blob: 024580975a656a51576c4aa31b2698c9f0901a26 [file] [log] [blame] [edit]
/*
* Copyright (C) 2015 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <asm/arch/clock.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/iomux.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/mx6-pins.h>
#include <asm/arch/sys_proto.h>
#include <asm/gpio.h>
#include <asm/imx-common/iomux-v3.h>
#include <asm/imx-common/boot_mode.h>
#include <asm/imx-common/mxc_i2c.h>
#include <asm/io.h>
#include <common.h>
#include <fsl_esdhc.h>
#include <i2c.h>
#include <linux/sizes.h>
#include <linux/fb.h>
#include <miiphy.h>
#include <mmc.h>
#include <mxsfb.h>
#include <netdev.h>
#include <power/pmic.h>
#include <power/pfuze100_pmic.h>
#include "../common/pfuze.h"
#include <usb.h>
#include <usb/ehci-fsl.h>
DECLARE_GLOBAL_DATA_PTR;
#define UART_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define USDHC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_22K_UP | PAD_CTL_SPEED_LOW | \
PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define USDHC_PAD_CTRL_WP (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_DOWN | PAD_CTL_SPEED_LOW | \
PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \
PAD_CTL_SPEED_HIGH | \
PAD_CTL_DSE_48ohm | PAD_CTL_SRE_FAST)
#define ENET_CLK_PAD_CTRL (PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_120ohm | PAD_CTL_SRE_FAST)
#define ENET_RX_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_SPEED_HIGH | PAD_CTL_SRE_FAST)
#define I2C_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_HYS | \
PAD_CTL_ODE)
#define LCD_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \
PAD_CTL_PKE | PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm)
#define GPMI_PAD_CTRL0 (PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_100K_UP)
#define GPMI_PAD_CTRL1 (PAD_CTL_DSE_40ohm | PAD_CTL_SPEED_MED | \
PAD_CTL_SRE_FAST)
#define GPMI_PAD_CTRL2 (GPMI_PAD_CTRL0 | GPMI_PAD_CTRL1)
#define WEIM_NOR_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#define SPI_PAD_CTRL (PAD_CTL_HYS | \
PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#define OTG_ID_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_47K_UP | PAD_CTL_SPEED_LOW | \
PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#ifdef CONFIG_SYS_I2C_MXC
#define PC MUX_PAD_CTRL(I2C_PAD_CTRL)
/* I2C1 for PMIC and EEPROM */
struct i2c_pads_info i2c_pad_info1 = {
.scl = {
/* conflict with usb_otg2_pwr */
.i2c_mode = MX6_PAD_GPIO1_IO02__I2C1_SCL | PC,
.gpio_mode = MX6_PAD_GPIO1_IO02__GPIO1_IO02 | PC,
.gp = IMX_GPIO_NR(1, 2),
},
.sda = {
/* conflict with usb_otg2_oc */
.i2c_mode = MX6_PAD_GPIO1_IO03__I2C1_SDA | PC,
.gpio_mode = MX6_PAD_GPIO1_IO03__GPIO1_IO03 | PC,
.gp = IMX_GPIO_NR(1, 3),
},
};
#endif
int dram_init(void)
{
gd->ram_size = PHYS_SDRAM_SIZE;
return 0;
}
static iomux_v3_cfg_t const uart1_pads[] = {
MX6_PAD_UART1_TX_DATA__UART1_DCE_TX | MUX_PAD_CTRL(UART_PAD_CTRL),
MX6_PAD_UART1_RX_DATA__UART1_DCE_RX | MUX_PAD_CTRL(UART_PAD_CTRL),
};
static iomux_v3_cfg_t const usdhc1_pads[] = {
MX6_PAD_SD1_CLK__USDHC1_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_CMD__USDHC1_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DATA0__USDHC1_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DATA1__USDHC1_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DATA2__USDHC1_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DATA3__USDHC1_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
#if !defined(CONFIG_SYS_USE_NAND)
MX6_PAD_NAND_READY_B__USDHC1_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_CE0_B__USDHC1_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_CE1_B__USDHC1_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_CLE__USDHC1_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
#endif
MX6_PAD_CSI_DATA04__USDHC1_WP | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/* VSELECT */
MX6_PAD_GPIO1_IO05__USDHC1_VSELECT | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/* CD */
MX6_PAD_CSI_DATA05__GPIO4_IO26 | MUX_PAD_CTRL(NO_PAD_CTRL),
/* RST_B */
MX6_PAD_NAND_WP_B__GPIO4_IO11 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
#if !defined(CONFIG_SYS_USE_NAND)
#ifdef CONFIG_MX6UL_LPDDR2_ARM2_USDHC2_REWORK
static iomux_v3_cfg_t const usdhc2_pads[] = {
MX6_PAD_NAND_RE_B__USDHC2_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_WE_B__USDHC2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA00__USDHC2_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA01__USDHC2_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA02__USDHC2_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA03__USDHC2_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_UART1_CTS_B__USDHC2_WP | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/* VSELECT */
MX6_PAD_GPIO1_IO08__USDHC2_VSELECT | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/* CD */
MX6_PAD_UART1_RTS_B__GPIO1_IO19 | MUX_PAD_CTRL(NO_PAD_CTRL),
/* RST_B */
MX6_PAD_NAND_ALE__GPIO4_IO10 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
#else
static iomux_v3_cfg_t const usdhc2_emmc_pads[] = {
MX6_PAD_NAND_RE_B__USDHC2_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_WE_B__USDHC2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA00__USDHC2_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA01__USDHC2_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA02__USDHC2_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA03__USDHC2_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA04__USDHC2_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA05__USDHC2_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA06__USDHC2_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA07__USDHC2_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/* Default NO WP for emmc, since we use pull down */
MX6_PAD_UART1_CTS_B__USDHC2_WP | MUX_PAD_CTRL(USDHC_PAD_CTRL_WP),
/* RST_B */
MX6_PAD_NAND_ALE__GPIO4_IO10 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
#endif
#endif
#ifdef CONFIG_SYS_USE_NAND
static iomux_v3_cfg_t const nand_pads[] = {
MX6_PAD_NAND_DATA00__RAWNAND_DATA00 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA01__RAWNAND_DATA01 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA02__RAWNAND_DATA02 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA03__RAWNAND_DATA03 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA04__RAWNAND_DATA04 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA05__RAWNAND_DATA05 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA06__RAWNAND_DATA06 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA07__RAWNAND_DATA07 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_CLE__RAWNAND_CLE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_ALE__RAWNAND_ALE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_CE0_B__RAWNAND_CE0_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_CE1_B__RAWNAND_CE1_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_CSI_MCLK__RAWNAND_CE2_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_CSI_PIXCLK__RAWNAND_CE3_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_RE_B__RAWNAND_RE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_WE_B__RAWNAND_WE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_WP_B__RAWNAND_WP_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_READY_B__RAWNAND_READY_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DQS__RAWNAND_DQS | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
};
static void setup_gpmi_nand(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* config gpmi nand iomux */
imx_iomux_v3_setup_multiple_pads(nand_pads, ARRAY_SIZE(nand_pads));
clrbits_le32(&mxc_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
/*
* config gpmi and bch clock to 100 MHz
* bch/gpmi select PLL2 PFD2 400M
* 100M = 400M / 4
*/
clrbits_le32(&mxc_ccm->cscmr1,
MXC_CCM_CSCMR1_BCH_CLK_SEL |
MXC_CCM_CSCMR1_GPMI_CLK_SEL);
clrsetbits_le32(&mxc_ccm->cscdr1,
MXC_CCM_CSCDR1_BCH_PODF_MASK |
MXC_CCM_CSCDR1_GPMI_PODF_MASK,
(3 << MXC_CCM_CSCDR1_BCH_PODF_OFFSET) |
(3 << MXC_CCM_CSCDR1_GPMI_PODF_OFFSET));
/* enable gpmi and bch clock gating */
setbits_le32(&mxc_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
/* enable apbh clock gating */
setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK);
}
#endif
#ifdef CONFIG_SYS_USE_SPINOR
/* pin conflicts with eim nor */
static iomux_v3_cfg_t const ecspi2_pads[] = {
MX6_PAD_CSI_DATA02__ECSPI2_MOSI | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_CSI_DATA00__ECSPI2_SCLK | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_CSI_DATA03__ECSPI2_MISO | MUX_PAD_CTRL(SPI_PAD_CTRL),
/* CS Pin */
MX6_PAD_CSI_DATA01__GPIO4_IO22 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
static void setup_spinor(void)
{
imx_iomux_v3_setup_multiple_pads(ecspi1_pads, ARRAY_SIZE(ecspi1_pads));
gpio_direction_output(IMX_GPIO_NR(4, 22), 0);
}
int board_spi_cs_gpio(unsigned bus, unsigned cs)
{
return (bus == 1 && cs == 0) ? (IMX_GPIO_NR(4, 22)) : -1;
}
#endif
#ifdef CONFIG_SYS_USE_EIMNOR
/* pin conflicts with ECSIP2, USDHC1, USDCH2, NAND, SIM, ENET2 */
static iomux_v3_cfg_t const eimnor_pads[] = {
MX6_PAD_NAND_CLE__EIM_ADDR16 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_ALE__EIM_ADDR17 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_CE1_B__EIM_ADDR18 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_SD1_CMD__EIM_ADDR19 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_SD1_CLK__EIM_ADDR20 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_SD1_DATA0__EIM_ADDR21 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_SD1_DATA1__EIM_ADDR22 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_SD1_DATA2__EIM_ADDR23 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_SD1_DATA3__EIM_ADDR24 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_ENET2_RX_ER__EIM_ADDR25 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_PIXCLK__EIM_OE | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_VSYNC__EIM_RW | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_HSYNC__EIM_LBA_B | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_DATA00__EIM_AD00 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_DATA01__EIM_AD01 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_DATA02__EIM_AD02 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_DATA03__EIM_AD03 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_DATA04__EIM_AD04 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_DATA05__EIM_AD05 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_DATA06__EIM_AD06 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_DATA07__EIM_AD07 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA00__EIM_AD08 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA01__EIM_AD09 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA02__EIM_AD10 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA03__EIM_AD11 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA04__EIM_AD12 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA05__EIM_AD13 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA06__EIM_AD14 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA07__EIM_AD15 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_CSI_MCLK__EIM_CS0_B | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_WP_B__EIM_BCLK | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DQS__EIM_WAIT | MUX_PAD_CTRL(NO_PAD_CTRL),
};
static void eimnor_cs_setup(void)
{
writel(0x00000120, WEIM_BASE_ADDR + 0x090);
writel(0x00610089, WEIM_BASE_ADDR + 0x000);
writel(0x00000001, WEIM_BASE_ADDR + 0x004);
writel(0x1c022000, WEIM_BASE_ADDR + 0x008);
writel(0x00000000, WEIM_BASE_ADDR + 0x00c);
writel(0x1404a38e, WEIM_BASE_ADDR + 0x010);
}
static void setup_eimnor(void)
{
imx_iomux_v3_setup_multiple_pads(eimnor_pads, ARRAY_SIZE(eimnor_pads));
eimnor_cs_setup();
}
#endif
#ifdef CONFIG_FEC_MXC
/*
* pin conflicts for fec1 and fec2, GPIO1_IO06 and GPIO1_IO07 can only
* be used for ENET1 or ENET2, cannot be used for both.
*/
static iomux_v3_cfg_t const fec2_pads[] = {
MX6_PAD_GPIO1_IO06__ENET2_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_GPIO1_IO07__ENET2_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_TX_DATA0__ENET2_TDATA00 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_TX_DATA1__ENET2_TDATA01 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_TX_EN__ENET2_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_TX_CLK__ENET2_REF_CLK2 | MUX_PAD_CTRL(ENET_CLK_PAD_CTRL),
MX6_PAD_ENET2_RX_DATA0__ENET2_RDATA00 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_RX_DATA1__ENET2_RDATA01 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_RX_ER__ENET2_RX_ER | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_RX_EN__ENET2_RX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
/*
* ALT5 mode is only valid when TAMPER pin is used for GPIO.
* This depends on FUSE settings, TAMPER_PIN_DISABLE[1:0].
*
* ENET2_RST
*/
MX6_PAD_SNVS_TAMPER4__GPIO5_IO04 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
/* Conflict with UART1 */
static iomux_v3_cfg_t const fec1_pads[] = {
MX6_PAD_GPIO1_IO06__ENET1_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_GPIO1_IO07__ENET1_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_TX_DATA0__ENET1_TDATA00 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_TX_DATA1__ENET1_TDATA01 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_UART2_TX_DATA__ENET1_TDATA02 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_UART2_RX_DATA__ENET1_TDATA03 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_TX_CLK__ENET1_TX_CLK | MUX_PAD_CTRL(ENET_CLK_PAD_CTRL),
MX6_PAD_ENET1_TX_EN__ENET1_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_RX_DATA0__ENET1_RDATA00 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_RX_DATA1__ENET1_RDATA01 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_UART1_TX_DATA__ENET1_RDATA02 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_UART1_RX_DATA__ENET1_RDATA03 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_RX_EN__ENET1_RX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_RX_ER__ENET1_RX_ER | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_UART1_CTS_B__ENET1_RX_CLK | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_UART2_RTS_B__ENET1_COL | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_UART2_CTS_B__ENET1_CRS | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_SNVS_TAMPER2__GPIO5_IO02 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
static void setup_iomux_fec(int fec_id)
{
if (fec_id == 0) {
imx_iomux_v3_setup_multiple_pads(fec1_pads,
ARRAY_SIZE(fec1_pads));
gpio_direction_output(IMX_GPIO_NR(5, 4), 0);
udelay(50);
gpio_direction_output(IMX_GPIO_NR(5, 4), 1);
} else {
imx_iomux_v3_setup_multiple_pads(fec2_pads,
ARRAY_SIZE(fec2_pads));
gpio_direction_output(IMX_GPIO_NR(5, 2), 0);
udelay(50);
gpio_direction_output(IMX_GPIO_NR(5, 2), 1);
}
}
#endif
static void setup_iomux_uart(void)
{
imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads));
}
#ifdef CONFIG_SYS_USE_QSPI
#define QSPI_PAD_CTRL1 \
(PAD_CTL_SRE_FAST | PAD_CTL_SPEED_MED | \
PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_47K_UP | PAD_CTL_DSE_120ohm)
static iomux_v3_cfg_t const quadspi_pads[] = {
MX6_PAD_NAND_WP_B__QSPI_A_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_READY_B__QSPI_A_DATA00 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_CE0_B__QSPI_A_DATA01 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_CE1_B__QSPI_A_DATA02 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_CLE__QSPI_A_DATA03 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DQS__QSPI_A_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA07__QSPI_A_SS1_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_RE_B__QSPI_B_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_WE_B__QSPI_B_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA00__QSPI_B_SS1_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA02__QSPI_B_DATA00 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA03__QSPI_B_DATA01 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA04__QSPI_B_DATA02 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA05__QSPI_B_DATA03 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
};
int board_qspi_init(void)
{
/* Set the iomux */
imx_iomux_v3_setup_multiple_pads(quadspi_pads,
ARRAY_SIZE(quadspi_pads));
/* Set the clock */
enable_qspi_clk(0);
return 0;
}
#endif
#ifdef CONFIG_FSL_ESDHC
#if !defined(CONFIG_SYS_USE_NAND)
static struct fsl_esdhc_cfg usdhc_cfg[2] = {
{USDHC1_BASE_ADDR, 0, 1},
{USDHC2_BASE_ADDR, 0, 8},
};
#else
static struct fsl_esdhc_cfg usdhc_cfg[1] = {
{USDHC1_BASE_ADDR, 0, 4},
};
#endif
#define USDHC1_CD_GPIO IMX_GPIO_NR(4, 26)
#define USDHC1_PWR_GPIO IMX_GPIO_NR(4, 11)
#define USDHC1_VSELECT IMX_GPIO_NR(1, 5)
#define USDHC2_CD_GPIO IMX_GPIO_NR(1, 19)
#define USDHC2_PWR_GPIO IMX_GPIO_NR(4, 10)
int mmc_get_env_devno(void)
{
u32 soc_sbmr = readl(SRC_BASE_ADDR + 0x4);
int dev_no;
u32 bootsel;
bootsel = (soc_sbmr & 0x000000FF) >> 6;
/* If not boot from sd/mmc, use default value */
if (bootsel != 1)
return CONFIG_SYS_MMC_ENV_DEV;
/* BOOT_CFG2[3] and BOOT_CFG2[4] */
dev_no = (soc_sbmr & 0x00001800) >> 11;
return dev_no;
}
int mmc_map_to_kernel_blk(int dev_no)
{
return dev_no;
}
int board_mmc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
int ret = 0;
switch (cfg->esdhc_base) {
case USDHC1_BASE_ADDR:
ret = !gpio_get_value(USDHC1_CD_GPIO);
break;
#if !defined(CONFIG_SYS_USE_NAND)
case USDHC2_BASE_ADDR:
#ifdef CONFIG_MX6UL_LPDDR2_ARM2_USDHC2_REWORK
ret = !gpio_get_value(USDHC2_CD_GPIO);
#else
ret = 1;
#endif
break;
#endif
}
return ret;
}
int board_mmc_init(bd_t *bis)
{
int i;
/*
* According to the board_mmc_init() the following map is done:
* (U-boot device node) (Physical Port)
* mmc0 USDHC1
* mmc1 USDHC2
*/
for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) {
switch (i) {
case 0:
imx_iomux_v3_setup_multiple_pads(
usdhc1_pads, ARRAY_SIZE(usdhc1_pads));
gpio_direction_input(USDHC1_CD_GPIO);
usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
gpio_direction_output(USDHC1_PWR_GPIO, 1);
break;
#if !defined(CONFIG_SYS_USE_NAND)
case 1:
#ifdef CONFIG_MX6UL_LPDDR2_ARM2_USDHC2_REWORK
imx_iomux_v3_setup_multiple_pads(
usdhc2_pads, ARRAY_SIZE(usdhc2_pads));
gpio_direction_input(USDHC2_CD_GPIO);
gpio_direction_output(USDHC2_PWR_GPIO, 1);
usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
#else
imx_iomux_v3_setup_multiple_pads(
usdhc2_emmc_pads, ARRAY_SIZE(usdhc2_emmc_pads));
gpio_direction_output(USDHC2_PWR_GPIO, 1);
usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
#endif
break;
#endif
default:
printf("Warning: you configured more USDHC controllers (%d)"
" than supported by the board\n", i + 1);
return 0;
}
if (fsl_esdhc_initialize(bis, &usdhc_cfg[i]))
printf("Warning: failed to initialize mmc dev %d\n", i);
}
return 0;
}
int check_mmc_autodetect(void)
{
char *autodetect_str = getenv("mmcautodetect");
if ((autodetect_str != NULL) && (strcmp(autodetect_str, "yes") == 0))
return 1;
return 0;
}
void board_late_mmc_init(void)
{
char cmd[32];
char mmcblk[32];
u32 dev_no = mmc_get_env_devno();
if (!check_mmc_autodetect())
return;
setenv_ulong("mmcdev", dev_no);
/* Set mmcblk env */
sprintf(mmcblk, "/dev/mmcblk%dp2 rootwait rw",
mmc_map_to_kernel_blk(dev_no));
setenv("mmcroot", mmcblk);
sprintf(cmd, "mmc dev %d", dev_no);
run_command(cmd, 0);
}
#endif
#ifdef CONFIG_VIDEO_MXS
static iomux_v3_cfg_t const lcd_pads[] = {
MX6_PAD_LCD_CLK__LCDIF_CLK | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_ENABLE__LCDIF_ENABLE | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_HSYNC__LCDIF_HSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_VSYNC__LCDIF_VSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA00__LCDIF_DATA00 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA01__LCDIF_DATA01 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA02__LCDIF_DATA02 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA03__LCDIF_DATA03 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA04__LCDIF_DATA04 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA05__LCDIF_DATA05 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA06__LCDIF_DATA06 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA07__LCDIF_DATA07 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA08__LCDIF_DATA08 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA09__LCDIF_DATA09 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA10__LCDIF_DATA10 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA11__LCDIF_DATA11 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA12__LCDIF_DATA12 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA13__LCDIF_DATA13 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA14__LCDIF_DATA14 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA15__LCDIF_DATA15 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA16__LCDIF_DATA16 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA17__LCDIF_DATA17 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA18__LCDIF_DATA18 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA19__LCDIF_DATA19 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA20__LCDIF_DATA20 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA21__LCDIF_DATA21 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA22__LCDIF_DATA22 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_DATA23__LCDIF_DATA23 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6_PAD_LCD_RESET__GPIO3_IO04 | MUX_PAD_CTRL(NO_PAD_CTRL),
/*
* PWM1, pin conflicts with ENET1_RX_DATA0
* Use GPIO for Brightness adjustment, duty cycle = period.
*/
MX6_PAD_NAND_DQS__GPIO4_IO16 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
struct lcd_panel_info_t {
unsigned int lcdif_base_addr;
int depth;
void (*enable)(struct lcd_panel_info_t const *dev);
struct fb_videomode mode;
};
void do_enable_parallel_lcd(struct lcd_panel_info_t const *dev)
{
enable_lcdif_clock(dev->lcdif_base_addr);
imx_iomux_v3_setup_multiple_pads(lcd_pads, ARRAY_SIZE(lcd_pads));
/* Power up the LCD */
gpio_direction_output(IMX_GPIO_NR(3, 4) , 1);
/* Set Brightness to high */
gpio_direction_output(IMX_GPIO_NR(4, 16) , 1);
}
static struct lcd_panel_info_t const displays[] = {{
.lcdif_base_addr = LCDIF1_BASE_ADDR,
.depth = 24,
.enable = do_enable_parallel_lcd,
.mode = {
.name = "MCIMX28LCD",
.xres = 800,
.yres = 480,
.pixclock = 29850,
.left_margin = 89,
.right_margin = 164,
.upper_margin = 23,
.lower_margin = 10,
.hsync_len = 10,
.vsync_len = 10,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
} } };
int board_video_skip(void)
{
int i;
int ret;
char const *panel = getenv("panel");
if (!panel) {
panel = displays[0].mode.name;
printf("No panel detected: default to %s\n", panel);
i = 0;
} else {
for (i = 0; i < ARRAY_SIZE(displays); i++) {
if (!strcmp(panel, displays[i].mode.name))
break;
}
}
if (i < ARRAY_SIZE(displays)) {
ret = mxs_lcd_panel_setup(displays[i].mode, displays[i].depth,
displays[i].lcdif_base_addr);
if (!ret) {
if (displays[i].enable)
displays[i].enable(displays+i);
printf("Display: %s (%ux%u)\n",
displays[i].mode.name,
displays[i].mode.xres,
displays[i].mode.yres);
} else
printf("LCD %s cannot be configured: %d\n",
displays[i].mode.name, ret);
} else {
printf("unsupported panel %s\n", panel);
return -EINVAL;
}
return 0;
}
#endif
#ifdef CONFIG_FEC_MXC
int board_eth_init(bd_t *bis)
{
int ret;
setup_iomux_fec(CONFIG_FEC_ENET_DEV);
ret = fecmxc_initialize_multi(bis, CONFIG_FEC_ENET_DEV,
CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
if (ret)
printf("FEC%d MXC: %s:failed\n", CONFIG_FEC_ENET_DEV, __func__);
return 0;
}
static int setup_fec(int fec_id)
{
struct iomuxc_gpr_base_regs *const iomuxc_gpr_regs
= (struct iomuxc_gpr_base_regs *)IOMUXC_GPR_BASE_ADDR;
int ret;
if (1 == fec_id) {
/*
* Use 50M anatop loopback REF_CLK2 for ENET2,
* clear gpr1[14], set gpr1[18]
*/
clrsetbits_le32(&iomuxc_gpr_regs->gpr[1], IOMUX_GPR1_FEC2_MASK,
IOMUX_GPR1_FEC2_CLOCK_MUX1_SEL_MASK);
ret = enable_fec_anatop_clock(fec_id, ENET_50MHZ);
if (ret)
return ret;
} else {
/* clk from phy, set gpr1[13], clear gpr1[17]*/
clrsetbits_le32(&iomuxc_gpr_regs->gpr[1], IOMUX_GPR1_FEC1_MASK,
IOMUX_GPR1_FEC1_CLOCK_MUX2_SEL_MASK);
}
enable_enet_clk(1);
return 0;
}
int board_phy_config(struct phy_device *phydev)
{
if (CONFIG_FEC_ENET_DEV == 1) {
phy_write(phydev, MDIO_DEVAD_NONE, 0x16, 0x202);
phy_write(phydev, MDIO_DEVAD_NONE, 0x1f, 0x8190);
} else if (CONFIG_FEC_ENET_DEV == 0) {
phy_write(phydev, MDIO_DEVAD_NONE, 0x16, 0x201);
phy_write(phydev, MDIO_DEVAD_NONE, 0x1f, 0x8110);
}
if (phydev->drv->config)
phydev->drv->config(phydev);
return 0;
}
#endif
#ifdef CONFIG_POWER
#define I2C_PMIC 0
static struct pmic *pfuze;
int power_init_board(void)
{
int ret;
u32 rev_id, value;
ret = power_pfuze100_init(I2C_PMIC);
if (ret)
return ret;
pfuze = pmic_get("PFUZE100");
if (!pfuze)
return -ENODEV;
ret = pmic_probe(pfuze);
if (ret)
return ret;
ret = pfuze_mode_init(pfuze, APS_PFM);
if (ret < 0)
return ret;
pmic_reg_read(pfuze, PFUZE100_DEVICEID, &value);
pmic_reg_read(pfuze, PFUZE100_REVID, &rev_id);
printf("PMIC: PFUZE200! DEV_ID=0x%x REV_ID=0x%x\n", value, rev_id);
/*
* Our PFUZE0200 is PMPF0200X0AEP, the Pre-programmed OTP
* Configuration is F0.
* Default VOLT:
* VSNVS_VOLT | 3.0V
* SW1AB | 1.375V
* SW2 | 3.3V
* SW3A | 1.5V
* SW3B | 1.5V
* VGEN1 | 1.5V
* VGEN2 | 1.5V
* VGEN3 | 2.5V
* VGEN4 | 1.8V
* VGEN5 | 2.8V
* VGEN6 | 3.3V
*
* According to schematic, we need SW3A 1.35V, SW3B 3.3V,
* VGEN1 1.2V, VGEN2 1.5V, VGEN3 2.8V, VGEN4 1.8V,
* VGEN5 3.3V, VGEN6 3.0V.
*
* Here we just use the default VOLT, but not configure
* them, when needed, configure them to our requested voltage.
*/
/* set SW1AB standby volatage 1.3V */
pmic_reg_read(pfuze, PFUZE100_SW1ABSTBY, &value);
value &= ~0x3f;
value |= PFUZE100_SW1ABC_SETP(13000);
pmic_reg_write(pfuze, PFUZE100_SW1ABSTBY, value);
/* set SW1AB/VDDARM step ramp up time from 16us to 4us/25mV */
pmic_reg_read(pfuze, PFUZE100_SW1ABCONF, &value);
value &= ~0xc0;
value |= 0x40;
pmic_reg_write(pfuze, PFUZE100_SW1ABCONF, value);
/* Enable power of VGEN5 3V3 */
pmic_reg_read(pfuze, PFUZE100_VGEN5VOL, &value);
value &= ~0x1F;
value |= 0x1F;
pmic_reg_write(pfuze, PFUZE100_VGEN5VOL, value);
return 0;
}
#ifdef CONFIG_LDO_BYPASS_CHECK
void ldo_mode_set(int ldo_bypass)
{
unsigned int value;
int is_400M;
u32 vddarm;
struct pmic *p = pfuze;
if (!p) {
printf("No PMIC found!\n");
return;
}
/* switch to ldo_bypass mode */
if (ldo_bypass) {
prep_anatop_bypass();
/* decrease VDDARM to 1.275V */
pmic_reg_read(pfuze, PFUZE100_SW1ABVOL, &value);
value &= ~0x3f;
value |= PFUZE100_SW1ABC_SETP(12750);
pmic_reg_write(pfuze, PFUZE100_SW1ABVOL, value);
is_400M = set_anatop_bypass(1);
if (is_400M)
vddarm = PFUZE100_SW1ABC_SETP(10750);
else
vddarm = PFUZE100_SW1ABC_SETP(11750);
pmic_reg_read(pfuze, PFUZE100_SW1ABVOL, &value);
value &= ~0x3f;
value |= vddarm;
pmic_reg_write(pfuze, PFUZE100_SW1ABVOL, value);
finish_anatop_bypass();
printf("switch to ldo_bypass mode!\n");
}
}
#endif
#endif
int board_early_init_f(void)
{
setup_iomux_uart();
return 0;
}
int board_init(void)
{
/* Address of boot parameters */
gd->bd->bi_boot_params = PHYS_SDRAM + 0x100;
#ifdef CONFIG_SYS_I2C_MXC
setup_i2c(0, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info1);
#endif
#ifdef CONFIG_FEC_MXC
setup_fec(CONFIG_FEC_ENET_DEV);
#endif
#ifdef CONFIG_SYS_USE_SPINOR
setup_spinor();
#endif
#ifdef CONFIG_SYS_USE_NAND
setup_gpmi_nand();
#endif
#ifdef CONFIG_SYS_USE_EIMNOR
/*
* This function should be invoked after setup_fec,
* because ENET2_RX_ER conflicts. However, we rarely need
* ENET2_RX_ER for enet, and when use eimnor, we do not
* have sd1/sd2, enet is a must to boot kernel and nfsrootfs.
*/
setup_eimnor();
#endif
#ifdef CONFIG_SYS_USE_QSPI
board_qspi_init();
#endif
return 0;
}
#ifdef CONFIG_CMD_BMODE
static const struct boot_mode board_boot_modes[] = {
/* 4 bit bus width */
{"sd1", MAKE_CFGVAL(0x42, 0x20, 0x00, 0x00)},
{NULL, 0},
};
#endif
int board_late_init(void)
{
#ifdef CONFIG_CMD_BMODE
add_board_boot_modes(board_boot_modes);
#endif
#ifdef CONFIG_ENV_IS_IN_MMC
board_late_mmc_init();
#endif
return 0;
}
u32 get_board_rev(void)
{
return get_cpu_rev();
}
int checkboard(void)
{
puts("Board: MX6UL 14X14 LPDDR2 ARM2\n");
return 0;
}
#ifdef CONFIG_USB_EHCI_MX6
#define USB_OTHERREGS_OFFSET 0x800
#define UCTRL_PWR_POL (1 << 9)
iomux_v3_cfg_t const usb_otg1_pads[] = {
MX6_PAD_GPIO1_IO04__USB_OTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL),
MX6_PAD_GPIO1_IO00__ANATOP_OTG1_ID | MUX_PAD_CTRL(OTG_ID_PAD_CTRL),
};
/*
* Leave it here, but default configuration only supports 1 port now,
* because we need sd1 and i2c1
*/
iomux_v3_cfg_t const usb_otg2_pads[] = {
/* conflict with i2c1_scl */
MX6_PAD_GPIO1_IO02__USB_OTG2_PWR | MUX_PAD_CTRL(NO_PAD_CTRL),
/* conflict with sd1_vselect */
MX6_PAD_GPIO1_IO05__ANATOP_OTG2_ID | MUX_PAD_CTRL(OTG_ID_PAD_CTRL),
};
int board_usb_phy_mode(int port)
{
return usb_phy_mode(port);
}
int board_ehci_hcd_init(int port)
{
u32 *usbnc_usb_ctrl;
if (port > 1)
return -EINVAL;
switch (port) {
case 0:
imx_iomux_v3_setup_multiple_pads(usb_otg1_pads,
ARRAY_SIZE(usb_otg1_pads));
break;
case 1:
imx_iomux_v3_setup_multiple_pads(usb_otg2_pads,
ARRAY_SIZE(usb_otg2_pads));
break;
default:
printf("MXC USB port %d not yet supported\n", port);
return 1;
}
usbnc_usb_ctrl = (u32 *)(USB_BASE_ADDR + USB_OTHERREGS_OFFSET +
port * 4);
/* Set Power polarity */
setbits_le32(usbnc_usb_ctrl, UCTRL_PWR_POL);
return 0;
}
#endif