| /* |
| * Copyright (c) 2013 Clément Bœsch |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * 3D Lookup table filter |
| */ |
| |
| #include "libavutil/opt.h" |
| #include "libavutil/file.h" |
| #include "libavutil/intreadwrite.h" |
| #include "libavutil/avassert.h" |
| #include "libavutil/pixdesc.h" |
| #include "libavutil/avstring.h" |
| #include "avfilter.h" |
| #include "drawutils.h" |
| #include "dualinput.h" |
| #include "formats.h" |
| #include "internal.h" |
| #include "video.h" |
| |
| #define R 0 |
| #define G 1 |
| #define B 2 |
| #define A 3 |
| |
| enum interp_mode { |
| INTERPOLATE_NEAREST, |
| INTERPOLATE_TRILINEAR, |
| INTERPOLATE_TETRAHEDRAL, |
| NB_INTERP_MODE |
| }; |
| |
| struct rgbvec { |
| float r, g, b; |
| }; |
| |
| /* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT |
| * of 512x512 (64x64x64) */ |
| #define MAX_LEVEL 64 |
| |
| typedef struct LUT3DContext { |
| const AVClass *class; |
| int interpolation; ///<interp_mode |
| char *file; |
| uint8_t rgba_map[4]; |
| int step; |
| avfilter_action_func *interp; |
| struct rgbvec lut[MAX_LEVEL][MAX_LEVEL][MAX_LEVEL]; |
| int lutsize; |
| #if CONFIG_HALDCLUT_FILTER |
| uint8_t clut_rgba_map[4]; |
| int clut_step; |
| int clut_is16bit; |
| int clut_width; |
| FFDualInputContext dinput; |
| #endif |
| } LUT3DContext; |
| |
| typedef struct ThreadData { |
| AVFrame *in, *out; |
| } ThreadData; |
| |
| #define OFFSET(x) offsetof(LUT3DContext, x) |
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM |
| #define COMMON_OPTIONS \ |
| { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, FLAGS, "interp_mode" }, \ |
| { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ |
| { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ |
| { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ |
| { NULL } |
| |
| static inline float lerpf(float v0, float v1, float f) |
| { |
| return v0 + (v1 - v0) * f; |
| } |
| |
| static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f) |
| { |
| struct rgbvec v = { |
| lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f) |
| }; |
| return v; |
| } |
| |
| #define NEAR(x) ((int)((x) + .5)) |
| #define PREV(x) ((int)(x)) |
| #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1)) |
| |
| /** |
| * Get the nearest defined point |
| */ |
| static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d, |
| const struct rgbvec *s) |
| { |
| return lut3d->lut[NEAR(s->r)][NEAR(s->g)][NEAR(s->b)]; |
| } |
| |
| /** |
| * Interpolate using the 8 vertices of a cube |
| * @see https://en.wikipedia.org/wiki/Trilinear_interpolation |
| */ |
| static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d, |
| const struct rgbvec *s) |
| { |
| const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; |
| const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; |
| const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; |
| const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]]; |
| const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]]; |
| const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]]; |
| const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]]; |
| const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]]; |
| const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]]; |
| const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]]; |
| const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]]; |
| const struct rgbvec c00 = lerp(&c000, &c100, d.r); |
| const struct rgbvec c10 = lerp(&c010, &c110, d.r); |
| const struct rgbvec c01 = lerp(&c001, &c101, d.r); |
| const struct rgbvec c11 = lerp(&c011, &c111, d.r); |
| const struct rgbvec c0 = lerp(&c00, &c10, d.g); |
| const struct rgbvec c1 = lerp(&c01, &c11, d.g); |
| const struct rgbvec c = lerp(&c0, &c1, d.b); |
| return c; |
| } |
| |
| /** |
| * Tetrahedral interpolation. Based on code found in Truelight Software Library paper. |
| * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf |
| */ |
| static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, |
| const struct rgbvec *s) |
| { |
| const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; |
| const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; |
| const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; |
| const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]]; |
| const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]]; |
| struct rgbvec c; |
| if (d.r > d.g) { |
| if (d.g > d.b) { |
| const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]]; |
| const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]]; |
| c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r; |
| c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g; |
| c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b; |
| } else if (d.r > d.b) { |
| const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]]; |
| const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]]; |
| c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r; |
| c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g; |
| c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b; |
| } else { |
| const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]]; |
| const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]]; |
| c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r; |
| c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g; |
| c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b; |
| } |
| } else { |
| if (d.b > d.g) { |
| const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]]; |
| const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]]; |
| c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r; |
| c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g; |
| c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b; |
| } else if (d.b > d.r) { |
| const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]]; |
| const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]]; |
| c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r; |
| c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g; |
| c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b; |
| } else { |
| const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]]; |
| const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]]; |
| c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r; |
| c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g; |
| c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b; |
| } |
| } |
| return c; |
| } |
| |
| #define DEFINE_INTERP_FUNC(name, nbits) \ |
| static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ |
| { \ |
| int x, y; \ |
| const LUT3DContext *lut3d = ctx->priv; \ |
| const ThreadData *td = arg; \ |
| const AVFrame *in = td->in; \ |
| const AVFrame *out = td->out; \ |
| const int direct = out == in; \ |
| const int step = lut3d->step; \ |
| const uint8_t r = lut3d->rgba_map[R]; \ |
| const uint8_t g = lut3d->rgba_map[G]; \ |
| const uint8_t b = lut3d->rgba_map[B]; \ |
| const uint8_t a = lut3d->rgba_map[A]; \ |
| const int slice_start = (in->height * jobnr ) / nb_jobs; \ |
| const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ |
| uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ |
| const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ |
| const float scale = (1. / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \ |
| \ |
| for (y = slice_start; y < slice_end; y++) { \ |
| uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ |
| const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ |
| for (x = 0; x < in->width * step; x += step) { \ |
| const struct rgbvec scaled_rgb = {src[x + r] * scale, \ |
| src[x + g] * scale, \ |
| src[x + b] * scale}; \ |
| struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ |
| dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \ |
| dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \ |
| dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \ |
| if (!direct && step == 4) \ |
| dst[x + a] = src[x + a]; \ |
| } \ |
| dstrow += out->linesize[0]; \ |
| srcrow += in ->linesize[0]; \ |
| } \ |
| return 0; \ |
| } |
| |
| DEFINE_INTERP_FUNC(nearest, 8) |
| DEFINE_INTERP_FUNC(trilinear, 8) |
| DEFINE_INTERP_FUNC(tetrahedral, 8) |
| |
| DEFINE_INTERP_FUNC(nearest, 16) |
| DEFINE_INTERP_FUNC(trilinear, 16) |
| DEFINE_INTERP_FUNC(tetrahedral, 16) |
| |
| #define MAX_LINE_SIZE 512 |
| |
| static int skip_line(const char *p) |
| { |
| while (*p && av_isspace(*p)) |
| p++; |
| return !*p || *p == '#'; |
| } |
| |
| #define NEXT_LINE(loop_cond) do { \ |
| if (!fgets(line, sizeof(line), f)) { \ |
| av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \ |
| return AVERROR_INVALIDDATA; \ |
| } \ |
| } while (loop_cond) |
| |
| /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE |
| * directive; seems to be generated by Davinci */ |
| static int parse_dat(AVFilterContext *ctx, FILE *f) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| char line[MAX_LINE_SIZE]; |
| int i, j, k, size; |
| |
| lut3d->lutsize = size = 33; |
| |
| NEXT_LINE(skip_line(line)); |
| if (!strncmp(line, "3DLUTSIZE ", 10)) { |
| size = strtol(line + 10, NULL, 0); |
| if (size < 2 || size > MAX_LEVEL) { |
| av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n"); |
| return AVERROR(EINVAL); |
| } |
| lut3d->lutsize = size; |
| NEXT_LINE(skip_line(line)); |
| } |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| struct rgbvec *vec = &lut3d->lut[k][j][i]; |
| if (k != 0 || j != 0 || i != 0) |
| NEXT_LINE(skip_line(line)); |
| if (sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Iridas format */ |
| static int parse_cube(AVFilterContext *ctx, FILE *f) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| char line[MAX_LINE_SIZE]; |
| float min[3] = {0.0, 0.0, 0.0}; |
| float max[3] = {1.0, 1.0, 1.0}; |
| |
| while (fgets(line, sizeof(line), f)) { |
| if (!strncmp(line, "LUT_3D_SIZE ", 12)) { |
| int i, j, k; |
| const int size = strtol(line + 12, NULL, 0); |
| |
| if (size < 2 || size > MAX_LEVEL) { |
| av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n"); |
| return AVERROR(EINVAL); |
| } |
| lut3d->lutsize = size; |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| struct rgbvec *vec = &lut3d->lut[i][j][k]; |
| |
| do { |
| NEXT_LINE(0); |
| if (!strncmp(line, "DOMAIN_", 7)) { |
| float *vals = NULL; |
| if (!strncmp(line + 7, "MIN ", 4)) vals = min; |
| else if (!strncmp(line + 7, "MAX ", 4)) vals = max; |
| if (!vals) |
| return AVERROR_INVALIDDATA; |
| sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2); |
| av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n", |
| min[0], min[1], min[2], max[0], max[1], max[2]); |
| continue; |
| } |
| } while (skip_line(line)); |
| if (sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) |
| return AVERROR_INVALIDDATA; |
| vec->r *= max[0] - min[0]; |
| vec->g *= max[1] - min[1]; |
| vec->b *= max[2] - min[2]; |
| } |
| } |
| } |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| /* Assume 17x17x17 LUT with a 16-bit depth |
| * FIXME: it seems there are various 3dl formats */ |
| static int parse_3dl(AVFilterContext *ctx, FILE *f) |
| { |
| char line[MAX_LINE_SIZE]; |
| LUT3DContext *lut3d = ctx->priv; |
| int i, j, k; |
| const int size = 17; |
| const float scale = 16*16*16; |
| |
| lut3d->lutsize = size; |
| NEXT_LINE(skip_line(line)); |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| int r, g, b; |
| struct rgbvec *vec = &lut3d->lut[k][j][i]; |
| |
| NEXT_LINE(skip_line(line)); |
| if (sscanf(line, "%d %d %d", &r, &g, &b) != 3) |
| return AVERROR_INVALIDDATA; |
| vec->r = r / scale; |
| vec->g = g / scale; |
| vec->b = b / scale; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Pandora format */ |
| static int parse_m3d(AVFilterContext *ctx, FILE *f) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| float scale; |
| int i, j, k, size, in = -1, out = -1; |
| char line[MAX_LINE_SIZE]; |
| uint8_t rgb_map[3] = {0, 1, 2}; |
| |
| while (fgets(line, sizeof(line), f)) { |
| if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0); |
| else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0); |
| else if (!strncmp(line, "values", 6)) { |
| const char *p = line + 6; |
| #define SET_COLOR(id) do { \ |
| while (av_isspace(*p)) \ |
| p++; \ |
| switch (*p) { \ |
| case 'r': rgb_map[id] = 0; break; \ |
| case 'g': rgb_map[id] = 1; break; \ |
| case 'b': rgb_map[id] = 2; break; \ |
| } \ |
| while (*p && !av_isspace(*p)) \ |
| p++; \ |
| } while (0) |
| SET_COLOR(0); |
| SET_COLOR(1); |
| SET_COLOR(2); |
| break; |
| } |
| } |
| |
| if (in == -1 || out == -1) { |
| av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| if (in < 2 || out < 2 || |
| in > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL || |
| out > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL) { |
| av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out); |
| return AVERROR_INVALIDDATA; |
| } |
| for (size = 1; size*size*size < in; size++); |
| lut3d->lutsize = size; |
| scale = 1. / (out - 1); |
| |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| struct rgbvec *vec = &lut3d->lut[k][j][i]; |
| float val[3]; |
| |
| NEXT_LINE(0); |
| if (sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3) |
| return AVERROR_INVALIDDATA; |
| vec->r = val[rgb_map[0]] * scale; |
| vec->g = val[rgb_map[1]] * scale; |
| vec->b = val[rgb_map[2]] * scale; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static void set_identity_matrix(LUT3DContext *lut3d, int size) |
| { |
| int i, j, k; |
| const float c = 1. / (size - 1); |
| |
| lut3d->lutsize = size; |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| struct rgbvec *vec = &lut3d->lut[k][j][i]; |
| vec->r = k * c; |
| vec->g = j * c; |
| vec->b = i * c; |
| } |
| } |
| } |
| } |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| static const enum AVPixelFormat pix_fmts[] = { |
| AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, |
| AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, |
| AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, |
| AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR, |
| AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0, |
| AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, |
| AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, |
| AV_PIX_FMT_NONE |
| }; |
| AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); |
| if (!fmts_list) |
| return AVERROR(ENOMEM); |
| return ff_set_common_formats(ctx, fmts_list); |
| } |
| |
| static int config_input(AVFilterLink *inlink) |
| { |
| int is16bit = 0; |
| LUT3DContext *lut3d = inlink->dst->priv; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
| |
| switch (inlink->format) { |
| case AV_PIX_FMT_RGB48: |
| case AV_PIX_FMT_BGR48: |
| case AV_PIX_FMT_RGBA64: |
| case AV_PIX_FMT_BGRA64: |
| is16bit = 1; |
| } |
| |
| ff_fill_rgba_map(lut3d->rgba_map, inlink->format); |
| lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit); |
| |
| #define SET_FUNC(name) do { \ |
| if (is16bit) lut3d->interp = interp_16_##name; \ |
| else lut3d->interp = interp_8_##name; \ |
| } while (0) |
| |
| switch (lut3d->interpolation) { |
| case INTERPOLATE_NEAREST: SET_FUNC(nearest); break; |
| case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break; |
| case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break; |
| default: |
| av_assert0(0); |
| } |
| |
| return 0; |
| } |
| |
| static AVFrame *apply_lut(AVFilterLink *inlink, AVFrame *in) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| LUT3DContext *lut3d = ctx->priv; |
| AVFilterLink *outlink = inlink->dst->outputs[0]; |
| AVFrame *out; |
| ThreadData td; |
| |
| if (av_frame_is_writable(in)) { |
| out = in; |
| } else { |
| out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
| if (!out) { |
| av_frame_free(&in); |
| return NULL; |
| } |
| av_frame_copy_props(out, in); |
| } |
| |
| td.in = in; |
| td.out = out; |
| ctx->internal->execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ctx->graph->nb_threads)); |
| |
| if (out != in) |
| av_frame_free(&in); |
| |
| return out; |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
| { |
| AVFilterLink *outlink = inlink->dst->outputs[0]; |
| AVFrame *out = apply_lut(inlink, in); |
| if (!out) |
| return AVERROR(ENOMEM); |
| return ff_filter_frame(outlink, out); |
| } |
| |
| #if CONFIG_LUT3D_FILTER |
| static const AVOption lut3d_options[] = { |
| { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, |
| COMMON_OPTIONS |
| }; |
| |
| AVFILTER_DEFINE_CLASS(lut3d); |
| |
| static av_cold int lut3d_init(AVFilterContext *ctx) |
| { |
| int ret; |
| FILE *f; |
| const char *ext; |
| LUT3DContext *lut3d = ctx->priv; |
| |
| if (!lut3d->file) { |
| set_identity_matrix(lut3d, 32); |
| return 0; |
| } |
| |
| f = fopen(lut3d->file, "r"); |
| if (!f) { |
| ret = AVERROR(errno); |
| av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret)); |
| return ret; |
| } |
| |
| ext = strrchr(lut3d->file, '.'); |
| if (!ext) { |
| av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n"); |
| ret = AVERROR_INVALIDDATA; |
| goto end; |
| } |
| ext++; |
| |
| if (!av_strcasecmp(ext, "dat")) { |
| ret = parse_dat(ctx, f); |
| } else if (!av_strcasecmp(ext, "3dl")) { |
| ret = parse_3dl(ctx, f); |
| } else if (!av_strcasecmp(ext, "cube")) { |
| ret = parse_cube(ctx, f); |
| } else if (!av_strcasecmp(ext, "m3d")) { |
| ret = parse_m3d(ctx, f); |
| } else { |
| av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext); |
| ret = AVERROR(EINVAL); |
| } |
| |
| if (!ret && !lut3d->lutsize) { |
| av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n"); |
| ret = AVERROR_INVALIDDATA; |
| } |
| |
| end: |
| fclose(f); |
| return ret; |
| } |
| |
| static const AVFilterPad lut3d_inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .filter_frame = filter_frame, |
| .config_props = config_input, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad lut3d_outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_lut3d = { |
| .name = "lut3d", |
| .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."), |
| .priv_size = sizeof(LUT3DContext), |
| .init = lut3d_init, |
| .query_formats = query_formats, |
| .inputs = lut3d_inputs, |
| .outputs = lut3d_outputs, |
| .priv_class = &lut3d_class, |
| .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, |
| }; |
| #endif |
| |
| #if CONFIG_HALDCLUT_FILTER |
| |
| static void update_clut(LUT3DContext *lut3d, const AVFrame *frame) |
| { |
| const uint8_t *data = frame->data[0]; |
| const int linesize = frame->linesize[0]; |
| const int w = lut3d->clut_width; |
| const int step = lut3d->clut_step; |
| const uint8_t *rgba_map = lut3d->clut_rgba_map; |
| const int level = lut3d->lutsize; |
| |
| #define LOAD_CLUT(nbits) do { \ |
| int i, j, k, x = 0, y = 0; \ |
| \ |
| for (k = 0; k < level; k++) { \ |
| for (j = 0; j < level; j++) { \ |
| for (i = 0; i < level; i++) { \ |
| const uint##nbits##_t *src = (const uint##nbits##_t *) \ |
| (data + y*linesize + x*step); \ |
| struct rgbvec *vec = &lut3d->lut[i][j][k]; \ |
| vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \ |
| vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \ |
| vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \ |
| if (++x == w) { \ |
| x = 0; \ |
| y++; \ |
| } \ |
| } \ |
| } \ |
| } \ |
| } while (0) |
| |
| if (!lut3d->clut_is16bit) LOAD_CLUT(8); |
| else LOAD_CLUT(16); |
| } |
| |
| |
| static int config_output(AVFilterLink *outlink) |
| { |
| AVFilterContext *ctx = outlink->src; |
| LUT3DContext *lut3d = ctx->priv; |
| int ret; |
| |
| outlink->w = ctx->inputs[0]->w; |
| outlink->h = ctx->inputs[0]->h; |
| outlink->time_base = ctx->inputs[0]->time_base; |
| if ((ret = ff_dualinput_init(ctx, &lut3d->dinput)) < 0) |
| return ret; |
| return 0; |
| } |
| |
| static int filter_frame_hald(AVFilterLink *inlink, AVFrame *inpicref) |
| { |
| LUT3DContext *s = inlink->dst->priv; |
| return ff_dualinput_filter_frame(&s->dinput, inlink, inpicref); |
| } |
| |
| static int request_frame(AVFilterLink *outlink) |
| { |
| LUT3DContext *s = outlink->src->priv; |
| return ff_dualinput_request_frame(&s->dinput, outlink); |
| } |
| |
| static int config_clut(AVFilterLink *inlink) |
| { |
| int size, level, w, h; |
| AVFilterContext *ctx = inlink->dst; |
| LUT3DContext *lut3d = ctx->priv; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
| |
| av_assert0(desc); |
| |
| lut3d->clut_is16bit = 0; |
| switch (inlink->format) { |
| case AV_PIX_FMT_RGB48: |
| case AV_PIX_FMT_BGR48: |
| case AV_PIX_FMT_RGBA64: |
| case AV_PIX_FMT_BGRA64: |
| lut3d->clut_is16bit = 1; |
| } |
| |
| lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3; |
| ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format); |
| |
| if (inlink->w > inlink->h) |
| av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the " |
| "Hald CLUT will be ignored\n", inlink->w - inlink->h); |
| else if (inlink->w < inlink->h) |
| av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the " |
| "Hald CLUT will be ignored\n", inlink->h - inlink->w); |
| lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h); |
| |
| for (level = 1; level*level*level < w; level++); |
| size = level*level*level; |
| if (size != w) { |
| av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| av_assert0(w == h && w == size); |
| level *= level; |
| if (level > MAX_LEVEL) { |
| const int max_clut_level = sqrt(MAX_LEVEL); |
| const int max_clut_size = max_clut_level*max_clut_level*max_clut_level; |
| av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT " |
| "(maximum level is %d, or %dx%d CLUT)\n", |
| max_clut_level, max_clut_size, max_clut_size); |
| return AVERROR(EINVAL); |
| } |
| lut3d->lutsize = level; |
| |
| return 0; |
| } |
| |
| static AVFrame *update_apply_clut(AVFilterContext *ctx, AVFrame *main, |
| const AVFrame *second) |
| { |
| AVFilterLink *inlink = ctx->inputs[0]; |
| update_clut(ctx->priv, second); |
| return apply_lut(inlink, main); |
| } |
| |
| static av_cold int haldclut_init(AVFilterContext *ctx) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| lut3d->dinput.process = update_apply_clut; |
| return 0; |
| } |
| |
| static av_cold void haldclut_uninit(AVFilterContext *ctx) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| ff_dualinput_uninit(&lut3d->dinput); |
| } |
| |
| static const AVOption haldclut_options[] = { |
| { "shortest", "force termination when the shortest input terminates", OFFSET(dinput.shortest), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, |
| { "repeatlast", "continue applying the last clut after eos", OFFSET(dinput.repeatlast), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, FLAGS }, |
| COMMON_OPTIONS |
| }; |
| |
| AVFILTER_DEFINE_CLASS(haldclut); |
| |
| static const AVFilterPad haldclut_inputs[] = { |
| { |
| .name = "main", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .filter_frame = filter_frame_hald, |
| .config_props = config_input, |
| },{ |
| .name = "clut", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .filter_frame = filter_frame_hald, |
| .config_props = config_clut, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad haldclut_outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .request_frame = request_frame, |
| .config_props = config_output, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_haldclut = { |
| .name = "haldclut", |
| .description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."), |
| .priv_size = sizeof(LUT3DContext), |
| .init = haldclut_init, |
| .uninit = haldclut_uninit, |
| .query_formats = query_formats, |
| .inputs = haldclut_inputs, |
| .outputs = haldclut_outputs, |
| .priv_class = &haldclut_class, |
| .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, |
| }; |
| #endif |