD_EXIT, "exit"},
{PERF_RECORD_THROTTLE, "throttle"},
{PERF_RECORD_UNTHROTTLE, "unthrottle"},
{PERF_RECORD_FORK, "fork"},
{PERF_RECORD_READ, "read"},
{PERF_RECORD_SAMPLE, "sample"},
{PERF_RECORD_BUILD_ID, "build_id"},
{PERF_RECORD_MMAP2, "mmap2"},
{PERF_RECORD_TRACING_DATA, "tracing_data"},
{SIMPLE_PERF_RECORD_KERNEL_SYMBOL, "kernel_symbol"},
{SIMPLE_PERF_RECORD_DSO, "dso"},
{SIMPLE_PERF_RECORD_SYMBOL, "symbol"},
};
auto it = record_type_names.find(record_type);
if (it != record_type_names.end()) {
return it->second;
}
return android::base::StringPrintf("unknown(%d)", record_type);
}
template <class T>
void MoveFromBinaryFormat(T* data_p, size_t n, const char*& p) {
size_t size = n * sizeof(T);
memcpy(data_p, p, size);
p += size;
}
template <class T>
void MoveToBinaryFormat(const T& data, char*& p) {
*reinterpret_cast<T*>(p) = data;
p += sizeof(T);
}
template <>
void MoveToBinaryFormat(const RecordHeader& data, char*& p) {
data.MoveToBinaryFormat(p);
}
template <class T>
void MoveToBinaryFormat(const T* data_p, size_t n, char*& p) {
size_t size = n * sizeof(T);
memcpy(p, data_p, size);
p += size;
}
SampleId::SampleId() { memset(this, 0, sizeof(SampleId)); }
// Return sample_id size in binary format.
size_t SampleId::CreateContent(const perf_event_attr& attr, uint64_t event_id) {
sample_id_all = attr.sample_id_all;
sample_type = attr.sample_type;
id_data.id = event_id;
// Other data are not necessary. TODO: Set missing SampleId data.
return Size();
}
void SampleId::ReadFromBinaryFormat(const perf_event_attr& attr, const char* p,
const char* end) {
sample_id_all = attr.sample_id_all;
sample_type = attr.sample_type;
if (sample_id_all) {
if (sample_type & PERF_SAMPLE_TID) {
MoveFromBinaryFormat(tid_data, p);
}
if (sample_type & PERF_SAMPLE_TIME) {
MoveFromBinaryFormat(time_data, p);
}
if (sample_type & PERF_SAMPLE_ID) {
MoveFromBinaryFormat(id_data, p);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
MoveFromBinaryFormat(stream_id_data, p);
}
if (sample_type & PERF_SAMPLE_CPU) {
MoveFromBinaryFormat(cpu_data, p);
}
if (sample_type & PERF_SAMPLE_IDENTIFIER) {
MoveFromBinaryFormat(id_data, p);
}
}
CHECK_LE(p, end);
if (p < end) {
LOG(DEBUG) << "Record SampleId part has " << end - p << " bytes left\n";
}
}
void SampleId::WriteToBinaryFormat(char*& p) const {
if (sample_id_all) {
if (sample_type & PERF_SAMPLE_TID) {
MoveToBinaryFormat(tid_data, p);
}
if (sample_type & PERF_SAMPLE_TIME) {
MoveToBinaryFormat(time_data, p);
}
if (sample_type & PERF_SAMPLE_ID) {
MoveToBinaryFormat(id_data, p);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
MoveToBinaryFormat(stream_id_data, p);
}
if (sample_type & PERF_SAMPLE_CPU) {
MoveToBinaryFormat(cpu_data, p);
}
}
}
void SampleId::Dump(size_t indent) const {
if (sample_id_all) {
if (sample_type & PERF_SAMPLE_TID) {
PrintIndented(indent, "sample_id: pid %u, tid %u\n", tid_data.pid,
tid_data.tid);
}
if (sample_type & PERF_SAMPLE_TIME) {
PrintIndented(indent, "sample_id: time %" PRId64 "\n", time_data.time);
}
if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) {
PrintIndented(indent, "sample_id: id %" PRId64 "\n", id_data.id);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
PrintIndented(indent, "sample_id: stream_id %" PRId64 "\n",
stream_id_data.stream_id);
}
if (sample_type & PERF_SAMPLE_CPU) {
PrintIndented(indent, "sample_id: cpu %u, res %u\n", cpu_data.cpu,
cpu_data.res);
}
}
}
size_t SampleId::Size() const {
size_t size = 0;
if (sample_id_all) {
if (sample_type & PERF_SAMPLE_TID) {
size += sizeof(PerfSampleTidType);
}
if (sample_type & PERF_SAMPLE_TIME) {
size += sizeof(PerfSampleTimeType);
}
if (sample_type & PERF_SAMPLE_ID) {
size += sizeof(PerfSampleIdType);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
size += sizeof(PerfSampleStreamIdType);
}
if (sample_type & PERF_SAMPLE_CPU) {
size += sizeof(PerfSampleCpuType);
}
if (sample_type & PERF_SAMPLE_IDENTIFIER) {
size += sizeof(PerfSampleIdType);
}
}
return size;
}
Record::Record(Record&& other) {
header = other.header;
sample_id = other.sample_id;
binary_ = other.binary_;
own_binary_ = other.own_binary_;
other.binary_ = nullptr;
other.own_binary_ = false;
}
void Record::Dump(size_t indent) const {
PrintIndented(indent, "record %s: type %u, misc %u, size %u\n",
RecordTypeToString(type()).c_str(), type(), misc(), size());
DumpData(indent + 1);
sample_id.Dump(indent + 1);
}
uint64_t Record::Timestamp() const { return sample_id.time_data.time; }
uint32_t Record::Cpu() const { return sample_id.cpu_data.cpu; }
void Record::UpdateBinary(const char* new_binary) {
if (own_binary_) {
delete[] binary_;
}
own_binary_ = true;
binary_ = new_binary;
}
MmapRecord::MmapRecord(const perf_event_attr& attr, const char* p) : Record(p) {
const char* end = p + size();
p += header_size();
data = reinterpret_cast<const MmapRecordDataType*>(p);
p += sizeof(*data);
filename = p;
p += Align(strlen(filename) + 1, 8);
CHECK_LE(p, end);
sample_id.ReadFromBinaryFormat(attr, p, end);
}
MmapRecord::MmapRecord(const perf_event_attr& attr, bool in_kernel,
uint32_t pid, uint32_t tid, uint64_t addr, uint64_t len,
uint64_t pgoff, const std::string& filename,
uint64_t event_id, uint64_t time) {
SetTypeAndMisc(PERF_RECORD_MMAP,
in_kernel ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER);
sample_id.CreateContent(attr, event_id);
sample_id.time_data.time = time;
MmapRecordDataType data;
data.pid = pid;
data.tid = tid;
data.addr = addr;
data.len = len;
data.pgoff = pgoff;
SetDataAndFilename(data, filename);
}
void MmapRecord::SetDataAndFilename(const MmapRecordDataType& data,
const std::string& filename) {
SetSize(header_size() + sizeof(data) + Align(filename.size() + 1, 8) +
sample_id.Size());
char* new_binary = new char[size()];
char* p = new_binary;
MoveToBinaryFormat(header, p);
this->data = reinterpret_cast<MmapRecordDataType*>(p);
MoveToBinaryFormat(data, p);
this->filename = p;
strcpy(p, filename.c_str());
p += Align(filename.size() + 1, 8);
sample_id.WriteToBinaryFormat(p);
UpdateBinary(new_binary);
}
void MmapRecord::DumpData(size_t indent) const {
PrintIndented(indent,
"pid %u, tid %u, addr 0x%" PRIx64 ", len 0x%" PRIx64 "\n",
data->pid, data->tid, data->addr, data->len);
PrintIndented(indent, "pgoff 0x%" PRIx64 ", filename %s\n", data->pgoff,
filename);
}
Mmap2Record::Mmap2Record(const perf_event_attr& attr, const char* p)
: Record(p) {
const char* end = p + size();
p += header_size();
MoveFromBinaryFormat(data, p);
filename = p;
p += Align(strlen(filename) + 1, 8);
CHECK_LE(p, end);
sample_id.ReadFromBinaryFormat(attr, p, end);
}
void Mmap2Record::SetDataAndFilename(const Mmap2RecordDataType& data,
const std::string& filename) {
SetSize(header_size() + sizeof(data) + Align(filename.size() + 1, 8) +
sample_id.Size());
char* new_binary = new char[size()];
char* p = new_binary;
MoveToBinaryFormat(header, p);
this->data = reinterpret_cast<Mmap2RecordDataType*>(p);
MoveToBinaryFormat(data, p);
this->filename = p;
strcpy(p, filename.c_str());
p += Align(filename.size() + 1, 8);
sample_id.WriteToBinaryFormat(p);
UpdateBinary(new_binary);
}
void Mmap2Record::DumpData(size_t indent) const {
PrintIndented(indent,
"pid %u, tid %u, addr 0x%" PRIx64 ", len 0x%" PRIx64 "\n",
data->pid, data->tid, data->addr, data->len);
PrintIndented(indent, "pgoff 0x" PRIx64 ", maj %u, min %u, ino %" PRId64
", ino_generation %" PRIu64 "\n",
data->pgoff, data->maj, data->min, data->ino,
data->ino_generation);
PrintIndented(indent, "prot %u, flags %u, filenames %s\n", data->prot,
data->flags, filename);
}
CommRecord::CommRecord(const perf_event_attr& attr, const char* p) : Record(p) {
const char* end = p + size();
p += header_size();
data = reinterpret_cast<const CommRecordDataType*>(p);
p += sizeof(*data);
comm = p;
p += Align(strlen(p) + 1, 8);
CHECK_LE(p, end);
sample_id.ReadFromBinaryFormat(attr, p, end);
}
CommRecord::CommRecord(const perf_event_attr& attr, uint32_t pid, uint32_t tid,
const std::string& comm, uint64_t event_id) {
SetTypeAndMisc(PERF_RECORD_COMM, 0);
CommRecordDataType data;
data.pid = pid;
data.tid = tid;
size_t sample_id_size = sample_id.CreateContent(attr, event_id);
SetSize(header_size() + sizeof(data) + Align(comm.size() + 1, 8) +
sample_id_size);
char* new_binary = new char[size()];
char* p = new_binary;
MoveToBinaryFormat(header, p);
this->data = reinterpret_cast<CommRecordDataType*>(p);
MoveToBinaryFormat(data, p);
this->comm = p;
strcpy(p, comm.c_str());
p += Align(comm.size() + 1, 8);
sample_id.WriteToBinaryFormat(p);
UpdateBinary(new_binary);
}
void CommRecord::DumpData(size_t indent) const {
PrintIndented(indent, "pid %u, tid %u, comm %s\n", data->pid, data->tid,
comm);
}
ExitOrForkRecord::ExitOrForkRecord(const perf_event_attr& attr, const char* p)
: Record(p) {
const char* end = p + size();
p += header_size();
data = reinterpret_cast<const ExitOrForkRecordDataType*>(p);
p += sizeof(*data);
CHECK_LE(p, end);
sample_id.ReadFromBinaryFormat(attr, p, end);
}
void ExitOrForkRecord::DumpData(size_t indent) const {
PrintIndented(indent, "pid %u, ppid %u, tid %u, ptid %u\n", data->pid,
data->ppid, data->tid, data->ptid);
}
ForkRecord::ForkRecord(const perf_event_attr& attr, uint32_t pid, uint32_t tid,
uint32_t ppid, uint32_t ptid, uint64_t event_id) {
SetTypeAndMisc(PERF_RECORD_FORK, 0);
ExitOrForkRecordDataType data;
data.pid = pid;
data.ppid = ppid;
data.tid = tid;
data.ptid = ptid;
data.time = 0;
size_t sample_id_size = sample_id.CreateContent(attr, event_id);
SetSize(header_size() + sizeof(data) + sample_id_size);
char* new_binary = new char[size()];
char* p = new_binary;
MoveToBinaryFormat(header, p);
this->data = reinterpret_cast<ExitOrForkRecordDataType*>(p);
MoveToBinaryFormat(data, p);
sample_id.WriteToBinaryFormat(p);
UpdateBinary(new_binary);
}
LostRecord::LostRecord(const perf_event_attr& attr, const char* p) : Record(p) {
const char* end = p + size();
p += header_size();
MoveFromBinaryFormat(id, p);
MoveFromBinaryFormat(lost, p);
CHECK_LE(p, end);
sample_id.ReadFromBinaryFormat(attr, p, end);
}
void LostRecord::DumpData(size_t indent) const {
PrintIndented(indent, "id %" PRIu64 ", lost %" PRIu64 "\n", id, lost);
}
SampleRecord::SampleRecord(const perf_event_attr& attr, const char* p)
: Record(p) {
const char* end = p + size();
p += header_size();
sample_type = attr.sample_type;
if (sample_type & PERF_SAMPLE_IDENTIFIER) {
MoveFromBinaryFormat(id_data, p);
}
if (sample_type & PERF_SAMPLE_IP) {
MoveFromBinaryFormat(ip_data, p);
}
if (sample_type & PERF_SAMPLE_TID) {
MoveFromBinaryFormat(tid_data, p);
}
if (sample_type & PERF_SAMPLE_TIME) {
MoveFromBinaryFormat(time_data, p);
}
if (sample_type & PERF_SAMPLE_ADDR) {
MoveFromBinaryFormat(addr_data, p);
}
if (sample_type & PERF_SAMPLE_ID) {
MoveFromBinaryFormat(id_data, p);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
MoveFromBinaryFormat(stream_id_data, p);
}
if (sample_type & PERF_SAMPLE_CPU) {
MoveFromBinaryFormat(cpu_data, p);
}
if (sample_type & PERF_SAMPLE_PERIOD) {
MoveFromBinaryFormat(period_data, p);
}
if (sample_type & PERF_SAMPLE_CALLCHAIN) {
MoveFromBinaryFormat(callchain_data.ip_nr, p);
callchain_data.ips = reinterpret_cast<const uint64_t*>(p);
p += callchain_data.ip_nr * sizeof(uint64_t);
}
if (sample_type & PERF_SAMPLE_RAW) {
MoveFromBinaryFormat(raw_data.size, p);
raw_data.data = p;
p += raw_data.size;
}
if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
MoveFromBinaryFormat(branch_stack_data.stack_nr, p);
branch_stack_data.stack = reinterpret_cast<const BranchStackItemType*>(p);
p += branch_stack_data.stack_nr * sizeof(BranchStackItemType);
}
if (sample_type & PERF_SAMPLE_REGS_USER) {
MoveFromBinaryFormat(regs_user_data.abi, p);
if (regs_user_data.abi == 0) {
regs_user_data.reg_mask = 0;
} else {
regs_user_data.reg_mask = attr.sample_regs_user;
size_t bit_nr = 0;
for (size_t i = 0; i < 64; ++i) {
if ((regs_user_data.reg_mask >> i) & 1) {
bit_nr++;
}
}
regs_user_data.reg_nr = bit_nr;
regs_user_data.regs = reinterpret_cast<const uint64_t*>(p);
p += bit_nr * sizeof(uint64_t);
}
}
if (sample_type & PERF_SAMPLE_STACK_USER) {
MoveFromBinaryFormat(stack_user_data.size, p);
if (stack_user_data.size == 0) {
stack_user_data.dyn_size = 0;
} else {
stack_user_data.data = p;
p += stack_user_data.size;
MoveFromBinaryFormat(stack_user_data.dyn_size, p);
}
}
// TODO: Add parsing of other PERF_SAMPLE_*.
CHECK_LE(p, end);
if (p < end) {
LOG(DEBUG) << "Record has " << end - p << " bytes left\n";
}
}
void SampleRecord::ReplaceRegAndStackWithCallChain(
const std::vector<uint64_t>& ips) {
uint32_t size_added_in_callchain = sizeof(uint64_t) * (ips.size() + 1);
uint32_t size_reduced_in_reg_stack =
regs_user_data.reg_nr * sizeof(uint64_t) + stack_user_data.size +
sizeof(uint64_t);
CHECK_LE(size_added_in_callchain, size_reduced_in_reg_stack);
uint32_t size_reduced = size_reduced_in_reg_stack - size_added_in_callchain;
SetSize(size() - size_reduced);
char* p = const_cast<char*>(binary_);
MoveToBinaryFormat(header, p);
p = const_cast<char*>(stack_user_data.data + stack_user_data.size +
sizeof(uint64_t)) -
(size_reduced_in_reg_stack - size_added_in_callchain);
stack_user_data.size = 0;
regs_user_data.abi = 0;
p -= sizeof(uint64_t);
*reinterpret_cast<uint64_t*>(p) = stack_user_data.size;
p -= sizeof(uint64_t);
*reinterpret_cast<uint64_t*>(p) = regs_user_data.abi;
if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
p -= branch_stack_data.stack_nr * sizeof(BranchStackItemType);
memmove(p, branch_stack_data.stack,
branch_stack_data.stack_nr * sizeof(BranchStackItemType));
p -= sizeof(uint64_t);
*reinterpret_cast<uint64_t*>(p) = branch_stack_data.stack_nr;
}
if (sample_type & PERF_SAMPLE_RAW) {
p -= raw_data.size;
memmove(p, raw_data.data, raw_data.size);
p -= sizeof(uint32_t);
*reinterpret_cast<uint32_t*>(p) = raw_data.size;
}
p -= ips.size() * sizeof(uint64_t);
memcpy(p, ips.data(), ips.size() * sizeof(uint64_t));
p -= sizeof(uint64_t);
*reinterpret_cast<uint64_t*>(p) = PERF_CONTEXT_USER;
p -= sizeof(uint64_t) * (callchain_data.ip_nr);
callchain_data.ips = reinterpret_cast<uint64_t*>(p);
callchain_data.ip_nr += ips.size() + 1;
p -= sizeof(uint64_t);
*reinterpret_cast<uint64_t*>(p) = callchain_data.ip_nr;
}
void SampleRecord::DumpData(size_t indent) const {
PrintIndented(indent, "sample_type: 0x%" PRIx64 "\n", sample_type);
if (sample_type & PERF_SAMPLE_IP) {
PrintIndented(indent, "ip %p\n", reinterpret_cast<void*>(ip_data.ip));
}
if (sample_type & PERF_SAMPLE_TID) {
PrintIndented(indent, "pid %u, tid %u\n", tid_data.pid, tid_data.tid);
}
if (sample_type & PERF_SAMPLE_TIME) {
PrintIndented(indent, "time %" PRId64 "\n", time_data.time);
}
if (sample_type & PERF_SAMPLE_ADDR) {
PrintIndented(indent, "addr %p\n", reinterpret_cast<void*>(addr_data.addr));
}
if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) {
PrintIndented(indent, "id %" PRId64 "\n", id_data.id);
}
if (sample_type & PERF_SAMPLE_STREAM_ID) {
PrintIndented(indent, "stream_id %" PRId64 "\n", stream_id_data.stream_id);
}
if (sample_type & PERF_SAMPLE_CPU) {
PrintIndented(indent, "cpu %u, res %u\n", cpu_data.cpu, cpu_data.res);
}
if (sample_type & PERF_SAMPLE_PERIOD) {
PrintIndented(indent, "period %" PRId64 "\n", period_data.period);
}
if (sample_type & PERF_SAMPLE_CALLCHAIN) {
PrintIndented(indent, "callchain nr=%" PRIu64 "\n", callchain_data.ip_nr);
for (uint64_t i = 0; i < callchain_data.ip_nr; ++i) {
PrintIndented(indent + 1, "0x%" PRIx64 "\n", callchain_data.ips[i]);
}
}
if (sample_type & PERF_SAMPLE_RAW) {
PrintIndented(indent, "raw size=%zu\n", raw_data.size);
const uint32_t* data = reinterpret_cast<const uint32_t*>(raw_data.data);
size_t size = raw_data.size / sizeof(uint32_t);
for (size_t i = 0; i < size; ++i) {
PrintIndented(indent + 1, "0x%08x (%zu)\n", data[i], data[i]);
}
}
if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
PrintIndented(indent, "branch_stack nr=%" PRIu64 "\n",
branch_stack_data.stack_nr);
for (uint64_t i = 0; i < branch_stack_data.stack_nr; ++i) {
auto& item = branch_stack_data.stack[i];
PrintIndented(indent + 1, "from 0x%" PRIx64 ", to 0x%" PRIx64
", flags 0x%" PRIx64 "\n",
item.from, item.to, item.flags);
}
}
if (sample_type & PERF_SAMPLE_REGS_USER) {
PrintIndented(indent, "user regs: abi=%" PRId64 "\n", regs_user_data.abi);
for (size_t i = 0, pos = 0; i < 64; ++i) {
if ((regs_user_data.reg_mask >> i) & 1) {
PrintIndented(
indent + 1, "reg (%s) 0x%016" PRIx64 "\n",
GetRegName(i, ScopedCurrentArch::GetCurrentArch()).c_str(),
regs_user_data.regs[pos++]);
}
}
}
if (sample_type & PERF_SAMPLE_STACK_USER) {
PrintIndented(indent, "user stack: size %zu dyn_size %" PRIu64 "\n",
stack_user_data.size, stack_user_data.dyn_size);
const uint64_t* p = reinterpret_cast<const uint64_t*>(stack_user_data.data);
const uint64_t* end = p + (stack_user_data.size / sizeof(uint64_t));
while (p < end) {
PrintIndented(indent + 1, "");
for (size_t i = 0; i < 4 && p < end; ++i, ++p) {
printf(" %016" PRIx64, *p);
}
printf("\n");
}
printf("\n");
}
}
uint64_t SampleRecord::Timestamp() const { return time_data.time; }
uint32_t SampleRecord::Cpu() const { return cpu_data.cpu; }
BuildIdRecord::BuildIdRecord(const char* p) : Record(p) {
const char* end = p + size();
p += header_size();
MoveFromBinaryFormat(pid, p);
build_id = BuildId(p, BUILD_ID_SIZE);
p += Align(build_id.Size(), 8);
filename = p;
p += Align(strlen(filename) + 1, 64);
CHECK_EQ(p, end);
}
void BuildIdRecord::DumpData(size_t indent) const {
PrintIndented(indent, "pid %u\n", pid);
PrintIndented(indent, "build_id %s\n", build_id.ToString().c_str());
PrintIndented(indent, "filename %s\n", filename);
}
BuildIdRecord::BuildIdRecord(bool in_kernel, pid_t pid, const BuildId& build_id,
const std::string& filename) {
SetTypeAndMisc(PERF_RECORD_BUILD_ID,
in_kernel ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER);
this->pid = pid;
this->build_id = build_id;
SetSize(header_size() + sizeof(pid) + Align(build_id.Size(), 8) +
Align(filename.size() + 1, 64));
char* new_binary = new char[size()];
char* p = new_binary;
MoveToBinaryFormat(header, p);
MoveToBinaryFormat(pid, p);
memcpy(p, build_id.Data(), build_id.Size());
p += Align(build_id.Size(), 8);
this->filename = p;
strcpy(p, filename.c_str());
UpdateBinary(new_binary);
}
KernelSymbolRecord::KernelSymbolRecord(const char* p) : Record(p) {
const char* end = p + size();
p += header_size();
MoveFromBinaryFormat(kallsyms_size, p);
kallsyms = p;
p += Align(kallsyms_size, 8);
CHECK_EQ(p, end);
}
void KernelSymbolRecord::DumpData(size_t indent) const {
PrintIndented(indent, "kallsyms: %s\n",
std::string(kallsyms, kallsyms + kallsyms_size).c_str());
}
KernelSymbolRecord::KernelSymbolRecord(const std::string& kallsyms) {
SetTypeAndMisc(SIMPLE_PERF_RECORD_KERNEL_SYMBOL, 0);
kallsyms_size = kallsyms.size();
SetSize(header_size() + 4 + Align(kallsyms.size(), 8));
char* new_binary = new char[size()];
char* p = new_binary;
MoveToBinaryFormat(header, p);
MoveToBinaryFormat(kallsyms_size, p);
this->kallsyms = p;
memcpy(p, kallsyms.data(), kallsyms_size);
UpdateBinary(new_binary);
}
DsoRecord::DsoRecord(const char* p) : Record(p) {
const char* end = p + size();
p += header_size();
MoveFromBinaryFormat(dso_type, p);
MoveFromBinaryFormat(dso_id, p);
MoveFromBinaryFormat(min_vaddr, p);
dso_name = p;
p += Align(strlen(dso_name) + 1, 8);
CHECK_EQ(p, end);
}
DsoRecord::DsoRecord(uint64_t dso_type, uint64_t dso_id,
const std::string& dso_name, uint64_t min_vaddr) {
SetTypeAndMisc(SIMPLE_PERF_RECORD_DSO, 0);
this->dso_type = dso_type;
this->dso_id = dso_id;
this->min_vaddr = min_vaddr;
SetSize(header_size() + 3 * sizeof(uint64_t) + Align(dso_name.size() + 1, 8));
char* new_binary = new char[size()];
char* p = new_binary;
MoveToBinaryFormat(header, p);
MoveToBinaryFormat(dso_type, p);
MoveToBinaryFormat(dso_id, p);
MoveToBinaryFormat(min_vaddr, p);
this->dso_name = p;
strcpy(p, dso_name.c_str());
UpdateBinary(new_binary);
}
void DsoRecord::DumpData(size_t indent) const {
PrintIndented(indent, "dso_type: %s(%" PRIu64 ")\n",
DsoTypeToString(static_cast<DsoType>(dso_type)), dso_type);
PrintIndented(indent, "dso_id: %" PRIu64 "\n", dso_id);
PrintIndented(indent, "min_vaddr: 0x%" PRIx64 "\n", min_vaddr);
PrintIndented(indent, "dso_name: %s\n", dso_name);
}
SymbolRecord::SymbolRecord(const char* p) : Record(p) {
const char* end = p + size();
p += header_size();
MoveFromBinaryFormat(addr, p);
MoveFromBinaryFormat(len, p);
MoveFromBinaryFormat(dso_id, p);
name = p;
p += Align(strlen(name) + 1, 8);
CHECK_EQ(p, end);
}
SymbolRecord::SymbolRecord(uint64_t addr, uint64_t len, const std::string& name,
uint64_t dso_id) {
SetTypeAndMisc(SIMPLE_PERF_RECORD_SYMBOL, 0);
this->addr = addr;
this->len = len;
this->dso_id = dso_id;
SetSize(header_size() + 3 * sizeof(uint64_t) + Align(name.size() + 1, 8));
char* new_binary = new char[size()];
char* p = new_binary;
MoveToBinaryFormat(header, p);
MoveToBinaryFormat(addr, p);
MoveToBinaryFormat(len, p);
MoveToBinaryFormat(dso_id, p);
this->name = p;
strcpy(p, name.c_str());
UpdateBinary(new_binary);
}
void SymbolRecord::DumpData(size_t indent) const {
PrintIndented(indent, "name: %s\n", name);
PrintIndented(indent, "addr: 0x%" PRIx64 "\n", addr);
PrintIndented(indent, "len: 0x%" PRIx64 "\n", len);
PrintIndented(indent, "dso_id: %" PRIu64 "\n", dso_id);
}
TracingDataRecord::TracingDataRecord(const char* p) : Record(p) {
const char* end = p + size();
p += header_size();
MoveFromBinaryFormat(data_size, p);
data = p;
p += Align(data_size, 64);
CHECK_EQ(p, end);
}
TracingDataRecord::TracingDataRecord(const std::vector<char>& tracing_data) {
SetTypeAndMisc(PERF_RECORD_TRACING_DATA, 0);
data_size = tracing_data.size();
SetSize(header_size() + sizeof(uint32_t) + Align(tracing_data.size(), 64));
char* new_binary = new char[size()];
char* p = new_binary;
MoveToBinaryFormat(header, p);
MoveToBinaryFormat(data_size, p);
data = p;
memcpy(p, tracing_data.data(), data_size);
UpdateBinary(new_binary);
}
void TracingDataRecord::DumpData(size_t indent) const {
Tracing tracing(std::vector<char>(data, data + data_size));
tracing.Dump(indent);
}
UnknownRecord::UnknownRecord(const char* p) : Record(p) {
p += header_size();
data = p;
}
void UnknownRecord::DumpData(size_t) const {}
std::unique_ptr<Record> ReadRecordFromBuffer(const perf_event_attr& attr,
uint32_t type, const char* p) {
switch (type) {
case PERF_RECORD_MMAP:
return std::unique_ptr<Record>(new MmapRecord(attr, p));
case PERF_RECORD_MMAP2:
return std::unique_ptr<Record>(new Mmap2Record(attr, p));
case PERF_RECORD_COMM:
return std::unique_ptr<Record>(new CommRecord(attr, p));
case PERF_RECORD_EXIT:
return std::unique_ptr<Record>(new ExitRecord(attr, p));
case PERF_RECORD_FORK:
return std::unique_ptr<Record>(new ForkRecord(attr, p));
case PERF_RECORD_LOST:
return std::unique_ptr<Record>(new LostRecord(attr, p));
case PERF_RECORD_SAMPLE:
return std::unique_ptr<Record>(new SampleRecord(attr, p));
case PERF_RECORD_TRACING_DATA:
return std::unique_ptr<Record>(new TracingDataRecord(p));
case SIMPLE_PERF_RECORD_KERNEL_SYMBOL:
return std::unique_ptr<Record>(new KernelSymbolRecord(p));
case SIMPLE_PERF_RECORD_DSO:
return std::unique_ptr<Record>(new DsoRecord(p));
case SIMPLE_PERF_RECORD_SYMBOL:
return std::unique_ptr<Record>(new SymbolRecord(p));
default:
return std::unique_ptr<Record>(new UnknownRecord(p));
}
}
std::unique_ptr<Record> ReadRecordFromOwnedBuffer(const perf_event_attr& attr,
uint32_t type,
const char* p) {
std::unique_ptr<Record> record = ReadRecordFromBuffer(attr, type, p);
if (record != nullptr) {
record->OwnBinary();
} else {
delete[] p;
}
return record;
}
std::vector<std::unique_ptr<Record>> ReadRecordsFromBuffer(
const perf_event_attr& attr, const char* buf, size_t buf_size) {
std::vector<std::unique_ptr<Record>> result;
const char* p = buf;
const char* end = buf + buf_size;
while (p < end) {
RecordHeader header(p);
CHECK_LE(p + header.size, end);
CHECK_NE(0u, header.size);
result.push_back(ReadRecordFromBuffer(attr, header.type, p));
p += header.size;
}
return result;
}
bool RecordCache::RecordWithSeq::IsHappensBefore(
const RecordWithSeq& other) const {
bool is_sample = (record->type() == PERF_RECORD_SAMPLE);
bool is_other_sample = (other.record->type() == PERF_RECORD_SAMPLE);
uint64_t time = record->Timestamp();
uint64_t other_time = other.record->Timestamp();
// The record with smaller time happens first.
if (time != other_time) {
return time < other_time;
}
// If happening at the same time, make non-sample records before sample
// records, because non-sample records may contain useful information to
// parse sample records.
if (is_sample != is_other_sample) {
return is_sample ? false : true;
}
// Otherwise, use the same order as they enter the cache.
return seq < other.seq;
}
bool RecordCache::RecordComparator::operator()(const RecordWithSeq& r1,
const RecordWithSeq& r2) {
return r2.IsHappensBefore(r1);
}
RecordCache::RecordCache(bool has_timestamp, size_t min_cache_size,
uint64_t min_time_diff_in_ns)
: has_timestamp_(has_timestamp),
min_cache_size_(min_cache_size),
min_time_diff_in_ns_(min_time_diff_in_ns),
last_time_(0),
cur_seq_(0),
queue_(RecordComparator()) {}
RecordCache::~RecordCache() { PopAll(); }
void RecordCache::Push(std::unique_ptr<Record> record) {
if (has_timestamp_) {
last_time_ = std::max(last_time_, record->Timestamp());
}
queue_.push(RecordWithSeq(cur_seq_++, record.release()));
}
void RecordCache::Push(std::vector<std::unique_ptr<Record>> records) {
for (auto& r : records) {
Push(std::move(r));
}
}
std::unique_ptr<Record> RecordCache::Pop() {
if (queue_.size() < min_cache_size_) {
return nullptr;
}
Record* r = queue_.top().record;
if (has_timestamp_) {
if (r->Timestamp() + min_time_diff_in_ns_ > last_time_) {
return nullptr;
}
}
queue_.pop();
return std::unique_ptr<Record>(r);
}
std::vector<std::unique_ptr<Record>> RecordCache::PopAll() {
std::vector<std::unique_ptr<Record>> result;
while (!queue_.empty()) {
result.emplace_back(queue_.top().record);
queue_.pop();
}
return result;
}
std::unique_ptr<Record> RecordCache::ForcedPop() {
if (queue_.empty()) {
return nullptr;
}
Record* r = queue_.top().record;
queue_.pop();
return std::unique_ptr<Record>(r);
}