blob: ef2639155fe232ad655179f24a203e1635ccae50 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SIMPLE_PERF_RECORD_H_
#define SIMPLE_PERF_RECORD_H_
#include <stdio.h>
#include <sys/types.h>
#include <memory>
#include <queue>
#include <string>
#include <vector>
#include <android-base/logging.h>
#include "build_id.h"
#include "perf_event.h"
struct KernelMmap;
struct ModuleMmap;
struct ThreadComm;
struct ThreadMmap;
enum user_record_type {
PERF_RECORD_USER_DEFINED_TYPE_START = 64,
PERF_RECORD_ATTR = 64,
PERF_RECORD_EVENT_TYPE,
PERF_RECORD_TRACING_DATA,
PERF_RECORD_BUILD_ID,
PERF_RECORD_FINISHED_ROUND,
SIMPLE_PERF_RECORD_TYPE_START = 32768,
SIMPLE_PERF_RECORD_KERNEL_SYMBOL,
SIMPLE_PERF_RECORD_DSO,
SIMPLE_PERF_RECORD_SYMBOL,
SIMPLE_PERF_RECORD_SPLIT,
SIMPLE_PERF_RECORD_SPLIT_END,
};
// perf_event_header uses u16 to store record size. However, that is not
// enough for storing records like KERNEL_SYMBOL or TRACING_DATA. So define
// a simpleperf_record_header struct to store record header for simpleperf
// defined records (type > SIMPLE_PERF_RECORD_TYPE_START).
struct simpleperf_record_header {
uint32_t type;
uint16_t size1;
uint16_t size0;
};
static_assert(
sizeof(simpleperf_record_header) == sizeof(perf_event_header),
"simpleperf_record_header should have the same size as perf_event_header");
struct PerfSampleIpType {
uint64_t ip;
};
struct PerfSampleTidType {
uint32_t pid, tid;
};
struct PerfSampleTimeType {
uint64_t time;
};
struct PerfSampleAddrType {
uint64_t addr;
};
struct PerfSampleIdType {
uint64_t id;
};
struct PerfSampleStreamIdType {
uint64_t stream_id;
};
struct PerfSampleCpuType {
uint32_t cpu, res;
};
struct PerfSamplePeriodType {
uint64_t period;
};
struct PerfSampleCallChainType {
uint64_t ip_nr;
const uint64_t* ips;
};
struct PerfSampleRawType {
uint32_t size;
const char* data;
};
struct BranchStackItemType {
uint64_t from;
uint64_t to;
uint64_t flags;
};
struct PerfSampleBranchStackType {
uint64_t stack_nr;
const BranchStackItemType* stack;
};
struct PerfSampleRegsUserType {
uint64_t abi;
uint64_t reg_mask;
uint64_t reg_nr;
const uint64_t* regs;
};
struct PerfSampleStackUserType {
uint64_t size;
const char* data;
uint64_t dyn_size;
};
struct RecordHeader {
public:
uint32_t type;
uint16_t misc;
uint32_t size;
RecordHeader() : type(0), misc(0), size(0) {}
explicit RecordHeader(const char* p) {
auto pheader = reinterpret_cast<const perf_event_header*>(p);
if (pheader->type < SIMPLE_PERF_RECORD_TYPE_START) {
type = pheader->type;
misc = pheader->misc;
size = pheader->size;
} else {
auto sheader = reinterpret_cast<const simpleperf_record_header*>(p);
type = sheader->type;
misc = 0;
size = (sheader->size1 << 16) | sheader->size0;
}
}
void MoveToBinaryFormat(char*& p) const {
if (type < SIMPLE_PERF_RECORD_TYPE_START) {
auto pheader = reinterpret_cast<perf_event_header*>(p);
pheader->type = type;
pheader->misc = misc;
CHECK_LT(size, 1u << 16);
pheader->size = static_cast<uint16_t>(size);
} else {
auto sheader = reinterpret_cast<simpleperf_record_header*>(p);
sheader->type = type;
CHECK_EQ(misc, 0u);
sheader->size1 = size >> 16;
sheader->size0 = size & 0xffff;
}
p += sizeof(perf_event_header);
}
};
// SampleId is optional at the end of a record in binary format. Its content is
// determined by sample_id_all and sample_type in perf_event_attr. To avoid the
// complexity of referring to perf_event_attr each time, we copy sample_id_all
// and sample_type inside the SampleId structure.
struct SampleId {
bool sample_id_all;
uint64_t sample_type;
PerfSampleTidType tid_data; // Valid if sample_id_all && PERF_SAMPLE_TID.
PerfSampleTimeType time_data; // Valid if sample_id_all && PERF_SAMPLE_TIME.
PerfSampleIdType id_data; // Valid if sample_id_all && PERF_SAMPLE_ID.
PerfSampleStreamIdType
stream_id_data; // Valid if sample_id_all && PERF_SAMPLE_STREAM_ID.
PerfSampleCpuType cpu_data; // Valid if sample_id_all && PERF_SAMPLE_CPU.
SampleId();
// Create the content of sample_id. It depends on the attr we use.
size_t CreateContent(const perf_event_attr& attr, uint64_t event_id);
// Parse sample_id from binary format in the buffer pointed by p.
void ReadFromBinaryFormat(const perf_event_attr& attr, const char* p,
const char* end);
// Write the binary format of sample_id to the buffer pointed by p.
void WriteToBinaryFormat(char*& p) const;
void Dump(size_t indent) const;
size_t Size() const;
};
// Usually one record contains the following three parts in order in binary
// format:
// RecordHeader (at the head of a record, containing type and size info)
// data depends on the record type
// SampleId (optional part at the end of a record)
// We hold the common parts (RecordHeader and SampleId) in the base class
// Record, and hold the type specific data part in classes derived from Record.
struct Record {
RecordHeader header;
SampleId sample_id;
Record() : binary_(nullptr), own_binary_(false) {}
explicit Record(const char* p) : header(p), binary_(p), own_binary_(false) {}
Record(Record&& other);
virtual ~Record() {
if (own_binary_) {
delete[] binary_;
}
}
void OwnBinary() { own_binary_ = true; }
uint32_t type() const { return header.type; }
uint16_t misc() const { return header.misc; }
uint32_t size() const { return header.size; }
static uint32_t header_size() { return sizeof(perf_event_header); }
bool InKernel() const {
return (header.misc & PERF_RECORD_MISC_CPUMODE_MASK) ==
PERF_RECORD_MISC_KERNEL;
}
void SetTypeAndMisc(uint32_t type, uint16_t misc) {
header.type = type;
header.misc = misc;
}
void SetSize(uint32_t size) { header.size = size; }
void Dump(size_t indent = 0) const;
const char* Binary() const { return binary_; }
virtual uint64_t Timestamp() const;
virtual uint32_t Cpu() const;
protected:
void UpdateBinary(const char* new_binary);
virtual void DumpData(size_t) const = 0;
const char* binary_;
bool own_binary_;
DISALLOW_COPY_AND_ASSIGN(Record);
};
struct MmapRecord : public Record {
struct MmapRecordDataType {
uint32_t pid, tid;
uint64_t addr;
uint64_t len;
uint64_t pgoff;
};
const MmapRecordDataType* data;
const char* filename;
MmapRecord(const perf_event_attr& attr, const char* p);
MmapRecord(const perf_event_attr& attr, bool in_kernel, uint32_t pid,
uint32_t tid, uint64_t addr, uint64_t len, uint64_t pgoff,
const std::string& filename, uint64_t event_id, uint64_t time = 0);
void SetDataAndFilename(const MmapRecordDataType& data,
const std::string& filename);
protected:
void DumpData(size_t indent) const override;
};
struct Mmap2Record : public Record {
struct Mmap2RecordDataType {
uint32_t pid, tid;
uint64_t addr;
uint64_t len;
uint64_t pgoff;
uint32_t maj;
uint32_t min;
uint64_t ino;
uint64_t ino_generation;
uint32_t prot, flags;
};
const Mmap2RecordDataType* data;
const char* filename;
Mmap2Record(const perf_event_attr& attr, const char* p);
void SetDataAndFilename(const Mmap2RecordDataType& data,
const std::string& filename);
protected:
void DumpData(size_t indent) const override;
};
struct CommRecord : public Record {
struct CommRecordDataType {
uint32_t pid, tid;
};
const CommRecordDataType* data;
const char* comm;
CommRecord(const perf_event_attr& attr, const char* p);
CommRecord(const perf_event_attr& attr, uint32_t pid, uint32_t tid,
const std::string& comm, uint64_t event_id);
protected:
void DumpData(size_t indent) const override;
};
struct ExitOrForkRecord : public Record {
struct ExitOrForkRecordDataType {
uint32_t pid, ppid;
uint32_t tid, ptid;
uint64_t time;
};
const ExitOrForkRecordDataType* data;
ExitOrForkRecord(const perf_event_attr& attr, const char* p);
ExitOrForkRecord() : data(nullptr) {}
protected:
void DumpData(size_t indent) const override;
};
struct ExitRecord : public ExitOrForkRecord {
ExitRecord(const perf_event_attr& attr, const char* p)
: ExitOrForkRecord(attr, p) {}
};
struct ForkRecord : public ExitOrForkRecord {
ForkRecord(const perf_event_attr& attr, const char* p)
: ExitOrForkRecord(attr, p) {}
ForkRecord(const perf_event_attr& attr, uint32_t pid, uint32_t tid,
uint32_t ppid, uint32_t ptid, uint64_t event_id);
};
struct LostRecord : public Record {
uint64_t id;
uint64_t lost;
LostRecord(const perf_event_attr& attr, const char* p);
protected:
void DumpData(size_t indent) const override;
};
struct SampleRecord : public Record {
uint64_t sample_type; // sample_type is a bit mask determining which fields
// below are valid.
PerfSampleIpType ip_data; // Valid if PERF_SAMPLE_IP.
PerfSampleTidType tid_data; // Valid if PERF_SAMPLE_TID.
PerfSampleTimeType time_data; // Valid if PERF_SAMPLE_TIME.
PerfSampleAddrType addr_data; // Valid if PERF_SAMPLE_ADDR.
PerfSampleIdType id_data; // Valid if PERF_SAMPLE_ID.
PerfSampleStreamIdType stream_id_data; // Valid if PERF_SAMPLE_STREAM_ID.
PerfSampleCpuType cpu_data; // Valid if PERF_SAMPLE_CPU.
PerfSamplePeriodType period_data; // Valid if PERF_SAMPLE_PERIOD.
PerfSampleCallChainType callchain_data; // Valid if PERF_SAMPLE_CALLCHAIN.
PerfSampleRawType raw_data; // Valid if PERF_SAMPLE_RAW.
PerfSampleBranchStackType
branch_stack_data; // Valid if PERF_SAMPLE_BRANCH_STACK.
PerfSampleRegsUserType regs_user_data; // Valid if PERF_SAMPLE_REGS_USER.
PerfSampleStackUserType stack_user_data; // Valid if PERF_SAMPLE_STACK_USER.
SampleRecord(const perf_event_attr& attr, const char* p);
void ReplaceRegAndStackWithCallChain(const std::vector<uint64_t>& ips);
uint64_t Timestamp() const override;
uint32_t Cpu() const override;
uint64_t GetValidStackSize() const {
// If stack_user_data.dyn_size == 0, it may be because the kernel misses
// the patch to update dyn_size, like in N9 (See b/22612370). So assume
// all stack data is valid if dyn_size == 0.
if (stack_user_data.dyn_size == 0) {
return stack_user_data.size;
}
return stack_user_data.dyn_size;
}
protected:
void DumpData(size_t indent) const override;
};
// BuildIdRecord is defined in user-space, stored in BuildId feature section in
// record file.
struct BuildIdRecord : public Record {
uint32_t pid;
BuildId build_id;
const char* filename;
explicit BuildIdRecord(const char* p);
BuildIdRecord(bool in_kernel, pid_t pid, const BuildId& build_id,
const std::string& filename);
protected:
void DumpData(size_t indent) const override;
};
struct KernelSymbolRecord : public Record {
uint32_t kallsyms_size;
const char* kallsyms;
explicit KernelSymbolRecord(const char* p);
explicit KernelSymbolRecord(const std::string& kallsyms);
protected:
void DumpData(size_t indent) const override;
};
struct DsoRecord : public Record {
uint64_t dso_type;
uint64_t dso_id;
uint64_t min_vaddr;
const char* dso_name;
explicit DsoRecord(const char* p);
DsoRecord(uint64_t dso_type, uint64_t dso_id, const std::string& dso_name,
uint64_t min_vaddr);
protected:
void DumpData(size_t indent) const override;
};
struct SymbolRecord : public Record {
uint64_t addr;
uint64_t len;
uint64_t dso_id;
const char* name;
explicit SymbolRecord(const char* p);
SymbolRecord(uint64_t addr, uint64_t len, const std::string& name,
uint64_t dso_id);
protected:
void DumpData(size_t indent) const override;
};
struct TracingDataRecord : public Record {
uint32_t data_size;
const char* data;
explicit TracingDataRecord(const char* p);
explicit TracingDataRecord(const std::vector<char>& tracing_data);
protected:
void DumpData(size_t indent) const override;
};
// UnknownRecord is used for unknown record types, it makes sure all unknown
// records are not changed when modifying perf.data.
struct UnknownRecord : public Record {
const char* data;
explicit UnknownRecord(const char* p);
protected:
void DumpData(size_t indent) const override;
};
// Read record from the buffer pointed by [p]. But the record doesn't own
// the buffer.
std::unique_ptr<Record> ReadRecordFromBuffer(const perf_event_attr& attr,
uint32_t type, const char* p);
// Read record from the buffer pointed by [p]. And the record owns the buffer.
std::unique_ptr<Record> ReadRecordFromOwnedBuffer(const perf_event_attr& attr,
uint32_t type, const char* p);
// Read records from the buffer pointed by [buf]. None of the records own
// the buffer.
std::vector<std::unique_ptr<Record>> ReadRecordsFromBuffer(
const perf_event_attr& attr, const char* buf, size_t buf_size);
// RecordCache is a cache used when receiving records from the kernel.
// It sorts received records based on type and timestamp, and pops records
// in sorted order. Records from the kernel need to be sorted because
// records may come from different cpus at the same time, and it is affected
// by the order in which we collect records from different cpus.
// RecordCache pushes records and pops sorted record online. It uses two checks
// to help ensure that records are popped in order. Each time we pop a record A,
// it is the earliest record among all records in the cache. In addition, we
// have checks for min_cache_size and min_time_diff. For min_cache_size check,
// we check if the cache size >= min_cache_size, which is based on the
// assumption that if we have received (min_cache_size - 1) records after
// record A, we are not likely to receive a record earlier than A. For
// min_time_diff check, we check if record A is generated min_time_diff ns
// earlier than the latest record, which is based on the assumption that if we
// have received a record for time t, we are not likely to receive a record for
// time (t - min_time_diff) or earlier.
class RecordCache {
public:
explicit RecordCache(bool has_timestamp, size_t min_cache_size = 1000u,
uint64_t min_time_diff_in_ns = 1000000u);
~RecordCache();
void Push(std::unique_ptr<Record> record);
void Push(std::vector<std::unique_ptr<Record>> records);
std::unique_ptr<Record> Pop();
std::vector<std::unique_ptr<Record>> PopAll();
std::unique_ptr<Record> ForcedPop();
private:
struct RecordWithSeq {
uint32_t seq;
Record* record;
RecordWithSeq(uint32_t seq, Record* record) : seq(seq), record(record) {}
bool IsHappensBefore(const RecordWithSeq& other) const;
};
struct RecordComparator {
bool operator()(const RecordWithSeq& r1, const RecordWithSeq& r2);
};
bool has_timestamp_;
size_t min_cache_size_;
uint64_t min_time_diff_in_ns_;
uint64_t last_time_;
uint32_t cur_seq_;
std::priority_queue<RecordWithSeq, std::vector<RecordWithSeq>,
RecordComparator> queue_;
};
#endif // SIMPLE_PERF_RECORD_H_