blob: 1255df0fc1ae200d12caba7f570457d9853cbd1e [file] [log] [blame]
/*
*
* (C) COPYRIGHT 2015-2017 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU licence.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* SPDX-License-Identifier: GPL-2.0
*
*/
#include <mali_kbase.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/shrinker.h>
#include <linux/atomic.h>
#include <linux/version.h>
#define pool_dbg(pool, format, ...) \
dev_dbg(pool->kbdev->dev, "%s-pool [%zu/%zu]: " format, \
(pool->next_pool) ? "kctx" : "kbdev", \
kbase_mem_pool_size(pool), \
kbase_mem_pool_max_size(pool), \
##__VA_ARGS__)
#define NOT_DIRTY false
#define NOT_RECLAIMED false
static size_t kbase_mem_pool_capacity(struct kbase_mem_pool *pool)
{
ssize_t max_size = kbase_mem_pool_max_size(pool);
ssize_t cur_size = kbase_mem_pool_size(pool);
return max(max_size - cur_size, (ssize_t)0);
}
static bool kbase_mem_pool_is_full(struct kbase_mem_pool *pool)
{
return kbase_mem_pool_size(pool) >= kbase_mem_pool_max_size(pool);
}
static bool kbase_mem_pool_is_empty(struct kbase_mem_pool *pool)
{
return kbase_mem_pool_size(pool) == 0;
}
static void kbase_mem_pool_add_locked(struct kbase_mem_pool *pool,
struct page *p)
{
lockdep_assert_held(&pool->pool_lock);
list_add(&p->lru, &pool->page_list);
pool->cur_size++;
pool_dbg(pool, "added page\n");
}
static void kbase_mem_pool_add(struct kbase_mem_pool *pool, struct page *p)
{
kbase_mem_pool_lock(pool);
kbase_mem_pool_add_locked(pool, p);
kbase_mem_pool_unlock(pool);
}
static void kbase_mem_pool_add_list_locked(struct kbase_mem_pool *pool,
struct list_head *page_list, size_t nr_pages)
{
lockdep_assert_held(&pool->pool_lock);
list_splice(page_list, &pool->page_list);
pool->cur_size += nr_pages;
pool_dbg(pool, "added %zu pages\n", nr_pages);
}
static void kbase_mem_pool_add_list(struct kbase_mem_pool *pool,
struct list_head *page_list, size_t nr_pages)
{
kbase_mem_pool_lock(pool);
kbase_mem_pool_add_list_locked(pool, page_list, nr_pages);
kbase_mem_pool_unlock(pool);
}
static struct page *kbase_mem_pool_remove_locked(struct kbase_mem_pool *pool)
{
struct page *p;
lockdep_assert_held(&pool->pool_lock);
if (kbase_mem_pool_is_empty(pool))
return NULL;
p = list_first_entry(&pool->page_list, struct page, lru);
list_del_init(&p->lru);
pool->cur_size--;
pool_dbg(pool, "removed page\n");
return p;
}
static struct page *kbase_mem_pool_remove(struct kbase_mem_pool *pool)
{
struct page *p;
kbase_mem_pool_lock(pool);
p = kbase_mem_pool_remove_locked(pool);
kbase_mem_pool_unlock(pool);
return p;
}
static void kbase_mem_pool_sync_page(struct kbase_mem_pool *pool,
struct page *p)
{
struct device *dev = pool->kbdev->dev;
dma_sync_single_for_device(dev, kbase_dma_addr(p),
(PAGE_SIZE << pool->order), DMA_BIDIRECTIONAL);
}
static void kbase_mem_pool_zero_page(struct kbase_mem_pool *pool,
struct page *p)
{
int i;
for (i = 0; i < (1U << pool->order); i++)
clear_highpage(p+i);
kbase_mem_pool_sync_page(pool, p);
}
static void kbase_mem_pool_spill(struct kbase_mem_pool *next_pool,
struct page *p)
{
/* Zero page before spilling */
kbase_mem_pool_zero_page(next_pool, p);
kbase_mem_pool_add(next_pool, p);
}
struct page *kbase_mem_alloc_page(struct kbase_mem_pool *pool)
{
struct page *p;
gfp_t gfp;
struct device *dev = pool->kbdev->dev;
dma_addr_t dma_addr;
int i;
#if defined(CONFIG_ARM) && !defined(CONFIG_HAVE_DMA_ATTRS) && \
LINUX_VERSION_CODE < KERNEL_VERSION(3, 5, 0)
/* DMA cache sync fails for HIGHMEM before 3.5 on ARM */
gfp = GFP_USER | __GFP_ZERO;
#else
gfp = GFP_HIGHUSER | __GFP_ZERO;
#endif
/* don't warn on higer order failures */
if (pool->order)
gfp |= __GFP_NOWARN;
p = alloc_pages(gfp, pool->order);
if (!p)
return NULL;
dma_addr = dma_map_page(dev, p, 0, (PAGE_SIZE << pool->order),
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, dma_addr)) {
__free_pages(p, pool->order);
return NULL;
}
WARN_ON(dma_addr != page_to_phys(p));
for (i = 0; i < (1u << pool->order); i++)
kbase_set_dma_addr(p+i, dma_addr + PAGE_SIZE * i);
return p;
}
static void kbase_mem_pool_free_page(struct kbase_mem_pool *pool,
struct page *p)
{
struct device *dev = pool->kbdev->dev;
dma_addr_t dma_addr = kbase_dma_addr(p);
int i;
dma_unmap_page(dev, dma_addr, (PAGE_SIZE << pool->order),
DMA_BIDIRECTIONAL);
for (i = 0; i < (1u << pool->order); i++)
kbase_clear_dma_addr(p+i);
__free_pages(p, pool->order);
pool_dbg(pool, "freed page to kernel\n");
}
static size_t kbase_mem_pool_shrink_locked(struct kbase_mem_pool *pool,
size_t nr_to_shrink)
{
struct page *p;
size_t i;
lockdep_assert_held(&pool->pool_lock);
for (i = 0; i < nr_to_shrink && !kbase_mem_pool_is_empty(pool); i++) {
p = kbase_mem_pool_remove_locked(pool);
kbase_mem_pool_free_page(pool, p);
}
return i;
}
static size_t kbase_mem_pool_shrink(struct kbase_mem_pool *pool,
size_t nr_to_shrink)
{
size_t nr_freed;
kbase_mem_pool_lock(pool);
nr_freed = kbase_mem_pool_shrink_locked(pool, nr_to_shrink);
kbase_mem_pool_unlock(pool);
return nr_freed;
}
int kbase_mem_pool_grow(struct kbase_mem_pool *pool,
size_t nr_to_grow)
{
struct page *p;
size_t i;
kbase_mem_pool_lock(pool);
pool->dont_reclaim = true;
for (i = 0; i < nr_to_grow; i++) {
if (pool->dying) {
pool->dont_reclaim = false;
kbase_mem_pool_shrink_locked(pool, nr_to_grow);
kbase_mem_pool_unlock(pool);
return -ENOMEM;
}
kbase_mem_pool_unlock(pool);
p = kbase_mem_alloc_page(pool);
if (!p) {
kbase_mem_pool_lock(pool);
pool->dont_reclaim = false;
kbase_mem_pool_unlock(pool);
return -ENOMEM;
}
kbase_mem_pool_lock(pool);
kbase_mem_pool_add_locked(pool, p);
}
pool->dont_reclaim = false;
kbase_mem_pool_unlock(pool);
return 0;
}
void kbase_mem_pool_trim(struct kbase_mem_pool *pool, size_t new_size)
{
size_t cur_size;
int err = 0;
cur_size = kbase_mem_pool_size(pool);
if (new_size > pool->max_size)
new_size = pool->max_size;
if (new_size < cur_size)
kbase_mem_pool_shrink(pool, cur_size - new_size);
else if (new_size > cur_size)
err = kbase_mem_pool_grow(pool, new_size - cur_size);
if (err) {
size_t grown_size = kbase_mem_pool_size(pool);
dev_warn(pool->kbdev->dev,
"Mem pool not grown to the required size of %zu bytes, grown for additional %zu bytes instead!\n",
(new_size - cur_size), (grown_size - cur_size));
}
}
void kbase_mem_pool_set_max_size(struct kbase_mem_pool *pool, size_t max_size)
{
size_t cur_size;
size_t nr_to_shrink;
kbase_mem_pool_lock(pool);
pool->max_size = max_size;
cur_size = kbase_mem_pool_size(pool);
if (max_size < cur_size) {
nr_to_shrink = cur_size - max_size;
kbase_mem_pool_shrink_locked(pool, nr_to_shrink);
}
kbase_mem_pool_unlock(pool);
}
static unsigned long kbase_mem_pool_reclaim_count_objects(struct shrinker *s,
struct shrink_control *sc)
{
struct kbase_mem_pool *pool;
size_t pool_size;
pool = container_of(s, struct kbase_mem_pool, reclaim);
kbase_mem_pool_lock(pool);
if (pool->dont_reclaim && !pool->dying) {
kbase_mem_pool_unlock(pool);
return 0;
}
pool_size = kbase_mem_pool_size(pool);
kbase_mem_pool_unlock(pool);
return pool_size;
}
static unsigned long kbase_mem_pool_reclaim_scan_objects(struct shrinker *s,
struct shrink_control *sc)
{
struct kbase_mem_pool *pool;
unsigned long freed;
pool = container_of(s, struct kbase_mem_pool, reclaim);
kbase_mem_pool_lock(pool);
if (pool->dont_reclaim && !pool->dying) {
kbase_mem_pool_unlock(pool);
return 0;
}
pool_dbg(pool, "reclaim scan %ld:\n", sc->nr_to_scan);
freed = kbase_mem_pool_shrink_locked(pool, sc->nr_to_scan);
kbase_mem_pool_unlock(pool);
pool_dbg(pool, "reclaim freed %ld pages\n", freed);
return freed;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 12, 0)
static int kbase_mem_pool_reclaim_shrink(struct shrinker *s,
struct shrink_control *sc)
{
if (sc->nr_to_scan == 0)
return kbase_mem_pool_reclaim_count_objects(s, sc);
return kbase_mem_pool_reclaim_scan_objects(s, sc);
}
#endif
int kbase_mem_pool_init(struct kbase_mem_pool *pool,
size_t max_size,
size_t order,
struct kbase_device *kbdev,
struct kbase_mem_pool *next_pool)
{
pool->cur_size = 0;
pool->max_size = max_size;
pool->order = order;
pool->kbdev = kbdev;
pool->next_pool = next_pool;
pool->dying = false;
spin_lock_init(&pool->pool_lock);
INIT_LIST_HEAD(&pool->page_list);
/* Register shrinker */
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 12, 0)
pool->reclaim.shrink = kbase_mem_pool_reclaim_shrink;
#else
pool->reclaim.count_objects = kbase_mem_pool_reclaim_count_objects;
pool->reclaim.scan_objects = kbase_mem_pool_reclaim_scan_objects;
#endif
pool->reclaim.seeks = DEFAULT_SEEKS;
/* Kernel versions prior to 3.1 :
* struct shrinker does not define batch */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0)
pool->reclaim.batch = 0;
#endif
register_shrinker(&pool->reclaim);
pool_dbg(pool, "initialized\n");
return 0;
}
void kbase_mem_pool_mark_dying(struct kbase_mem_pool *pool)
{
kbase_mem_pool_lock(pool);
pool->dying = true;
kbase_mem_pool_unlock(pool);
}
void kbase_mem_pool_term(struct kbase_mem_pool *pool)
{
struct kbase_mem_pool *next_pool = pool->next_pool;
struct page *p;
size_t nr_to_spill = 0;
LIST_HEAD(spill_list);
int i;
pool_dbg(pool, "terminate()\n");
unregister_shrinker(&pool->reclaim);
kbase_mem_pool_lock(pool);
pool->max_size = 0;
if (next_pool && !kbase_mem_pool_is_full(next_pool)) {
/* Spill to next pool (may overspill) */
nr_to_spill = kbase_mem_pool_capacity(next_pool);
nr_to_spill = min(kbase_mem_pool_size(pool), nr_to_spill);
/* Zero pages first without holding the next_pool lock */
for (i = 0; i < nr_to_spill; i++) {
p = kbase_mem_pool_remove_locked(pool);
kbase_mem_pool_zero_page(pool, p);
list_add(&p->lru, &spill_list);
}
}
while (!kbase_mem_pool_is_empty(pool)) {
/* Free remaining pages to kernel */
p = kbase_mem_pool_remove_locked(pool);
kbase_mem_pool_free_page(pool, p);
}
kbase_mem_pool_unlock(pool);
if (next_pool && nr_to_spill) {
/* Add new page list to next_pool */
kbase_mem_pool_add_list(next_pool, &spill_list, nr_to_spill);
pool_dbg(pool, "terminate() spilled %zu pages\n", nr_to_spill);
}
pool_dbg(pool, "terminated\n");
}
struct page *kbase_mem_pool_alloc(struct kbase_mem_pool *pool)
{
struct page *p;
do {
pool_dbg(pool, "alloc()\n");
p = kbase_mem_pool_remove(pool);
if (p)
return p;
pool = pool->next_pool;
} while (pool);
return NULL;
}
struct page *kbase_mem_pool_alloc_locked(struct kbase_mem_pool *pool)
{
struct page *p;
lockdep_assert_held(&pool->pool_lock);
pool_dbg(pool, "alloc_locked()\n");
p = kbase_mem_pool_remove_locked(pool);
if (p)
return p;
return NULL;
}
void kbase_mem_pool_free(struct kbase_mem_pool *pool, struct page *p,
bool dirty)
{
struct kbase_mem_pool *next_pool = pool->next_pool;
pool_dbg(pool, "free()\n");
if (!kbase_mem_pool_is_full(pool)) {
/* Add to our own pool */
if (dirty)
kbase_mem_pool_sync_page(pool, p);
kbase_mem_pool_add(pool, p);
} else if (next_pool && !kbase_mem_pool_is_full(next_pool)) {
/* Spill to next pool */
kbase_mem_pool_spill(next_pool, p);
} else {
/* Free page */
kbase_mem_pool_free_page(pool, p);
}
}
void kbase_mem_pool_free_locked(struct kbase_mem_pool *pool, struct page *p,
bool dirty)
{
pool_dbg(pool, "free_locked()\n");
lockdep_assert_held(&pool->pool_lock);
if (!kbase_mem_pool_is_full(pool)) {
/* Add to our own pool */
if (dirty)
kbase_mem_pool_sync_page(pool, p);
kbase_mem_pool_add_locked(pool, p);
} else {
/* Free page */
kbase_mem_pool_free_page(pool, p);
}
}
int kbase_mem_pool_alloc_pages(struct kbase_mem_pool *pool, size_t nr_4k_pages,
struct tagged_addr *pages, bool partial_allowed)
{
struct page *p;
size_t nr_from_pool;
size_t i = 0;
int err = -ENOMEM;
size_t nr_pages_internal;
nr_pages_internal = nr_4k_pages / (1u << (pool->order));
if (nr_pages_internal * (1u << pool->order) != nr_4k_pages)
return -EINVAL;
pool_dbg(pool, "alloc_pages(4k=%zu):\n", nr_4k_pages);
pool_dbg(pool, "alloc_pages(internal=%zu):\n", nr_pages_internal);
/* Get pages from this pool */
kbase_mem_pool_lock(pool);
nr_from_pool = min(nr_pages_internal, kbase_mem_pool_size(pool));
while (nr_from_pool--) {
int j;
p = kbase_mem_pool_remove_locked(pool);
if (pool->order) {
pages[i++] = as_tagged_tag(page_to_phys(p),
HUGE_HEAD | HUGE_PAGE);
for (j = 1; j < (1u << pool->order); j++)
pages[i++] = as_tagged_tag(page_to_phys(p) +
PAGE_SIZE * j,
HUGE_PAGE);
} else {
pages[i++] = as_tagged(page_to_phys(p));
}
}
kbase_mem_pool_unlock(pool);
if (i != nr_4k_pages && pool->next_pool) {
/* Allocate via next pool */
err = kbase_mem_pool_alloc_pages(pool->next_pool,
nr_4k_pages - i, pages + i, partial_allowed);
if (err < 0)
goto err_rollback;
i += err;
} else {
/* Get any remaining pages from kernel */
while (i != nr_4k_pages) {
p = kbase_mem_alloc_page(pool);
if (!p) {
if (partial_allowed)
goto done;
else
goto err_rollback;
}
if (pool->order) {
int j;
pages[i++] = as_tagged_tag(page_to_phys(p),
HUGE_PAGE |
HUGE_HEAD);
for (j = 1; j < (1u << pool->order); j++) {
phys_addr_t phys;
phys = page_to_phys(p) + PAGE_SIZE * j;
pages[i++] = as_tagged_tag(phys,
HUGE_PAGE);
}
} else {
pages[i++] = as_tagged(page_to_phys(p));
}
}
}
done:
pool_dbg(pool, "alloc_pages(%zu) done\n", i);
return i;
err_rollback:
kbase_mem_pool_free_pages(pool, i, pages, NOT_DIRTY, NOT_RECLAIMED);
return err;
}
int kbase_mem_pool_alloc_pages_locked(struct kbase_mem_pool *pool,
size_t nr_4k_pages, struct tagged_addr *pages)
{
struct page *p;
size_t i;
size_t nr_pages_internal;
lockdep_assert_held(&pool->pool_lock);
nr_pages_internal = nr_4k_pages / (1u << (pool->order));
if (nr_pages_internal * (1u << pool->order) != nr_4k_pages)
return -EINVAL;
pool_dbg(pool, "alloc_pages_locked(4k=%zu):\n", nr_4k_pages);
pool_dbg(pool, "alloc_pages_locked(internal=%zu):\n",
nr_pages_internal);
if (kbase_mem_pool_size(pool) < nr_pages_internal) {
pool_dbg(pool, "Failed alloc\n");
return -ENOMEM;
}
for (i = 0; i < nr_pages_internal; i++) {
int j;
p = kbase_mem_pool_remove_locked(pool);
if (pool->order) {
*pages++ = as_tagged_tag(page_to_phys(p),
HUGE_HEAD | HUGE_PAGE);
for (j = 1; j < (1u << pool->order); j++) {
*pages++ = as_tagged_tag(page_to_phys(p) +
PAGE_SIZE * j,
HUGE_PAGE);
}
} else {
*pages++ = as_tagged(page_to_phys(p));
}
}
return nr_4k_pages;
}
static void kbase_mem_pool_add_array(struct kbase_mem_pool *pool,
size_t nr_pages, struct tagged_addr *pages,
bool zero, bool sync)
{
struct page *p;
size_t nr_to_pool = 0;
LIST_HEAD(new_page_list);
size_t i;
if (!nr_pages)
return;
pool_dbg(pool, "add_array(%zu, zero=%d, sync=%d):\n",
nr_pages, zero, sync);
/* Zero/sync pages first without holding the pool lock */
for (i = 0; i < nr_pages; i++) {
if (unlikely(!as_phys_addr_t(pages[i])))
continue;
if (is_huge_head(pages[i]) || !is_huge(pages[i])) {
p = phys_to_page(as_phys_addr_t(pages[i]));
if (zero)
kbase_mem_pool_zero_page(pool, p);
else if (sync)
kbase_mem_pool_sync_page(pool, p);
list_add(&p->lru, &new_page_list);
nr_to_pool++;
}
pages[i] = as_tagged(0);
}
/* Add new page list to pool */
kbase_mem_pool_add_list(pool, &new_page_list, nr_to_pool);
pool_dbg(pool, "add_array(%zu) added %zu pages\n",
nr_pages, nr_to_pool);
}
static void kbase_mem_pool_add_array_locked(struct kbase_mem_pool *pool,
size_t nr_pages, struct tagged_addr *pages,
bool zero, bool sync)
{
struct page *p;
size_t nr_to_pool = 0;
LIST_HEAD(new_page_list);
size_t i;
lockdep_assert_held(&pool->pool_lock);
if (!nr_pages)
return;
pool_dbg(pool, "add_array_locked(%zu, zero=%d, sync=%d):\n",
nr_pages, zero, sync);
/* Zero/sync pages first */
for (i = 0; i < nr_pages; i++) {
if (unlikely(!as_phys_addr_t(pages[i])))
continue;
if (is_huge_head(pages[i]) || !is_huge(pages[i])) {
p = phys_to_page(as_phys_addr_t(pages[i]));
if (zero)
kbase_mem_pool_zero_page(pool, p);
else if (sync)
kbase_mem_pool_sync_page(pool, p);
list_add(&p->lru, &new_page_list);
nr_to_pool++;
}
pages[i] = as_tagged(0);
}
/* Add new page list to pool */
kbase_mem_pool_add_list_locked(pool, &new_page_list, nr_to_pool);
pool_dbg(pool, "add_array_locked(%zu) added %zu pages\n",
nr_pages, nr_to_pool);
}
void kbase_mem_pool_free_pages(struct kbase_mem_pool *pool, size_t nr_pages,
struct tagged_addr *pages, bool dirty, bool reclaimed)
{
struct kbase_mem_pool *next_pool = pool->next_pool;
struct page *p;
size_t nr_to_pool;
LIST_HEAD(to_pool_list);
size_t i = 0;
pool_dbg(pool, "free_pages(%zu):\n", nr_pages);
if (!reclaimed) {
/* Add to this pool */
nr_to_pool = kbase_mem_pool_capacity(pool);
nr_to_pool = min(nr_pages, nr_to_pool);
kbase_mem_pool_add_array(pool, nr_to_pool, pages, false, dirty);
i += nr_to_pool;
if (i != nr_pages && next_pool) {
/* Spill to next pool (may overspill) */
nr_to_pool = kbase_mem_pool_capacity(next_pool);
nr_to_pool = min(nr_pages - i, nr_to_pool);
kbase_mem_pool_add_array(next_pool, nr_to_pool,
pages + i, true, dirty);
i += nr_to_pool;
}
}
/* Free any remaining pages to kernel */
for (; i < nr_pages; i++) {
if (unlikely(!as_phys_addr_t(pages[i])))
continue;
if (is_huge(pages[i]) && !is_huge_head(pages[i])) {
pages[i] = as_tagged(0);
continue;
}
p = phys_to_page(as_phys_addr_t(pages[i]));
kbase_mem_pool_free_page(pool, p);
pages[i] = as_tagged(0);
}
pool_dbg(pool, "free_pages(%zu) done\n", nr_pages);
}
void kbase_mem_pool_free_pages_locked(struct kbase_mem_pool *pool,
size_t nr_pages, struct tagged_addr *pages, bool dirty,
bool reclaimed)
{
struct page *p;
size_t nr_to_pool;
LIST_HEAD(to_pool_list);
size_t i = 0;
lockdep_assert_held(&pool->pool_lock);
pool_dbg(pool, "free_pages_locked(%zu):\n", nr_pages);
if (!reclaimed) {
/* Add to this pool */
nr_to_pool = kbase_mem_pool_capacity(pool);
nr_to_pool = min(nr_pages, nr_to_pool);
kbase_mem_pool_add_array_locked(pool, nr_pages, pages, false,
dirty);
i += nr_to_pool;
}
/* Free any remaining pages to kernel */
for (; i < nr_pages; i++) {
if (unlikely(!as_phys_addr_t(pages[i])))
continue;
if (is_huge(pages[i]) && !is_huge_head(pages[i])) {
pages[i] = as_tagged(0);
continue;
}
p = phys_to_page(as_phys_addr_t(pages[i]));
kbase_mem_pool_free_page(pool, p);
pages[i] = as_tagged(0);
}
pool_dbg(pool, "free_pages_locked(%zu) done\n", nr_pages);
}